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Abstract
In an ad hoc network, the use of source routing has many advantages,
including simplicity, correctness, and flexibility. For example, all
routing decisions for a packet are made by the sender of the packet,
avoiding the need for up-to-date routing information at intermediate
nodes and allowing the routes used to be trivially guaranteed loop-
free. It is also possible for the sender to use different routes for
different packets, without requiring coordination or explicit support
by the intermediate nodes. In addition, on-demand source routing
has performed very strongly when compared against other proposed
protocol designs. However, source routing has the disadvantage of
increased per-packet overhead due to the source route header that
must be present in every packet originated or forwarded.

In this paper, we propose and analyze the use in ad hoc networks
of implicit source routing, and show that it preserves the advan-
tages of source routing while avoiding the associated per-packet
overhead in most cases. We evaluated this technique through de-
tailed simulations of ad hoc networks based on the Dynamic Source
Routing protocol (DSR), an on-demand ad hoc network routing pro-
tocol based on source routing. Although routing packet overhead
increased slightly with implicit source routing, by about 12.3%, the
total number of bytes of overhead decreased substantially, by be-
tween 44 and 86%. On all other metrics evaluated, the performance
of DSR either did not change significantly or actually improved
somewhat, due to indirect effects of the reduced routing overhead.

1. Introduction

In an ad hoc network, the hosts (nodes) must cooperate to
dynamically establish routing among themselves; a packet
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sent by one node may be forwarded in turn by a sequence
of other nodes, allowing the packet to reach a destination
beyond the sender’s wireless transmission range. The routing
protocol used in the network must be able to find such multi-
hop paths, and must be able to repair or find new paths as
nodes move or as wireless transmission conditions around
the nodes change and existing paths fail. Ad hoc networks
do not rely on any traditional network infrastructure such as
base stations or access points, and do not typically have any
form of centralized administration or control.

A number of routing protocols using a variety of routing
techniques have been proposed for use in ad hoc networks.
These protocols can be divided into on-demand (or reac-
tive) protocols (e.g., DSR [9], AODV [18], and TORA [2]),
in which nodes search for or maintain a route only when
one is needed, and periodic (or proactive) protocols (e.g.,
DSDV [17]), in which nodes periodically exchange routing
information and attempt to always know a current route to
each destination. In general, protocols that use on-demand
mechanisms have been shown to outperform those based on
periodic mechanisms due to their reduced overhead and abil-
ity to react quickly as routes change [1, 8, 15, 3], and thus we
restrict our focus here to on-demand protocols.

In an ad hoc network, the use of source routing can pro-
vide many advantages, including simplicity, correctness, and
flexibility [9, 10, 11, 12]. For example, since all routing de-
cisions for a packet are made by the sender of the packet,
intermediate nodes that forward it need not maintain up-to-
date, consistent routing tables for the destination. Forwarding
at each hop consists simply of locally transmitting the packet
to the next address indicated in the source route in the packet’s
header; the sequence of hops over which any packet is for-
warded can easily be guaranteed to be loop-free by not al-
lowing duplicates in the list of hops. By including the source
route in the packet’s header, additional routing information
is also partially spread around the network without requiring
additional packets to be transmitted. In addition, for reasons
such as load balancing or differentiated treatment of different
types or classes of packets for Quality of Service (QoS), it
is possible for the sender to use different routes for different
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packets, without requiring coordination or explicit support
by the intermediate nodes.

However, source routing has the disadvantage of increased
per-packet overhead. With source routing, the size of each
packet is increased in order to carry the source route of hops
through which the packet is to be forwarded. Since the source
route is always present in the packet, the extra network over-
head caused by the presence of the source route is incurred
not only when the packet is originated, but also each time
it is forwarded to the next hop. This extra network over-
head decreases the bandwidth available for transmission of
data, increases the transmission latency of each packet, and
consumes extra battery power in the network transmitter and
receiver hardware.

In this paper, we propose and analyze the use in ad hoc net-
works of implicit source routing. This technique preserves
the advantages of source routing while avoiding the asso-
ciated per-packet overhead. In a manner in part similar to
techniques used for MPLS [19] or ATM virtual circuits [21],
each packet is tagged with a flow identifier when the packet
is sent by its original sender. The flow identifier indicates the
route to be followed by this and all packets belonging to a
logical flow from this sender to the destination of the packets.
Intermediate nodes along the route retain soft state indicating
the next hop to which packets belonging to that flow should
be forwarded, avoiding the need to carry the full source route
in each packet. This soft state should be retained until the
specified timeout but may be discarded earlier, for example
due to node failures, without impacting correctness.

We base our design and analysis of implicit source routing
on extending the Dynamic Source Routing protocol (DSR) [9,
10, 12, 11, 6], since it is based on source routing and has
been shown by a number of groups to perform well when
compared to other protocols [1, 8]. DSR allows nodes to
dynamically discover, on demand, source routes to nodes to
which they send packets, and allows these source routes to
be maintained when links between nodes break due to node
mobility, wireless propagation changes, or other factors. Our
implicit source routing mechanism fits naturally into the ex-
isting structure of the DSR protocol [6] and preserves the
important fundamental properties of DSR’s operation. To
evaluate our implicit source routing design, we conducted a
set of detailed simulations of DSR, both with and without use
of implicit source routing, and we analyze the differences in
the behavior of these two protocols in terms of packet deliv-
ery ratio, latency, path length optimality, and packet and byte
routing overheads.

In Section 2 of this paper, we provide a brief overview
of the operation of the existing DSR protocol, and we high-
light the important properties of DSR that we use as a basis
for our design. Section 3 then details the design and opera-
tion of implicit source routing mechanism, including a proof
of the correctness properties of the design. Our evaluation
methodology is described in Section 4, and in Section 5,
we present the results of our simulations evaluating implicit

source routing. Section 6 discusses related work, and finally,
in Section 7, we present conclusions.

2. DSR Overview

The Dynamic Source Routing protocol (DSR) [9, 10, 12, 11]
is composed of two mechanisms: Route Discovery and Route
Maintenance. Route Discovery is the mechanism by which
a node originating a packet to some destination discovers a
source route to that destination if it does not currently have
a route to that destination cached. Route Maintenance is the
mechanism by which a node sending a packet to some desti-
nation learns if the route it used for that packet has broken,
for example because some node in the route has moved out
of wireless transmission range of the previous node in the
route. This section gives a brief overview of the operation of
Route Discovery and Route Maintenance in DSR, in order to
establish a basis for the implicit source routing description
that follows in Section 3.

2.1. Route Discovery

In Route Discovery, a node S wishing to send a packet to some
node D locally broadcasts a ROUTE REQUEST packet, which
is received by nodes within wireless transmission range of S.
The ROUTE REQUEST identifies the destination node to which
a route is needed, and also includes a unique identifier for
this Route Discovery, chosen by node S. Node S is referred
to as the originator of the Route Discovery, and node D is
referred to as the target of the Discovery.

If a node receives a ROUTE REQUEST for which it is not
the target, it locally rebroadcasts the ROUTE REQUEST af-
ter adding its own address to a list of nodes in the ROUTE

REQUEST that have forwarded this copy of the REQUEST.
When the REQUEST reaches the target, this list of hops in the
REQUEST will thus indicate the sequence of hops along which
this copy of the REQUEST was forwarded in order to reach
from the originator to the target of the Route Discovery. The
target node then returns a copy of this sequence of hops to the
originator in a unicast ROUTE REPLY packet, and the origina-
tor remembers this route in its Route Cache for possible use
on subsequent packets. The ROUTE REPLY may in general be
routed along any path, independent of the route taken by the
ROUTE REQUEST packet, thus allowing uni-directional links
to be supported (if allowed by the specific MAC protocol in
use on that link).

A number of optimizations that improve the performance
of this basic Route Discovery mechanism have been de-
fined [12, 5, 10, 11]. For example, ROUTE REQUESTs may
be limited by the TTL field of the IP header of the REQUEST

packet, allowing non-propagating ROUTE REQUESTs or
“expanding ring” searches. If a ROUTE REQUEST reaches a
node that has in its cache a route to the target of the Discovery,
this node may reply from its cache, setting the route returned
in the ROUTE REPLY to the concatenation of the route from the
ROUTE REQUEST plus the route from its own Route Cache;
by replying from its cache, the new route is returned to the
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originator sooner, and the overhead of Route Discovery is
reduced since the ROUTE REQUEST need not be rebroadcast.
A node may also update its Route Cache based on source
routes or other routing information that it forwards or that it
may overhear from other nodes by optionally operating its
network interface hardware in “promiscuous” receive mode.

2.2. Route Maintenance

When a node originates a packet, it lists in a source route in
the header of the packet the complete list of hops through
which the packet is to be forwarded. The original sender
is then responsible for confirming that the packet has been
received by the first intermediate hop in the route, retransmit-
ting the packet if necessary until this confirmation is received
or until a maximum number of retransmission attempts have
been performed. Likewise, in turn, each intermediate node
on the route is responsible in the same way for confirming
that the packet has been received by the next node in the
route; the packet is retransmitted by the intermediate node if
necessary, as with the original sender.

The confirmation of receipt by the next hop may be ob-
tained through either a “passive” acknowledgement [13],
through the link-level acknowledgement present in many
wireless MAC protocols such as IEEE 802.11 [7], or through
an explicit DSR acknowledgement packet from the next hop
if necessary. If no confirmation is received after a limited
number of retransmission attempts for the packet, the link
from this node to the next hop is considered to have broken,
and a ROUTE ERROR identifying this broken hop is returned
to the original sender. The original sender then removes
this one broken link from its Route Cache; for subsequent
packets to this same destination, the sender may use an alter-
nate route that it may already have in its Route Cache or may
reinvoke Route Discovery to discover a new source route to
the destination.

As with Route Discovery, a number of optimizations that
improve the performance of the protocol have been de-
fined [12, 5, 10, 11]. For example, after a node detects a
broken link and returns a ROUTE ERROR to the original sender
of a packet, the node may attempt to salvage the packet if it
has in its own Route Cache a different route to the packet’s
destination; to do so, the node replaces the original route
with the route from its cache and transmits the packet to the
new next hop node. As another optimization, the protocol
supports automatic route shortening to allow source routes in
use to be shortened when possible, for example when nodes
move close enough together so that one or more intermediate
hops are no longer necessary. If a node is able to promis-
cuously receive a packet not intended for it as the next hop,
but for which this node is listed in the unused portion of the
packet’s source route, then this node returns a “gratuitous”
ROUTE REPLY to the original sender of the packet; this REPLY

gives the shorter route that does not include the intermediate
nodes between the node that transmitted the packet and this
node.

2.3. Properties of DSR

In wireless networks, communication over a wireless hop
between two nodes may at times not work equally well in both
directions, resulting in a number of unidirectional links in the
network. DSR is capable of routing correctly over networks
that contain such unidirectional wireless links, since the path
over which the ROUTE REPLY is sent need not be the same as
the reverse of the path over which the ROUTE REQUEST was
forwarded. Acknowledgements for Route Maintenance may
also follow a different (multi-hop) path to the previous node
in the source route.

Nodes using DSR may cache multiple routes to any desti-
nation, and may use any of these routes at any time for any
packet being sent. For example, a node may remember mul-
tiple routes, in order to have another route available should a
link in the route in use break; a node may also actively use
multiple routes at the same time to some destination for load
balancing or for Quality of Service control.

All routing decisions for any packet are determined en-
tirely by the packet’s sender, allowing the sender to utilize
any local algorithm to select the route based on local concerns
such as load balancing (as mentioned above), the perceived
longevity or reliability of the nodes or links along the route,
or the security of the nodes along or within wireless range of
the route chosen.

All routing in DSR is done entirely using soft state, sig-
nificantly increasing the potential reliability and robustness
of the protocol over other routing protocols that rely on hard
state at other nodes in the network. The necessary soft state
in DSR is created as needed, and the loss of any soft state
does not in any way affect the correctness of the protocol’s
operation.

The addition of implicit source routing to DSR described
in this paper preserves the basic operation of DSR’s Route
Discovery and Route Maintenance mechanisms, including
all of these important resulting properties of DSR. Although
DSR with implicit source routing may be seen as similar to
other on-demand routing protocols that do not use source
routing, in practice all routes used in either version of DSR
are still discovered and established as source routes, with the
complete sequence of hops determined from the source to the
destination. For example, AODV [18] borrows features of
DSR’s on-demand Route Discovery mechanism, but it uses
only hop-by-hop routes and is not based on source routing;
none of the properties of DSR described in this section hold
for AODV.

3. Implicit Source Routing Operation
3.1. Basic Operation

Conceptually, with implicit source routing, a tuple
hsource address; destination address; flow identifieri takes
the place of the full source route in each packet. The source
address and destination address can be placed in the IP header,
and the flow identifier is placed in a special header. Each node
participating in implicit source routing has a Flow Table, with
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one entry for each flow forwarded by that node. A Flow Table
entry minimally must record the next hop address to which a
packet for this flow should be forwarded, in addition to the
source address, destination address, and flow identifier for
this flow.

A source can establish a new flow by sending a flow estab-
lishment packet. A flow establishment packet is a packet with
two headers (i.e., extension headers or options): one contain-
ing the flow identifier, and the other containing a source route
and a timeout for the flow. When an intermediate node for-
wards such a packet, in addition to forwarding it according
to the source route information, it creates a Flow Table en-
try for this flow and inserts the necessary information from
the packet. A flow establishment packet is normally sent by
including these two headers in an existing packet to be sent
along that source route; it is also possible (but not necessary)
to send the flow establishment packet as a special control
packet along the source route.

A node is required to remove a flow’s entry from the Flow
Table when that node has not forwarded packets for that flow
for a period of time specified by the timeout for the flow.
As a result, a Flow Table entry is also required to keep the
timeout, as well as the time at which this flow is to expire.

A source that has already sent one or more flow estab-
lishment packets for a given flow may decide that each node
along that flow has established a Flow Table entry for that
flow. This source may then send any subsequent packets
routed solely by implicit source routing by adding a flow
identifier header in lieu of a source route in each packet. A
node forwarding a packet sent using implicit source routing
checks its Flow Table for an entry corresponding to the flow
identifier in the packet. If the node finds one, it forwards the
packet by setting the MAC-layer destination address to the
MAC address of the next hop indicated in the matching Flow
Table entry. Otherwise, it sends a FLOW UNKNOWN error
back to the source of the packet.

A source node receiving a FLOW UNKNOWN error ad-
dressed to itself marks its Flow Table entry for this flow to
indicate that the flow must be reestablished. For the purposes
of our simulation, we send three establishment packets when
the flow is first created, and three establishment packets each
time a FLOW UNKNOWN error is received; each flow establish-
ment packet is sent only when there is data to be transmitted
along the flow. By repeating the flow establishment packet
for the first three data packets sent when the flow is estab-
lished or reestablished, the protocol is able to tolerate loss of
some flow establishment packets without triggering the over-
head of a FLOW UNKNOWN error and the resulting latency for
re-establishment.

3.2. Default Flows

When a packet is sent using implicit source routing forward-
ing, it still requires some small amount of overhead in the
packet. These additional header bytes in the packet can be
entirely eliminated by the use of default flows. Conceptually,
a node is most likely to use a flow more recently estab-

lished. Therefore, our protocol allows the use of the most
recently established flow with no per-packet overhead for
most packets.

To enable this, each node keeps a Default Flow Table. For
each hsource address; destination addressi pair, a node keeps
the greatest flow identifier for which it has sent or forwarded
packets, as well as the expected TTL value of packets sent
along the default flow (alternatively, expected TTL value can
be stored in the Flow Table).

In order to allow the same flow to be used for both default
flow forwarding as well as basic flow forwarding, the ex-
pected TTL in the Default Flow Table must be set only upon
hearing a flow establishment packet. Additionally, we con-
strain a source wishing to use a given flow as a default flow to
set the TTL of all flow establishment packets for that flow to
the same value, and we disallow the use of default flow rout-
ing along paths that do not reduce the TTL value in forwarded
packets by exactly one at each hop.

When a source node originates a packet along a route that
is the default flow for that hsource; destinationi pair, and that
packet has the same TTL as the flow establishment packets
for that flow, it transmits the packet to the next hop specified
in the Flow Table.

When a node receives a packet with neither a source route
nor a flow identifier header, and it is not the node named in the
IP Destination Address field, it checks its Default Flow Table;
if it finds a flow for the hsource; destinationi pair specified in
the IP header, and if the expected TTL matches the actual IP
header TTL, the packet is processed as if it had a flow header
specifying the flow identifier found in the Default Flow Table
as the packet’s flow identifier. Otherwise, a DEFAULT FLOW

UNKNOWN error is returned to the source of the packet. A
source node receiving a DEFAULT FLOW UNKNOWN error ad-
dressed to itself marks its Flow Table entry for the default
flow to indicate that the flow must be reestablished.

A Default Flow Table entry at a node times out when all
flows corresponding to the hsource; destinationi pair time
out at that node, although this is necessary for correctness
only when nodes may crash and lose their state, or when flow
identifiers may wrap around.

3.3. Automatic Route Shortening

As described in Section 2.2, in the base version of DSR [12],
a mechanism exists by which routes actively being used can
be shortened in certain ways. Specifically, when the trans-
mission of a packet is promiscuously overheard by a node in
the source route, that node determines if the packet is down-
stream of it (that is, has already been forwarded by it) or
upstream of it (that is, has yet to be forwarded by it). If the
packet is upstream of it, the route can be shortened by re-
moving the intervening hops not yet traversed leading to this
node’s receipt of the packet. In this case, the node generates
a DSR “gratuitous” ROUTE REPLY to the source of the packet,
indicating the shortened route. For example, suppose node S
is using the route S!A ! B! C!D to send packets to
destination node D; if node C overhears a packet from S being
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forwarded by node A, node C can return a gratuitous ROUTE

REPLY to S providing the shorter route S!A!C!D for
use with subsequent packets to D.

This mechanism, called automatic route shortening, takes
advantage of the source route in each packet to determine
whether or not a packet is upstream of a node that promis-
cuously overheard the packet. In order to enable automatic
route shortening when no source route is present, a Hop
Count field is added to the flow identifier header. A source
node originating a packet initializes the Hop Count field to 0,
and each node forwarding this packet using implicit source
routing increments the Hop Count by 1. At each node, the
expected Hop Count value, as well as the complete source
route, is stored in the node’s Flow Table during flow estab-
lishment. Packets overheard upstream are determined to be
those that have a Hop Count less than the Hop Count in the
corresponding Flow Table entry.

Similarly, automatic route shortening is possible for
packets sent along default flows by examining the TTL; if
the TTL value is greater than expected, it is considered to be
upstream. Using the IP TTL for automatic route shortening
for packets sent along a default flow avoids the need to carry
any header information in the packet not normally already
present in an IP header; we use an explicit Hop Count rather
than the IP TTL in non-default flow routed packets to avoid
placing any restriction on how the IP TTL field is used in
forwarding the packet and to handle the case in which the IP
TTL is used in some non-standard way by some hop along
the flow (e.g., for nodes that decrement the TTL by more
than 1 when forwarding the packet).

When a node promiscuously overhears a packet, it searches
the packet for a flow identifier by looking in the flow header,
if present, or by searching its Default Flow Table. If the
packet is determined to be upstream of this node, the node
stores a record in its limited-size Automatic Route Shortening
Table, with the source and destination addresses, the flow
identifier, the packet, and the number of hops by which the
route could have been shortened. In order to reduce the
possibility of polluting the source’s Route Cache, a gratuitous
ROUTE REPLY is sent only when the packet is forwarded by
the node that previously overheard the packet.

3.4. Additional Interactions with DSR

DSR takes advantage of aggressively caching overheard
routes in order to maintain high packet delivery ratio and
low overhead. However, with implicit source routing, source
routes do not appear in the majority of packets, lessening
the opportunity for these routes to be overheard and cached
by other nodes. As a heuristic to give DSR with implicit
source routing a better ability to utilize these optimizations,
we chose to send any data packet sent along a flow as a flow
establishment packet (containing both a flow identifier header
and a source route header) if an establishment packet has not
been sent along that flow within the last 5 seconds.

Implicit source routing also has an effect on DSR’s sal-
vaging optimization, as described in Section 2.2. Since

packets sent with both a flow identifier header and a source
route header are considered to be establishment packets,a sal-
vaging node must remove any existing flow identifier header.
Furthermore, since flow identifiers may only be assigned at
the source, intermediate nodes may not salvage by using a
flow header and must instead use a full source route header
for salvaging.

3.5. Correctness

In this section, we give a proof of the correctness properties
of the implicit source routing mechanism.

Claim 1. No packet will be received by a single node twice
while being forwarded using a flow identifier header.

Proof 1. Proof is by contradiction. Consider the first node
that received a packet twice; call it A. Node A must have
been sent the packet the first time by some node B and some
second time by some node C. Now B and C are distinct
nodes, since otherwise that node would have received the
packet twice, prior to A receiving the packet twice. Since
the next hop for an explicitly specified flow is the next hop
in the source route of the flow establishment packet, then
in the source route of the flow establishment packet, the ad-
dress of A occurred immediately after the address of node B,
and occurred immediately after the address of node C. Since
we require source routes to be loop-free, this is impossible,
which completes the proof.

Claim 2. After a packet p has been received by the same
node A twice since the most recent default route change for
that packet’s hsource; destinationi pair at A, packet p will no
longer be forwarded using default flow forwarding.

Proof 2. Proof is by contradiction. Assume that there is
a packet p that has been received by A twice since the time
of the most recent default route change at A. We define ts to
be the time of the most recent default route change for this
hsource; destinationi pair at A.

Both times packet p was received, A’s default flow had the
same expected TTL, since no default flow changes occurred
since ts. Let this expected TTL be TTLe.

The first time p was received after ts, the TTL must have
been equal to TTLe, since otherwise A would not have for-
warded the packet using the default flow mechanism. Also,
since TTL is strictly monotone decreasing, the second time
A receives p, its TTL must be some value less than TTLe.
Node A would see that p does not have the correct TTL for
this default flow and would stop forwarding the packet using
default flow forwarding.

Claim 3. A routing loop in the default flow forwarding mech-
anism cannot persist indefinitely after the last default route
change at any point in the network.

Proof 3. Whenever a transient routing loop is stopped in
the way described in Proof 2, a DEFAULT FLOW UNKNOWN

error is sent to the source of the packet. After one of those er-
rors reaches the source, the source will attempt to reestablish
the default flow. When the default flow has been reestab-
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lished across the entire source route, packets sent along it
will not loop until there are further routing changes.

Protocols that rely entirely on hop-by-hop,per-flow state to
forward packets are unable to detect routing loops if routing
state continues to change in certain ways while the packet is
in transit. In the implicit source routing extensions described
above, a source particularly concerned about looping in such
a fashion can send all packets with a flow identifier header for
4 bytes of overhead per packet for the flow identifier header.

4. Evaluation Methodology

To evaluate our implicit source routing mechanism, we uti-
lized the ns-2 network simulator [4], together with our
Monarch Project wireless and mobile ns-2 extensions [1,
16], to compare the behavior and performance of DSR
with implicit source routing against the original operation
of DSR without it. ns-2 is a discrete event simulator de-
veloped by the VINT Project and widely used in network
protocol research. The Monarch Project wireless and mo-
bile simulation extensions to ns-2 provide arbitrary physi-
cal node position and mobility, with a realistic radio prop-
agation model including effects such as attenuation, prop-
agation delay, carrier sense, collision, and capture effect.
The network interface is modeled after the Lucent/Agere
WaveLAN/ORiNOCO IEEE 802.11 product, which has a
nominal transmission range of 250 m depending on cap-
ture effect and colliding packets, and provides a transmission
rate of 2 Mbps; the network interface uses the IEEE 802.11
Distributed Coordination Function (DCF) [7] MAC proto-
col, which employs physical and virtual carrier sensing for
collision avoidance.

For the base version of DSR without implicit source rout-
ing, we used the latest simulation code for DSR available
from the Monarch Project [5]. The Route Cache we used
is the “Link-MaxLife” cache, which is a link state cache in
which link timeouts are chosen dynamically based on ob-
served usage and errors. The cache also attempts to choose
the longest-lived shortest path when searching the cache for
a path to the destination. We have found the base version
of DSR with this Route Cache to perform very well [5];
for example, in ad hoc networks of 50 mobile nodes moving
continuously at maximum speeds of 20 m/s (average 10 m/s),
over 98% of originated data packets are delivered.

The simulated implicit source routing protocol is based
on the same version of the DSR simulation code, using the
same Link-MaxLife cache. However, in this case, the route
selection made by the cache does not override the default
route unless the selection is shorter than the current default
route. All packets are sent using implicit source routing, and
when a flow has not had an establishment packet sent for 5
or more seconds, the following packet originated along that
flow includes the extra header to make it an establishment
packet.

The simulation results presented in this paper are based
on 40 randomly generated scenarios, each involving 50 mo-

bile nodes moving about in an area 1500 m� 300 m for
900 seconds. Nodes in our simulations move according to the
Random Waypoint model [1, 10], in which each node begins
at a randomly chosen position, picks a new random position
to which to move, and moves there in a straight line at a ran-
domly chosen speed. Each node independently repeats this
behavior for the duration of the simulation run. The average
degree of mobility is varied by causing each node to remain
stationary for a period called the pause time each time before
it begins moving to its next chosen position. In our simula-
tions, the movement speed of each node is uniformly chosen
with a maximum speed of 20 m/s, and pause time is varied
between 0 s (a continuously moving network) and 900 s (a
stationary network). Specifically, the following seven pause
time values were used in our simulations: 0, 30, 60, 120, 300,
600, and 900 s. Each of the 40 scenarios used in our simula-
tions was generated in advance, allowing identical scenarios
to be used in the simulations of each version of the protocol.

The communication model for each flow between nodes
used in our simulations is constant bit rate (CBR) traffic. For
each flow, a random source and destination node was chosen,
and each flow sends 4 packets per second; each simulation
shows the results for 20 such flows. Each packet carries 512
bytes of data payload, making the basic packet size including
an IP header 532 bytes.

We evaluated the implicit source routing mechanism using
the simulation methodology described in Section 4, and we
report our results using the following metrics:

� Packet delivery ratio: The fraction of originated data
packets that are successfully delivered to their intended
destination nodes. This specifically counts packets that
are sent by the “application layer” on a source node
that are received by the “application layer” on the corre-
sponding destination node.

� Packet delivery latency: The average latency required
between originating a data packet until the packet is de-
livered to the intended destination node. The packet
delivery latency can only be measured for packets that
are successfully delivered to their destination.

� Path length optimality: The difference between the num-
ber of hops over which a packet was routed and the num-
ber of hops in the shortest route that physically existed
when the packet was sent. The simulator is able to de-
termine this theoretical shortest route at all times, based
on the nominal wireless transmission range of each node
of 250 m.

� Routing packet overhead: The total number of separate
overhead packets used by the routing protocol. Each
transmission (whether original or forwarding) of an over-
head packet is counted.

� Total bytes of overhead: The total number of bytes of
routing overhead, including the size of all routing over-
head packets and the size of any routing headers added

6



to data packets. The bytes are counted on transmission
(whether original or forwarding) for each packet.

5. Results

Packet delivery ratio is an important measure of the over-
all operation of any routing protocol. We measured the
packet delivery ratio averaged over the 40 randomly gener-
ated scenarios for each pause time. These results are shown
in Figure 1, with the error bars in the graph representing the
99% confidence interval of the average shown.

The use of implicit source routing marginally improves the
packet delivery ratio. Two competing factors cause the dif-
ference in packet delivery ratio between the base version of
DSR and DSR with implicit source routing. Since implicit
source routing sends most packets without a source route,
less-complete routing information is propagated through the
network, reducing the success ratio of salvaging; across all
280 runs of each protocol, implicit source routing drops a
packet due to the inability to find a route 70% more often
(although both protocols drop very few packets). The other
factor is congestion: since the packets transmitted by implicit
source routing are smaller on average, each node is able to
drain its network interface transmit queue more quickly, re-
sulting in fewer drops from full interface queues; across a
random sample of 140 runs of each protocol, implicit source
routing drops 17% fewer packets as a result of full interface
queues. Since drops resulting from inability to find a route
are much less common, DSR with implicit source routing
generally has slightly higher packet delivery ratio.

Another measure of the overall operation of the routing
protocol is the packet delivery latency. Our simulation re-
sults for packet delivery latency are shown in Figure 2. In
general, DSR with implicit source routing has slightly better
latency than does base DSR, due to the smaller average size
of each packet without the source routing header present.
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Figure 1 Effect of Implicit Source Routing

on Packet Delivery Ratio

The reduced packet size directly decreases the transmission
time for the packet and also indirectly improves latency due
to reduced contention for transmission bandwidth from other
packets.

Finally, a third measure of the routing protocol’s overall
operation is the path length optimality. As shown in Figure 3,
however, the introduction of implicit source routing into DSR
did not significantly alter DSR’s path length optimality.

Beyond these three overall measures, the routing packet
overhead and total bytes of overhead provide an internal
measure of the operation of the protocol. These metrics in-
directly affect the three overall metrics discussed above and
also contribute to other measures of the protocol such as CPU
efficiency and battery power consumption. Figure 4 shows
the routing packet overhead for base DSR and for DSR with
implicit source routing, and Figure 5 shows this comparison
for total bytes of overhead.

For routing packet overhead, we did not count flow estab-
lishment packets as overhead since they also contain data. In
comparing DSR with and without implicit source routing, we
found that implicit source routing incurs 12.3% more routing
packet overhead. These overhead packets came from three
sources: FLOW UNKNOWN errors, DEFAULT FLOW UNKNOWN

errors, and additional Route Discoveries. The number of
FLOW UNKNOWN errors and DEFAULT FLOW UNKNOWN er-
rors, however, is quite small, since we do not model a limit
on the Flow Table size, nor do we model nodes crashing and
restarting. Most of the additional overhead packets thus are
the result of additional Route Discoveries, which are required
because fewer packets are sent with full source routes, less-
ening the ability of other nodes to cache overheard routes, as
described in Section 3.4.

For counting total bytes of overhead, we modeled packet
sizes in our simulations according to the packet formats de-
fined in our IETF Internet-Draft specifications for DSR [12,
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on Packet Delivery Latency
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on Path Length Optimality

6]. The total bytes of overhead includes all bytes in overhead
packets, plus the overhead such as any source routes and flow
identifiers carried in data packets. In contrast to the routing
packet overhead described above, the total bytes of overhead
with implicit source routing decreased substantially over the
base version of DSR. For example, with continuous mobility
of all nodes, the total byte overhead for DSR decreased by
44% with implicit source routing,and in a stationary network,
total byte overhead decreased by 86%.

Furthermore, by avoiding the need to include a source route
header in every data packet, the savings in total bytes of
overhead becomes proportional to the offered data packet
load; in our simulations, each node originated only 4 packets
per second in order to test the routing protocol’s ability to
find and maintain routes in a moving network, but many real
applications would generate greater rates of data packets,
further increasing the savings in total byte overhead with
implicit source routing.

6. Related Work

The concept of routing flows using per-hop state is a part of
Multi-Protocol Label Switching (MPLS) [19] and ATM [21].
However, unlike such protocols, our implicit source routing
technique is designed for use in an ad hoc network, where
nodes may move and the network topology may change often
(or continuously) and nodes generally forward packets over
the same wireless network interface on which they received
them. In addition, in MPLS and ATM, the flow identifier
changes at each hop. This change prevents the use of default
flows as defined in implicit source routing.

On-demand routing based on per-hop state is also present
in AODV [18]; however, nodes using AODV are unable to
take advantage of multiple paths to the same destination and
cannot choose which sequence of hops a packet will take,
though it may be desirable to do so as different hops have
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Figure 4 Effect of Implicit Source Routing

on Routing Packet Overhead
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Figure 5 Effect of Implicit Source Routing

on Total Bytes of Overhead

different characteristics, such as security, cost, and available
bandwidth. AODV also relies on the hard state of a se-
quence number at each node to ensure loop-freedom of its
routing, while all of the state in DSR with implicit source
routing is soft state. In addition, AODV cannot utilize uni-
directional links in the network for communication between
nodes, whereas DSR, with or without implicit source routing,
can fully support unidirectional links.

Many additional optimizations have been proposed for
various portions of DSR, such as Location Aided Routing
(LAR) [14] and core routing [20]. All of these modifications
can be used with DSR with implicit source routing, although
any optimizations that attempt to achieve better performance
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through improved route selection may conflict with optimal
route selection for minimizing overhead.

7. Conclusion

The use of source routing in an ad hoc network has many ad-
vantages, yet these advantages come at the cost of increased
packet header size and thus increased routing overhead bytes.
In this paper, we have presented the design and evaluation
of implicit source routing, a technique that preserves the ad-
vantages of source routing while avoiding the associated per-
packet overhead in most cases. In a manner in part similar to
techniques used for MPLS [19] or ATM virtual circuits [21],
the originator of a packet tags the packet a flow identifier
implicitly indicating the sequence of hops through which the
packet is to be forwarded on its way to its intended destina-
tion. All per-hop forwarding state is dynamically established
when forwarding the first packet along this route and is main-
tained by each node along the route only as soft state; the soft
state is automatically established as needed, and loss of any
portion of this state has no effect on the correct operation of
the protocol.

In addition, our implicit source routing mechanism in-
cludes support for DSR’s automatic route shortening mech-
anism, allowing routes in use to be automatically shortened
if one or more intermediate hops in the route become unnec-
essary, and DSR’s salvaging mechanism, allowing packets
to be forwarded along alternate routes if the original route
for the packet encounters a broken link at some interme-
diate node. Implicit source routing also supports use of
default flows, avoiding the need for a flow identifier header
in the packet and thus avoiding all routing overhead in
that packet.

We have evaluated this technique by extending the
Dynamic Source Routing protocol (DSR) to include use of
implicit source routing. Routing in DSR is based on source
routing that is dynamically established on-demand when a
sender needs a new route to some destination. The DSR pro-
tocol is simple and has been shown by a number of groups
to perform well when compared to other protocols [1, 8].
Our implicit source routing mechanism fits naturally into
the existing structure of the DSR protocol [6] and preserves
the important fundamental properties of DSR’s operation,
including sender-selected routes, allowing the use of multi-
ple routes to any destination, providing guarantees of loop-
freedom even for packets sent with minimal overhead,routing
based entirely on soft state, and the ability to use unidirec-
tional links.

Although DSR makes extensive use of overheard routes
for a number of important optimizations, applying implicit
source routing to DSR improved both packet delivery ra-
tio and latency; although routing packet overhead increased
slightly, total bytes of routing overhead was reduced sub-
stantially. In particular, although routing packet overhead
increased by about 12.3% with implicit source routing, total
bytes of overhead decreased by between 44 and 86%; on all

other metrics evaluated, the performance of DSR either did
not change significantly or actually improved somewhat, due
to indirect effects of the reduced routing overhead.
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