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Experience with adaptive mobile applications in Odyssey
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In this paper, we present our experience with application-aware adaptation in the context of Odyssey, a platform for mobile data
access. We describe three applications that we have modified to run on Odyssey – a video player, a Web browser, and a speech
recognition system. Our experience indicates that it is relatively simple to incorporate applications into Odyssey, and that application
source code is not always essential. Although our applications were built without knowledge of each other, Odyssey is able to run them
concurrently without interference. However, our experience also exposes important areas of future work. Specifically, it reveals the
difficulty of balancing agility with stability in adaptation, and emphasizes the need for controlled exposure of internal Odyssey state to
users.

1. Introduction

The resources available to a mobile client vary widely
and unpredictably, requiring the client to adapt its behav-
ior to these changes. In the face of diverse, concurrent
applications such adaptation is best provided through a
collaboration between these applications and the operating
system. This collaborative approach is called application-
aware adaptation. Odyssey, a platform for mobile data
access, is the vehicle we have built to explore application-
aware adaptation.

Earlier papers have described the programming interface
Odyssey provides for adaptive applications [15], and have
presented results from controlled experiments to validate
the benefits of application-aware adaptation [16]. In this
paper we report on the qualitative lessons we have learned
in building Odyssey applications, and refining them in the
light of usage experience. These lessons can be summarized
as follows:

• It was relatively easy to modify our example applica-
tions to take advantage of Odyssey.

• An important class of binary-only applications can be
incorporated into Odyssey without source-level changes.

• Odyssey effectively supports competing applications
without requiring them to have explicit knowledge of
one another.

• Striking the right balance between agility and stability
is difficult; care is required to ensure that the adaptation
policy provides a satisfactory experience for the user.

• Users benefit from some form of feedback about adap-
tations as they occur. Likewise, their experience is im-
proved by feedback concerning the causes of those adap-
tations.

The paper begins by presenting a brief overview of
Odyssey, and then describes the three applications we have
built on it. For each application, we first describe its inte-
gration with the Odyssey prototype; we then describe the

adaptation policy used for that application. We conclude
by reporting on the lessons we have learned so far from
our experience with these applications.

2. Overview of Odyssey

2.1. Data fidelity

When faced with a sudden scarcity of resources, a mo-
bile client can react in two ways. First, it can reduce its
demand for a scarce resource by substituting a more plen-
tiful one. Second, it can reduce the quality of data it is
accessing, thereby reducing resource consumption.

There are many ways in which plentiful resources might
be traded for scarce ones. For example, lossless com-
pression applied to transmitted data trades computation for
bandwidth. Caching to avoid future data exchanges trades
disk space for both bandwidth and computation. Rather
than using a remote computation engine that is difficult to
reach, the client may perform some complex action locally.
A mobile client with a software-controlled radio may in-
crease power to decrease bit-error rate, or reduce power
consumption by reducing bandwidth [3].

However, the trading of resources often is not sufficient
to cope with large swings in availability. As an example,
the bandwidth available to a mobile client can vary by sev-
eral orders of magnitude. Further, the scarcity of resources
available to a mobile client limits the degree to which such
trades can be made. These together require a more ag-
gressive form of adaptation. Odyssey defines adaptation as
the trading of data quality for resource consumption. For
example, when the bandwidth available to a video player
drops, it could switch to a video stream with fewer colors
and coarser resolution rather than suffer dropped frames.
Likewise, when the bandwidth available to a Web browser
drops, it might fetch images that have been aggressively
compressed rather than wait an inordinate amount of time
for the full quality versions.
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Odyssey defines a new property, fidelity, to quantify this
notion of quality. For any data item, there exists a most
complete, current, detailed version of that item called the
reference copy. Ideally, the reference copy is always pre-
sented to the mobile user. However, when resources be-
come scarce, the item will be degraded in some way. Fi-
delity is defined as the degree to which a presented item
matches the reference copy.

Fidelity is necessarily a type-specific notion; different
kinds of data are degraded in different ways. For example,
video may be degraded by dropping frames, reducing image
size, or reducing image quality of individual frames. Maps
can be degraded by either coarsening the level of detail,
or removing certain classes of features; for example, one
might only look at roads and rivers, ignoring buildings.

This notion of fidelity requires data to be relatively
rich in structure; an untyped stream of data cannot be
degraded in any meaningful way beyond relaxing consis-
tency constraints. Therefore, Odyssey’s target applications
are those which access relatively rich, and hence resource-
demanding, data.

Note that the trading of fidelity for resource consump-
tion is different from what is often meant by adaptation. For
example, TCP adapts its window size in an effort to max-
imize throughput without causing undue congestion. This
sense of adaptation is necessary on a mobile node, but is
not sufficient. When bandwidth drops by several orders of
magnitude, a drastically reduced window size will allow the
mobile client to get the best throughput possible. However,
data will then arrive at the client at too slow a rate to be
acceptable.

2.2. Model of adaptation

In Odyssey’s view, the operating system is responsible
for monitoring resource availability, notifying applications
of relevant changes to those resources, and enforcing re-
source allocation decisions. In contrast, each application is
responsible for deciding how best to exploit available re-
sources. This approach best supports adaptation by concur-
rent and diverse applications; it is called application-aware
adaptation.

The merits of application-aware adaptation can be best
understood by considering its alternatives. Since fidelity
is a type-specific notion, one might be tempted to place
responsibility for adaptation entirely with the application.
We call this approach laissez-faire adaptation, and it is ex-
emplified by work such as RLM [11] and Cen’s feedback-
adaptive toolkit [2,7]. Such approaches do allow individual
applications to adapt precisely according to their own goals,
and do not require any operating system support. How-
ever, concurrent applications that use laissez-faire adaptive
schemes are unlikely to behave well. They each adapt to
the same set of environmental changes, and compete for the
same set of scarce resources. Without some central author-
ity, they are likely to interfere with one another and adapt

Figure 1. Odyssey architecture.

at cross purposes; laissez-faire adaptation cannot support
concurrency.

One could remedy this shortcoming by making the sys-
tem entirely responsible for adaptation, an approach called
application-transparent adaptation. Examples of such sys-
tems include Coda [14] and Bayou [21]. Legacy applica-
tions can continue to run on these systems unmodified, as
they are not involved in adaptation decisions. However,
they cannot support different applications that, when using
the same data in the same circumstances, desire different
adaptive behavior; application-transparent adaptation can-
not support diversity.

2.3. Client architecture

The architecture of an Odyssey client is shown in fig-
ure 1. The bulk of the architectural components reside in
user space for simplicity of implementation. However, they
should be thought of as part of the operating system, and
could be implemented either directly in the kernel or as a
middleware layer between the kernel and the applications.

Odyssey objects are available to applications as part
of the file name space. The interceptor provides a VFS
client [9] that forwards file system requests on Odyssey
objects to the viceroy; this latter component is responsible
for all type-independent functionality on the client. The
viceroy’s most important task is monitoring the availability
of resources and managing their use. To do so effectively,
the viceroy must have knowledge of all resource usage on
behalf of applications in the system.

Since fidelity is a type-specific notion, each Odyssey ob-
ject must carry with it a notion of type. The wardens are a
set of type-aware code components, one warden per type.
Wardens are chiefly responsible for providing a menu of
fidelities from which applications can pick. Wardens can
also provide semantically rich access methods to applica-
tions, and can take advantage of type knowledge to optimize
resource usage, consistency, and so on.

2.4. Programming interface

Odyssey adds two calls to the standard system API. The
first, resource request, is used to inform Odyssey of the
changes to resource availability of interest to the calling
application. For example, a video player might wish to
know if bandwidth ever drops below a certain level. The
second, type-specific operation, is used by an application
to change the fidelity at which data is accessed. In the
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Figure 2. Resource requests.

example above, the video application might reduce frame
rate when bandwidth does drop significantly.

The request API takes advantage of the fact that not all
changes in resource availability need be made known to an
application; only certain changes are of interest. For exam-
ple, consider a video player showing a particular movie at
a medium level of fidelity. Small changes in bandwidth are
unimportant, but large enough changes may warrant raising
or lowering fidelity. The range defined by these limits is
called a window of tolerance.

When an application chooses a fidelity level, it tells the
system of any relevant tolerance windows by issuing a re-
source request, shown in figure 2. A request names some
particular resource, the window of tolerance on that re-
source, and a function to call when the resource strays out-
side of the specified window. Resources of interest include
bandwidth, latency, disk space, available compute power,
remaining battery power, and money.1

These resource requests are forwarded to the viceroy,
which records them. As it updates its estimates of resource
availability, it checks these estimates against any estab-
lished windows of tolerance. If a resource strays outside
of one or more requested windows, each affected applica-
tion is notified via an upcall. This mechanism allows the
viceroy to filter out uninteresting changes in availability,
and focus on those of importance to some application.

Upcalls are treated much like signals, but they are deliv-
ered with exactly-once semantics rather than at-most-once,
and may pass arguments and return values. A resource no-
tification upcall carries with it the resource whose value has
changed along with the new value.

The application responds to this notification by changing
the fidelity of the data it is accessing; these fidelity changes
are carried out by wardens. Placing the responsibility with
the warden amortizes the effort required to support fidelity
changes across all applications using that warden’s type.

There may be many different wardens, each with many
different fidelity-changing operations. Rather than attempt
to encode all possible such operations into the API, they
are all multiplexed over a single new system call: the type-
specific operation, or tsop. Figure 3 summarizes the tsop
call, which is similar to the POSIX system call ioctl.

1 Money was included in anticipation of the use of electronic payments
for fee-for-service components of the mobile infrastructure.

Figure 3. Type-specific operations.

It passes an unstructured argument buffer to the warden,
and receives the result of the operation, if any, in another
unstructured buffer.

In addition to providing fidelity-changing operations, the
tsop mechanism can provide type-specific access methods
to applications. Instead of a limited, byte-oriented open,
close, read, and write interface, the warden can export an
interface more semantically meaningful for the type in ques-
tion. For example, the video warden exports an interface
allowing applications to read a movie as frames of video,
rather than simply bytes in a file.

2.5. Managing resources: Bandwidth

The principal resource of interest in our current proto-
type is network bandwidth. We chose to start with band-
width because, for mobile nodes, it is the most volatile of
the resources; it can vary over several orders of magnitude
without warning.

The bandwidth estimation algorithm makes use of obser-
vations at the transport layer, a user-level implementation of
an adaptive window-size, reliable transport protocol called
RPC2 [19]. Each exchange between client and server is
timed and logged, and the viceroy applies a simple linear
filter to smooth these observations. The result is a pre-
diction of the near-term total bandwidth available to the
machine.

This total bandwidth must be divided amongst the ap-
plications competing for it. The viceroy divides most of it
based on recent use; those applications that have consumed
a larger share in the immediate past are assumed to need
a larger share in the immediate future. However, a small
portion is reserved and divided fairly; this is to avoid un-
duly punishing applications that do not use the network for
extended periods of time.

2.6. Programming model

The programming model underlying this API is an adap-
tive decision loop. Each Odyssey application implements
its decision loop outside the main control flow of the ap-
plication. The loop is invoked by a resource notification
upcall. On notification, the loop first selects a fidelity ap-
propriate to the new resource situation. It then asks for that
new fidelity via a tsop, and sets any required windows of
tolerance appropriate to the new fidelity. When finished, it
awaits the next notification. This isolation of control pre-
serves simplicity when adding adaptive capabilities to an
application.

The implication of this structure is that the main body
of an Odyssey application must cope with data at varying
levels of fidelity. Fortunately, this is already true for a
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large class of interesting applications. For example, most
video players can already decode a number of different
video representations. Further, most complex data types
are self-descriptive. For example, a JPEG [23] image is
decoded exactly the same way, regardless of the quality of
compression or the number of colors in the color map. A
map can be rendered by the same code, whether or not the
roads are present. As a result of the positive experience
reported in this paper, we now have greater confidence in
this programming model.

3. Example applications

To gain first-hand experience with application-aware
adaptation, we modified a small set of applications to run on
Odyssey. We chose these applications with an eye toward
answering the following questions:

• How much effort is required to modify applications to
take advantage of Odyssey?

• Can Odyssey effectively support a number of concur-
rent, diverse applications using different data types?

• Is source code essential? Can shrink-wrapped applica-
tions – those for which no source is available – also take
advantage of Odyssey?

The three applications are: XAnim, a video player;
Netscape, a web browser for which source was not avail-
able; and Janus, a speech recognition system. Each appli-
cation uses a different data type, and has its own warden
and server, giving a broad range of experience. They are
all real applications that enjoy significant use, and each
presents unique challenges in integration with Odyssey.

Data can be presented at a number of discrete fidelities,
each of which is assigned a fidelity metric between zero and
one; a fidelity of one corresponds to the reference copy of
the data item. Fidelity levels provide a total ordering on
quality of data, but do not necessarily provide a measure of
relative quality perceived by the end user. Each application
also has a performance metric. The central addition to each
application was some adaptive policy – the strategy that ap-
plication would use in trading fidelity for performance. We
had no prior experience in designing adaptative policies,
and so made choices for each application that were reason-
able and stressed the Odyssey API.

Sections 3.1–3.3 describe the three applications. Each
section describes the application, warden, and server, as
well as how these components are integrated into the
Odyssey prototype. Each section provides an estimated
count of modified or new lines of C code for each of the
applications. It then defines the fidelity and performance
metrics, and the fidelity policy of the application.

3.1. Video player: XAnim

The first application added to Odyssey was XAnim, a
video player whose source code is publicly available [17].

In its original form, XAnim reads a movie file from a local
disk and plays it back to the screen, skipping late frames
to maintain pace through the file; it was approximately 57
KLOC (thousand lines of code). The main data type used
by this player in the context of Odyssey is QuickTime,
a standard video format defined by Apple Computer [1];
this format has an explicit time base in which the video
stream is encoded, and provides facilities for many different
representations.

3.1.1. Integration with Odyssey
The monolithic XAnim application was split into a

client, warden, and server. Adding these components to
Odyssey was straightforward; Figure 4 illustrates the re-
sulting structure. The server is a relatively simple piece
of code consisting of five KLOC, of which one KLOC
were added to or modified from the original code base.
It stores each movie as a number of pre-computed ver-
sions called tracks, each providing a different fidelity of
the movie. Storing these additional fidelities avoids com-
putational overhead when delivering degraded video, at a
space overhead cost of 60%. Of course, one could easily
modify this server to use an on-line scheme that degraded
video images on the fly [6].

The number and sizes of tracks available for each movie
are part of that movie’s meta-data. The meta-data also
specifies, for each track, the sizes and offsets of each frame
in that track. The warden, which handles QuickTime data at
the system level, can obtain this meta-data from the server,
and fetch a range of bytes from a particular track. The
warden is responsible for mapping a track’s frame numbers
to byte ranges within that track; the server provides no
such mapping. The warden also prefetches data from the
server, anticipating that the most common client behavior
is sequential access within a single track. Like the server,
the warden is a relatively small piece of code at 2.5 KLOC.

The client obtains movie data entirely through type-
specific access methods, rather than the more cumbersome
file I/O interface. This enables a simplification of the client,
removing 7.5 KLOC from the original code base. The type-
specific operations supported by the QuickTime warden are
summarized in figure 5, and described below.

Figure 4. Integration of XAnim with Odyssey.
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Figure 5. Access methods of QuickTime warden.

On qt open, the warden fetches the movie meta-data
and builds two frame maps. The first maps time offsets
to frame numbers for each track of the movie. The sec-
ond maps frame numbers to byte ranges. Once these are
constructed, the warden returns the track summary to the
application that called qt open.

On qt getframe, the warden translates the frame
number to a byte range. If the requested frame is in the
warden’s prefetch buffer, it is returned. If it is not present,
the warden returns the frame from a better quality track
if it is present. If neither of these are present, the war-
den fetches it from the server on demand. Less than one
KLOC needed to be added to the client to use this interface,
in place of the 7.5 KLOC removed from the original.

A background thread belonging to the warden pre-
fetches frames from the last track requested by qt get-
frame; this prefetching is controlled by two parameters,
highwater and lowwater. Whenever there are fewer
than lowwater bytes in the prefetch buffer, the warden
prefetches frames until the prefetch buffer contains at least
highwater bytes. If higher-quality frames are present
when an application requests a lower-fidelity track, the
better frames are retained. Conversely when bandwidth
improves, lower-quality frames are discarded and the re-
quested higher-quality ones are fetched on demand.

3.1.2. Metrics and policy
In the prototype implementation, each movie consists of

three tracks. These three versions are: JPEG-compressed
color at quality 99, JPEG-compressed color at quality 50,
and black-and-white. There is no inter-frame compression.
Each track is encoded at ten frames per second.

Individual frame fidelities are assigned as 1.0, 0.50, and
0.01 to JPEG(99), JPEG(50), and black-and-white frames,
respectively. Over a single execution of the player, the
single achieved fidelity metric is the average of the fidelities
of the displayed frames; higher average fidelity means that
displayed frames were, on average, of a better quality. Thus
a movie with half of its frames displayed from each of the
two best tracks would have a fidelity of 0.75.

The client’s performance metric is the number of frames
it is forced to skip due either to late-arriving frames or a
delay in the decoding of some previous frame. If a frame ar-
rives after its deadline, it will be dropped rather than shown.
If a frame is more than one frame-time late, then the client
will skip past frames that should have been shown while the

late frame was being obtained. Of course, user perception
of playback quality is influenced by many factors. For in-
stance, some number of frames dropped consecutively will
be perceived as worse than the same number dropped in-
termittently. This is an important issue that we are still
grappling with.

The client’s adaptation policy is to play the best qual-
ity track possible without dropping any frames. When the
client opens a movie with qt open, it calculates the band-
width required to play each track in the movie. From these
calculations, the client derives a set of bandwidth ranges
appropriate to each fidelity. These ranges are defined with
some overlap, and select for fidelities aggressively. The
lower bound in a track’s range is set to 95% of the band-
width nominally required to support it; the upper bound is
the minimum nominally required for the next higher track.

After opening a movie, the client places a resource re-
quest on the bandwidth for the highest quality track, and
begins playing frames from that track. Whenever it is no-
tified that the bandwidth has strayed outside of the bounds
for the current track, it changes the track from which it is
requesting frames, and places a resource request appropriate
to the new track’s bandwidth requirements.

This encoding of QuickTime data is well-suited to an
adaptive policy that switches between tracks. This is be-
cause each frame can be rendered in isolation, without need
for some other reference frame. We have begun to remove
this restriction for formats that use inter-frame compression,
such as MPEG [8], by only switching tracks at reference
frames. This keeps the track switch point relatively seam-
less from the user’s point of view. Since the definition of a
reference frame is type-specific, enforcing such constraints
is properly the responsibility of the warden.

3.2. Web browser: Netscape

Our second application was Netscape. At the time we
began this work, source code for Netscape was not pub-
licly available. It was chosen expressly as an example of
a shrink-wrapped application that can take advantage of
Odyssey’s support for adaptation.

3.2.1. Integration with Odyssey
To cope with the lack of source code, Odyssey makes

use of Netscape’s proxy facility. Netscape can use this fa-
cility to route all of its HTTP [5] requests for data through
a designated process. This process is commonly on a re-
mote host; such a remote process might act as a gate-
way that is exempt from firewall restrictions, or a caching
proxy for a group of machines [10]. In our case, we place
the proxy, called the cellophane, on the client between
Netscape and Odyssey. The cellophane redirects Netscape’s
requests through the file system to Odyssey. From the point
of view of Odyssey, the cellophane is the adaptive applica-
tion; it is quite small, at three KLOC.

The Web is integrated into the Odyssey name space as
a single object. Lookup operations on that object will at-
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Figure 6. Integration of Netscape with Odyssey.

Figure 7. Type-specific operations of Web warden.

tempt to resolve the name component as a URL in the Web.
Since URLs use the ‘/’ character, which is also used as the
UNIX component separator, the cellophane must convert
all instances of ‘/’ appearing in a URL to backslashes.

The Web warden, which is less than five KLOC, for-
wards all of the cellophane’s requests to a remote distil-
lation server, which is presumed to be well-connected to
the rest of the Web. The distillation server, at five KLOC,
fetches HTML pages and associated images in response to
requests, and forwards them to the HTML warden. It is
capable of degrading images on the fly using JPEG com-
pression to shorten their transmission time to the client.
These components – cellophane, warden, and distillation
server – are depicted in figure 6.

The Web distiller focuses on images for two reasons.
First, they make up a majority of all bytes served on
the Web [13]. Second, there exists a natural degradation
method – JPEG compression – that gives good size re-
ductions while yielding tolerable quality. No such obvious
degradation exists for text in HTML pages.

The Web warden exports four type-specific operations;
two provide mechanisms to change the fidelity of images,
and two are used to help integrate the Web into the client’s
file system. These tsops are summarized in figure 7.

The webw setqual operation is used by the cello-
phane to set the desired level of compression for images
fetched. It is set based on current bandwidth as described
in section 3.2.2. The webw getqual operation is used by
the cellophane to query the current quality setting.

The other two operations handle meta-data for HTTP
requests and responses. A request for a Web object carries
with it request headers, which can affect the content of the
fetched objects. To pass these request headers to the Web
warden, an application uses the webw sethdr operation.
Each page can have associated with it a separate set of meta-

data, which an application can obtain via the webw stat
call.

3.2.2. Metrics and policy
The distillation server, in addition to passing images un-

changed, has three distinct levels of degradation, for a total
of four levels of fidelity. These levels of degradation consist
of JPEG compression at quality levels 50, 25, or 5; lower
numbers produce lower-quality images with smaller repre-
sentations. These degraded qualities are assigned fidelity
levels of 0.5, 0.25, and 0.05, respectively; the original im-
age is assigned a fidelity level of 1.0. The distillation server
degrades only those images for which it is expected to pro-
vide a benefit – images 2 KBytes or larger. For smaller
images, the effort to distill them takes longer than simply
forwarding them on all but the very slowest of networks.

The performance metric for Netscape is the time to load
and display a particular HTML object. Netscape’s adapta-
tion policy is to load the best quality image possible within
twice the expected time to load the reference quality im-
age at 10 Mb/s. This heuristic is based on the following
intuition: there is little utility in loading an image faster,
since users typically are willing to wait roughly as long
as it might take over an Ethernet. However, much longer
waits, albeit for better quality images, are not likely to be
tolerated. This policy was our initial, educated guess about
what sort of delay users would find tolerable; we have not
yet carried out the human factors experiments to validate
this choice.

For each of the four fidelity levels available, the cello-
phane selects a bandwidth range appropriate to that fidelity
level. These ranges are currently hard-coded in the cello-
phane, and were based on a small set of experiments mea-
suring times to perform JPEG compression and resulting
reduction in size. As the bandwidth between the warden
and distillation server changes, the cellophane adjusts the
distillation level of images served.

3.3. Speech recognizer: Janus

The final application modified to take advantage of
Odyssey is Janus [22], a speech recognition system. Janus
takes as input a raw, sampled speech utterance collected
from a microphone, and returns the ASCII representation
of the utterance. This process is very expensive in both
CPU cycles and virtual memory. Since a mobile client is
relatively under-powered, it would be useful to offload this
computation whenever possible.

The recognition process has two phases. The first is
vector quantization [18], a signal processing step that trans-
forms the raw speech utterance into a much more compact
representation. This phase is relatively inexpensive to com-
pute. The second phase consists of the remainder of recog-
nition, and comprises the bulk of the processing required
in recognition.

This application is quite different from the others; speech
data is not something that is merely accessed, but rather it
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is generated at the client and then transformed, possibly
elsewhere. Further, speech recognition presents consider-
able potential as well as challenge for mobile systems. It
is especially useful when mobile since it leaves the user’s
eyes and hands free for other activities [20]. However, the
resource requirements for high-accuracy speech recognition
are substantial, especially when mobile, since background
noise is often high. Adding higher-level semantic process-
ing, such as language translation, leads to even greater de-
mands on computing resources.

3.3.1. Integration with Odyssey
There is a single, distinguished speech object in the

Odyssey namespace. Writing an utterance to this object
begins recognition; a subsequent read on that object will
return the recognized text. A simple front end, consist-
ing of under one KLOC, runs a loop that collects the raw
speech utterance, writes it to the speech object, and reads
the result.

Each utterance is forwarded to the speech warden, which
is approximately two KLOC. The warden can use two dif-
ferent recognition servers, each a full copy of Janus with
one additional KLOC to handle communication. These
components are illustrated in figure 8.

The warden, when passed a speech utterance, can recog-
nize it in one of three ways. First, it can pass the raw, large
utterance to the remote Janus server for full recognition;
this is called remote recognition. Second, it can pass the
utterance to the local Janus server for local recognition.
Third, it can pass the utterance to the local server for just
the vector quantization step, and pass the much smaller
result to the remote server for the second phase of recogni-
tion; this is called hybrid recognition. The warden provides
a single type-specific operation, speech setstrat; the
front end can use this to select one of the three strategies.

Figure 8. Integration of Janus with Odyssey.

3.3.2. Metrics and policy
The fidelity metric is very simple in Janus. When per-

forming remote or hybrid recognition, the recognition is the
best that Janus can possibly do given a particular vocabulary
and grammar. When performing entirely local recognition,
the mobile node uses a smaller acoustical model, grammar,
and vocabulary. This is an attempt to reduce the compu-
tational requirements of speech recognition, so that other
tasks may run concurrently; full Janus recognition would
swamp all other tasks.

The full recognition is assigned a fidelity of 1.0, the
lower quality one a fidelity of 0.5. To help the user cope
with this changing accuracy, Janus provides feedback about
its behavior via a synthesized voice. This voice informs the
user of increases or decreases in the accuracy of recogni-
tion.

The performance metric is latency: the time it takes to
recognize a speech utterance. The front end knows how fast
the server is relative to the client, and can estimate the time
it will take to recognize an utterance of a particular length
completely on the client, completely on the server, or in
hybrid recognition. In the current prototype, we determined
these costs empirically and coded them into the decision
loop. We are working to incorporate computational power
as a resource so that Janus can correctly function on any
combination of hardware platforms.

When the front end is given an utterance to recognize,
it decides whether remote or hybrid recognition will re-
sult in the fastest response; this decision is based on the
current bandwidth estimation. If network bandwidth is suf-
ficiently high, remote recognition is best; otherwise, hybrid
recognition is best. Because of the severe computational
demands of the second phase of recognition, and its lower
quality, the front end does not use local recognition unless
the connection to the remote host is down, leaving it no
alternative.

4. Lessons learned

These applications have been studied as customers of
Odyssey’s programming interface, and have been under
constant improvement for the past year. In the course
of building and experimenting with these applications, we
validated many of our assumptions about adaptive applica-
tions. We have also learned some important lessons along
the way. It is important to point out that these lessons are
drawn from a fairly small set of example applications, and
that we are actively adding to our understanding of them.
We plan to increase the number of applications and data
types within Odyssey, and to gain experience in their use.

4.1. Ease of porting

We began this work in the belief that it would not be dif-
ficult to modify programs to make use of application-aware
adaptation, for two complementary reasons. First, the pro-
gramming model places the adaptive code outside the main
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body of the application. This both limits the scope of nec-
essary modification, and reduces the degree to which the
programmer must understand the application in question.

The second reason is that the applications we had in
mind were already capable of decoding multiple represen-
tations of a given data type. Therefore, the decision loop
can change fidelity and rely on the application to handle it
correctly. Some care must be taken to avoid violating ap-
plication invariants when doing so. For example, our video
warden does not change fidelities until forwarding a refer-
ence frame – one that can be decoded without reference to
other frames.

In fact, it was not unduly difficult to modify our sample
applications to take advantage of application-aware adap-
tation. Each one required at most a few thousand lines of
C code. Further, type-specific access methods such as the
video warden’s frame-level interface allow substantial sim-
plification of an application by removing the code required
to map from the file I/O model to more abstract constructs.

4.2. Shrink-wrapped applications

There are many applications for which source is not
available but are nevertheless extremely important. This
is true on UNIX-like platforms as well as the Windows
variants. For example, Adobe’s Acrobat Reader is distrib-
uted as a binary-only program, and is the standard display
application for an indispensable document format [12].

As of this writing, source code to the Netscape browser
is publicly available. However, when we began this work,
it too was shrink-wrapped. Despite this, incorporating
Netscape into Odyssey was straightforward. Netscape’s
proxy mechanism provides a convenient point at which all
data access operations can be intercepted. The intercepting
agent – in our case, the cellophane – plays the role of the
adaptive application from the operating system’s point of
view, and the source of data from the application’s point
of view. One could interpose such an agent between any
proxy-capable application and the outside world.

Obviously, shrink-wrapped applications without a proxy
mechanism would require a more sophisticated approach
for adaptation. However, we believe that such applications
can still be incorporated into Odyssey. For example, one
could link such applications against a run-time library that
intercepted all file and network system calls. The library
could then re-route these system calls to a cellophane-like
component.

The provision of fidelity levels is the responsibility of the
warden. Therefore, the data used by these applications must
be in a known format. Without this important restriction,
changes in fidelity could not be provided in any sensible
way.

4.3. Burden on applications

Our model of collaboration between applications and
the operating system provides for a strict division of du-
ties. The operating system manages resource usage across

the machine, while each application need only consider its
own goals in making adaptation decisions. Whether or not
applications could remain unaware of competitors was an
open question when the work began. For instance, it is
possible that concurrent applications would land in unstable
adaptation ranges, constantly switching between fidelities.

Our experience to date suggests that applications do not
need to be aware of one another in the Odyssey framework.
While unstable ranges are possible, the applications do not
enter them in practice. This is true independent of relative
load of the applications. However, we suspect that collab-
orative applications that choose to make their relationship
known to the system can make even better adaptation de-
cisions. For instance, in a collaborative task that included
audio and video conferencing and a shared whiteboard, the
viceroy could be told that video bandwidth should be sacri-
ficed in favor of the audio stream or the whiteboard updates.

4.4. Balancing agility and stability

While the adaptive policies embodied in our sample ap-
plications are reasonable first attempts, some care is re-
quired to produce effective adaptive algorithms. As an
anecdotal example, consider our current version of XAnim.
The perceived difference in quality – the perceptual dis-
tance – between the highest and middle video fidelities is
not great. One must look closely to detect when a change
in fidelity between these two levels has occurred. As a
result, it is not very disconcerting to a user if the video
player switches rapidly between them. However, the per-
ceptual distance between the middle fidelity and the lowest
one – between low color and black and white – is very
large. Each time the video player switches between these
fidelities, it is immediately noticeable to the user. The expe-
rience of watching the video player rapidly switch between
these two fidelities is jarring.

To account for this, we are exploring the idea of using
perceptual distance to limit the rate at which changes are
tolerated by the video application. When bandwidth drops
substantially, the video player must switch to the black-and-
white fidelity, else it will lose frames. However, the player
is sceptical of a subsequent increase in bandwidth. Rather
than aggressively switching back to the medium or high
fidelity, the player waits a few seconds. If the increase
is transient, the player will not be forced to oscillate. If
the increase is long-lived, the player will show sub-optimal
frames until switching, but the overall user experience is
improved.

Two things are required to quantify and ground this tech-
nique. First, we must better understand how to assign fi-
delity metrics to data. In addition to having total ordering,
fidelity should express relative quality in terms of user per-
ception. Second, we need to be able to map from quanti-
tatively meaningful fidelities to a good adaptive algorithm.
Such an algorithm would scale reluctance to improve from
one fidelity to another with the difference between those
fidelities.
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4.5. User feedback

In a world as dynamic as that of a mobile client, users
require some feedback about when a change has occurred,
and why. For the video application, changes that affect
quality are evident; the movie provides a time base that
provides an obvious way to track fidelity changes. For
Netscape, the feedback is more subtle. It is not clear that
changes in quality from one page to the next can be tracked
by users; they may blame the page author rather than their
network connection for a poor quality image.

We anticipated the need for some amount of feedback
to users. For example, when Janus switches to lower fi-
delity recognition, the user is informed by a synthesized
voice. Likewise, when connection to the remote server is
reestablished, the user is also informed. Without such a
mechanism, the only feedback available would be less ac-
curate recognition; it might take several utterances for the
user to pinpoint what has gone wrong.

This idea of adding mechanism to provide feedback
could be extended to revealing information about the state
of the mobile client generally; users of our demonstra-
tion system sometimes report confusion about why fidelity
changes happen when they do. For example, a small light
in a corner of the screen could indicate network health; a
green light would indicate a strong network connection. A
weak connection would be signified by a yellow light, and
a red light would indicate that the client is completely dis-
connected. Having such a mechanism could help the users
explain fidelity changes, reducing the potential for frustra-
tion while using the system. Ebling [4] has demonstrated
the importance of such a translucent interface for usability
in mobile computing.

Such feedback can go both ways. There are cases where
the user can help Odyssey make better decisions about how
to divide up available resources, since not all applications
are of equal importance to him. For example, the user might
be intently watching a video report from a news agency,
while only paying cursory attention to financial reports in
the background. If the user’s preferences could be made
known to the system in a simple way, the news report could
be allocated more bandwidth.

4.6. Writing adaptive applications

Our experience also suggests some guidelines for those
writing new adaptive applications. The first rule of thumb
is to craft the application in such a way that decoding and
using various representations is quite natural. This renders
the division of control and processing simple. Second, one
must have a reasonable picture of resource consumption
at various levels of fidelity, as well as how those fidelity
levels map to user experience. Third, the placement of type-
specific access methods in the warden can greatly simplify
each application using that type; doing so is worthwhile.

5. Conclusion

Application-aware adaptation shows significant promise
as a technique to cope with the constantly changing world
of a mobile client. We have constructed a prototype system,
called Odyssey, that provides adaptive services to applica-
tions, and modified three real-world applications – a video
player, a Web browser, and a speech recognition system –
to take advantage of those services.

In the course of building and experimenting with these
applications, we have learned several things about adaptive
applications generally. They are not particularly difficult
to construct, even in one case where source code to the
original application was not available. They can be built in
isolation, but run together without undue difficulty. While
there is not yet a principled technique to construct adaptive
algorithms that provide the best user experience possible,
there is clearly a need to provide simple feedback to the user
about what the system is doing. Our work in this area is
ongoing; we are adding more applications and data types to
Odyssey. As we gain experience in using them, we hope to
better understand what makes an adaptive algorithm better
or worse from a user’s point of view.
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