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In this paper, we argue that conventional operating systems need to
be enhanced with predictable resource management mechanisms to
meet the diverse performance requirements of emerging multimedia
and web applications. We present QLinux—a multimedia operat-
ing system based on the Linux kernel that meets this requirement.
QLinux employs hierarchical schedulers for fair, predictable allo-
cation of processor, disk and network bandwidth, and accounting
mechanisms for appropriate charging of resource usage. We exper-
imentally evaluate the efficacy of these mechanisms using bench-
marks and real-world applications. Our experimental results show
that (i) emerging applications can indeed benefit from predictable
allocation of resources, and (ii) the overheads imposed by the re-
source allocation mechanisms in QLinux are small. For instance,
we show that the QLinux CPU scheduler can provide predictable
performance guarantees to applications such as web servers and
MPEG players, albeit at the expense of increasing the scheduling
overhead. We conclude from our experiments that the benefits due
to the resource management mechanisms in QLinux outweigh their
increased overheads, making them a practical choice for conven-
tional operating systems.
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Recent advances in computing and communication technologies

have led to the emergence of a wide variety of applications with
diverse performance requirements. Today’s general purpose oper-
ating systems are required to support a mix of (i) conventional best-
effort applications that desire low average response times but no
absolute performance guarantees, (ii) throughput-intensive applica-
tions that desire high average throughput, and (iii) soft real-time ap-
plications that require performance guarantees from the operating
system. To illustrate, PCs in office environments run a mix of word
processors, spreadsheets, streaming media players and large com-
pilation jobs, while large-scale servers run a mix of network file�
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services, web services, database applications and streaming media
servers.

Whereas less demanding application mixes can be easily han-
dled by a conventional best-effort operating system running on a
fast processor, studies have shown that such operating systems are
grossly inadequate for meeting the diverse requirements imposed
by demanding application mixes [13, 15]. To illustrate, conven-
tional operating systems running on even the fastest processors to-
day are unable to provide jitter-free playback of full-motion MPEG-
2 video in the presence of other applications such as long-running
compile tasks. The primary reason for this inadequacy is the lack
of service differentiation among applications—such operating sys-
tems provide a single class of best-effort service to all applications
regardless of their actual performance requirements.1 Moreover,
special-purpose operating systems designed for a particular appli-
cation class (e.g., real-time operating systems [12, 24]) are typi-
cally unable or inefficient at handling other classes of applications.
This necessitates the design of an operating system that (i) multi-
plexes its resources among applications in a predictable manner,
and (ii) uses service differentiation to meet the performance re-
quirements of individual applications.

The QLinux operating system that we have developed meets these
requirements by enhancing the standard Linux operating system
with quality of service support. To do so, QLinux employs sched-
ulers that can allocate resources to individual applications as well as
application classes in a predictable manner. These schedulers are
hierarchical—they support class-specific schedulers that schedule
requests based on the performance requirements of that class (and
thereby provide service differentiation across application classes).
Specifically, QLinux employs four key components: (i) hierarchi-
cal start-time fair queueing (H-SFQ) CPU scheduler that allocates
CPU bandwidth fairly among application classes [7], (ii) hierar-
chical start-time fair queueing (H-SFQ) packet scheduler that can
fairly allocate network interface bandwidth to various applications
[8], (iii) Cello disk scheduler that can support disk requests with
diverse performance requirements [17], and (iv) lazy receiver pro-
cessing for appropriate accounting of protocol processing overheads
[6]. Figure 1 illustrates these components. We have implemented
these components into QLinux and have made the source code
freely available to the research community.2

%
Rather than reduce the processor shares of all applications equally,

an operating system that provides service differentiation might re-
duce the fraction of the CPU bandwidth allocated to best-effort
compile jobs and thereby reduce the jitter in soft real-time video
playback.&
Source code and documentation for QLinux is available from

http://www.cs.umass.edu/˜lass/software/qlinux.
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Figure 1: Key components of QLinux.

In this paper, we make four key contributions. First, we show
how to synthesize several recent innovations in OS resource man-
agement into a seamless multimedia operating system. Second, we
consider several real-world applications and application scenarios
and demonstrate that these resource management techniques en-
able QLinux to provide benefits such as predictable performance,
application isolation and fair resource allocation. For instance,
we show that QLinux enables a streaming media server to stream
MPEG-1 files at their real-time rates regardless of the background
load. Third, we show that existing/legacy applications can also
benefit from these features without any modifications whatsoever
to the application source code. Finally, we show that the imple-
mentation overheads of these sophisticated resource management
techniques are small, making them a practical choice for general-
purpose operating systems. For instance, we show that the con-
text switch overhead due to the H-SFQ CPU scheduler increases
from 1 � s to 4 � s, but the increased overhead is still substantially
smaller than the quantum duration. Based on these results, we ar-
gue that conventional operating systems should be enhanced with
such resource management mechanisms so as to meet the needs of
emerging applications as well as existing and legacy applications.

The rest of this paper is structured as follows. Section 2 dis-
cusses the principles underlying the design of QLinux and briefly
describes each component employed by QLinux. Section 3 presents
the results of our experimental evaluation. Section 4 discusses
related work, and finally, Section 5 presents some concluding re-
marks.
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In this section, we first present the principles underlying the

design and implementation of QLinux. We then briefly describe
each resource management component employed by QLinux (these
mechanisms are described in detail elsewhere [6, 7, 8, 17]).

� ��������" � ��� �!�"��" #��$� ��" �  "��� �"�
The design and implementation of QLinux is based on the fol-

lowing principles:

% Support for Multiple Service Classes: Today’s general pur-
pose computing environments consist of a heterogeneous mix
of applications with different performance requirements. As
argued in Section 1, operating systems that provide a single
class of service to all applications are inadequate for handling
such diverse application mixes. To efficiently support such
mixes, an operating system should support multiple classes
of service and align the service provided within each class
with application needs. For instance, an operating system

may support three classes of service—interactive, throughput-
intensive and soft real-time—and treat applications within
each class differently (interactive applications are provided
low average response times, real-time applications are pro-
vided performance guarantees, and throughput-intensive ap-
plications are provided high aggregate throughput). Other
operating systems such as Nemesis [16] have also espoused
such a multi-service approach to operating system design.

% Predictable resource allocation: A multi-service operating
system requires mechanisms that can multiplex its resources
among applications in a predictable manner. Many operat-
ing systems (e.g., Solaris, UNIX SVR4) support multiple ap-
plication classes using strict priority across classes. Stud-
ies have shown that such an approach can induce starvation
in lower priority tasks even for common application mixes
[13]. For instance, it has been shown that running a compute-
intensive MPEG decoder in the highest priority real-time class
on Solaris can cause even kernel tasks (which run at a lower
priority) to starve, causing the entire system to “freeze” [13].
One approach to alleviate the starvation problem is to use
dynamic priorities. Whereas the design of dynamic prior-
ity mechanisms for homogeneous workloads is easy, the de-
sign of such techniques for heterogenous workloads is chal-
lenging. Consequently, QLinux advocates rate-based mech-
anisms over priority-based mechanisms for predictable re-
source allocation. Rate-based techniques allow a weight to
be assigned to individual applications and/or application class-
es and allocate resources in proportion to these weights. Thus,
an application with weight &(' is allocated )+*,.- ) - fraction of

the resource.3 Observe that, rate-based allocation techniques
are distinct from static partitioning of resources—they can
dynamically reallocate resources unused by an application to
other applications, and thereby yield better resource utiliza-
tion than static partitioning.

% Service differentiation: Since different application classes
have different performance requirements, an operating sys-
tem that supports multiple service classes should provide ser-
vice differentiation by treating applications within each class
differently. To do so, QLinux employs hierarchical sched-
ulers that support multiple class-specific schedulers via a flex-
ible multi-level scheduling structure. A hierarchical sched-
uler in QLinux allocates a certain fraction of the resource to
each class-specific scheduler using rate-based mechanisms;
class-specific schedulers, in turn, use their allocations to ser-
vice requests using an appropriate scheduling algorithm. The
flexibility of using a different class-specific scheduler for each
class allows QLinux to tailor its service to the needs of in-
dividual applications. Moreover, the approach is extensible
since it allows existing class-specific schedulers to be modi-
fied, or new schedulers to be added.

% Support for legacy applications: We believe that only those
mechanisms that preserve compatibility with existing and leg-
acy applications are likely to be adapted by mainstream op-/

Such a resource allocation mechanism performs relative
allocations—the fraction allocated to an application depends on
the weights assigned to other applications. Rate-based mechanisms
that allocate resource in absolute terms have also been developed.
Such mechanisms allow applications to be allocated an absolute
fraction 0�' ( 120�'!354 ), or allocate 67' units every 89' units of time.
We chose a relative allocation mechanism based on weights due to
its simplicity.



erating systems in the near future. Hence, QLinux chooses
an incremental approach to OS design. Each mechanism
within QLinux is carefully designed to maintain full com-
patibility with existing applications at the binary level. We
also decided that mere compatibility was not enough—we
wanted existing applications to possibly benefit (but defi-
nitely not suffer) from the new resource allocation mecha-
nisms in QLinux (although the degree to which they benefit
would be less than new applications that are explicitly de-
signed to take advantage of these features).

% Proper accounting of resource usage: An operating system
that allocates resources in a predictable manner should em-
ploy mechanisms to accurately account and charge for re-
source usage. Whereas most operating systems employ mech-
anisms that can accurately track the amount of CPU band-
width consumed by applications, resources consumed by ker-
nel tasks are not accounted for in the same manner. For in-
stance, many kernel tasks such as interrupt processing and
network protocol processing occur asynchronously and get
charged to the currently running process rather than the pro-
cess that triggered these tasks. Other kernel tasks such as
scheduling decisions or book-keeping operations are system-
wide in scope in that they cannot be attributed to a particular
process. Improper or inaccurate accounting of resource us-
age can cause the bandwidth allocated to an application to
deviate significantly from its specified share. QLinux em-
ploys a two-pronged approach to deal with such accounting
issues.

– It employs lazy receiver processing [6], a technique to
ensure that network protocol processing overheads are
charged to the appropriate process (rather than arbitrar-
ily charging it to the currently running process). This is
achieved by deferring protocol processing from packet
arrival time to the time a process attempts to receive the
data from a network socket.

– Since lazy receiver processing accounts only for pro-
tocol processing overheads, other mechanisms are re-
quired to account for kernel tasks such as interrupt pro-
cessing and book-keeping operations. To address this
limitation, QLinux employs a CPU scheduler that pro-
vides predictable performance even in the presence of
fluctuating processor bandwidth. Specifically, the fair-
ness guarantees provided by the CPU scheduler hold
even when a varying amount of CPU bandwidth is used
up by kernel tasks, thereby resulting in more predictable
allocation [8].

Together, these two techniques ensure accurate accounting
and predictable allocation of resources in QLinux.

Next, we describe the four key components of QLinux.
� � � ��" � ������ "
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Hierarchical start-time fair queuing (H-SFQ) is a hierarchical
CPU scheduler that fairly allocates processor bandwidth to dif-
ferent application classes and employs class-specific schedulers to
manage requests within each class [7]. The scheduler uses a tree-
like structure to describe its scheduling hierarchy (see Figure 2).
Each process or thread in the system belongs to exactly one leaf
node. A leaf node is an aggregation of threads and represents an
application class in the system. Each non-leaf node is an aggre-
gation of application classes. Each node in the tree has a weight
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Figure 2: A sample hierarchy employed by the H-SFQ CPU sched-
uler. The figure shows three classes—interactive, throughput-
intensive and soft real-time—with equal share of the processor
bandwidth. The bandwidth within the soft real-time class is further
partitioned among the audio and video classes in the proportion 1:4.
Individual threads can also be assigned weights, assuming the leaf
node scheduler supports rate-based allocation.

that determines the fraction of its parent’s bandwidth that should
be allocated to it. Thus, if & %�� & & ��������� &�� denote the weights on
the � children of a node, and if � denotes the processor bandwidth
allocated to the node, then the bandwidth received by each child
node � is given by

��'�� � & '
1�� & ��� � �

Each node is also associated with a scheduler. Whereas the sched-
uler of the leaf node schedules all threads belonging to the leaf,
the scheduler of an intermediate node schedules all its children.
Scheduling of threads occurs hierarchically in H-SFQ: the root node
schedules one of its child nodes; the child node, in turn, schedules
one of its children until a leaf node schedules a thread for execu-
tion. Any class-specific scheduler may be employed to schedule a
leaf node. For instance, the standard time-sharing scheduler could
be employed for scheduling threads in the interactive class, whereas
the earliest deadline first (EDF) scheduler could be used to schedule
soft real-time tasks. H-SFQ employs start-time fair queuing (SFQ)
as the scheduling algorithm for a non-leaf node. SFQ is a rate-based
scheduler that allocates weighted fair shares—bandwidth allocated
to each child node is in proportion to its weight. Bandwidth unused
by a node is redistributed to other nodes according to their weights.
In addition to rate-based allocation, SFQ has the following prop-
erties: (i) it achieves fair allocation of CPU bandwidth regardless
of variation in available capacity, (ii) it does not require the length
of the quantum to be known a priori (and hence, can be used in
general-purpose environments where threads may block for I/O be-
fore their quantum expires), and (iii) SFQ provides provable guar-
antees on fairness, delay, and throughput received by each thread
in the system [7, 8].

H-SFQ replaces the standard time-sharing scheduler in QLinux.
The default scheduling hierarchy in H-SFQ consists of a root node
with a single child that uses the standard time-sharing scheduler
to schedule threads. An application, by default, is assigned to the
time-sharing scheduler, thereby allowing QLinux to mimic the be-
havior of standard Linux. The scheduling hierarchy can be modi-
fied dynamically at run-time by creating new nodes on the fly. Cre-
ating a new node involves specifying the parent node, a weight, and
a scheduling algorithm, if the node is a leaf node (non-leaf nodes
are scheduled using SFQ). QLinux allows processes and threads to



Table 1: System call interface supported by the H-SFQ CPU sched-
uler

System call Purpose
hsfq mknod create a new node in the scheduling hierarchy
hsfq rmnod delete an existing node from the hierarchy
hsfq join nod attach the current process to a leaf node
hsfq move move a process to a specified child node
hsfq parse parse a pathname in the scheduling hierarchy
hsfq admin administer a node (e.g., change weights)

root
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Figure 3: The H-SFQ network packet scheduler. The figure shows a
sample scheduling hierarchy with two classes—http and soft real-
time. The bandwidth within the http class is further partitioned
among two web domains, � 4 and ��� , in the ratio 1:1. Note that
individual sockets can either share a queue or have a queue of their
own. Since each queue has its own weight, in the latter case, band-
width allocation can be controlled on a per-socket basis.

be assigned to a specific node at process/thread creation time; pro-
cesses and threads can be moved from one leaf node to another at
any time. Moreover, weights assigned to an application or a node in
the scheduling hierarchy can be modified dynamically. QLinux em-
ploys a set of system calls to achieve these objectives (see Table 1).
We have also implemented several utility programs to manipulate
the scheduling hierarchy as well as individual applications within
the hierarchy. These utilities allow existing/legacy applications to
benefit from the features of H-SFQ since users can assign weights
to applications without modifying the source code.

� � � ��� � ��� � �  ���� � �  �
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An operating system employs a packet scheduler at each of its

network interfaces to determine the order in which outgoing pack-
ets are transmitted. Traditionally, most operating systems have em-
ployed the FIFO scheduler to schedule outgoing packets. To better
meet the needs of applications with different requirements, QLinux
employs H-SFQ to schedule outgoing packets. As described in Sec-
tion 2.2, H-SFQ can fairly allocate resource bandwidth among dif-
ferent application classes in a hierarchical manner. As in the case
of CPU, the H-SFQ packet scheduler employs a multi-level tree-
like scheduling structure to hierarchically allocate network inter-
face bandwidth (see Figure 3). Each leaf node in the tree consists
of one or more queues of outgoing network packets and any class-
specific scheduler can be employed to schedule the transmission of
packets from these queues; the default leaf scheduler is FIFO. A
non-leaf node is scheduled using SFQ. Every node in the hierarchy

Table 2: System call interface supported by the H-SFQ packet
scheduler

System call Purpose
hsfq qdisc install Install HSFQ queuing discipline

at a network interface
hsfq link mknod create a node in the scheduling

hierarchy
hsfq link createq create a packet queue
hsfq link attachq attach a queue to a leaf node
hsfq link moveq move a queue between schedulers
hsfq link rmnod delete the specified node
hsfq link rmq delete the specified queue
hsfq link modify change the weight of a node/queue
hsfq link parsenode parse a pathname in the

scheduling hierarchy
hsfq link getroot get the ID of the root node at a

particular network interface
hsfq link status display the scheduling tree
setsockopt attach a socket to a queue

Table 3: System call interface supported by Cello

System call Purpose
cello open Open a file and associate it with

the specified class
cello read read data using an optional deadline
cello write write data using an optional deadline
cello set class associate a class with a process
cello admin administer a class (e.g., specify weights)

is assigned a weight; H-SFQ allocates bandwidth to nodes in pro-
portion to their weights. Bandwidth unused by a node is reallocated
fairly among the nodes with pending packets, thereby improving
overall utilization.

The H-SFQ packet scheduler in QLinux replaces the FIFO sched-
uler employed by Linux. The default scheduling hierarchy in H-
SFQ is a root node with a single child that employs FIFO schedul-
ing. Packets sent by applications are, by default, queued up at this
node, enabling QLinux to emulate the behavior of Linux. As in the
case of the CPU scheduler, the scheduling hierarchy can be mod-
ified by adding new nodes to the tree or deleting existing nodes.
QLinux allows applications to be associated to a specific queue at a
leaf node (via the setsockopt system call); this association can
be done on a per-socket basis. Packet classifiers [19] are then em-
ployed to map each transmitted packet to the corresponding queue
at a leaf node. Table 2 lists the system call interface exported by
the packet scheduler to achieve these objectives. We are currently
implementing utility programs using these system calls that will
enable existing applications to benefit from these features without
having to modify their source code.
� � � � ��� � � ��" ��� �  �
����$��� ���

Unlike disk scheduling algorithms such as SCAN that provide a
best-effort service to disk requests, QLinux employs the Cello disk
scheduling algorithm to support multiple application classes. Cello
services disk requests using a two level scheduling algorithm, con-
sisting of a class-independent scheduler and a set of class-specific
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Figure 4: The Cello disk scheduling algorithm.

schedulers [17]. The class-independent scheduler is responsible
for allocating disk bandwidth to classes based on their weights,
whereas the class-specific schedulers use these allocations to sched-
ule individual requests based on their requirements. Unlike pure
rate-based schedulers that focus only on fair allocation of resources,
Cello also takes disk seek and rotational latency overheads into ac-
count when making scheduling decisions (thereby improving disk
throughput).

The implementation of Cello in QLinux supports three applica-
tion classes—interactive, throughput-intensive and soft real-time.
To do so, QLinux maintains three pending queues, one for each
application class and a scheduled queue (see Figure 4). Newly ar-
riving requests are queued up in the appropriate pending queue.
They are eventually moved to the scheduled queue and dispatched
to the disk in FIFO order. The class-independent scheduler de-
termines when and how many requests to move from each class-
specific pending queue to the scheduled queue, while the class-
specific schedulers determine where to insert it into the scheduled
queue. To maintain compatibility with Linux, Cello uses the inter-
active best-effort class as the default class to service disk requests.
Applications can override this default by specifying a class for each
file that is read or written. For the soft real-time class, an applica-
tion must also specify a deadline with each read or write request.
Table 3 lists the interface exported by Cello to achieve these ob-
jectives. Note that the current implementation of Cello supports
bandwidth allocation only on a per-class basis; in the future, we
plan to add support for bandwidth allocation on a per-application
basis.

� � � �"��� � � �� ��" ��� �.� ���  �"� ��" ��#
Consider the operation of a network subsystem within a typical

operating system. When a packet arrives at a network interface
card, it causes an interrupt. The OS then suspends the currently
running process and invokes an interrupt service routine to process
the packet. Typically this processing involves executing the proto-
cols at the data link layer (e.g., ethernet), the network layer (IP), and
the transport layer (TCP or UDP). Observe that, by using the CPU
quantum of the suspended process to do protocol processing, these
overheads get charged to this process rather than the process that
will eventually receive the packet. Such accounting anomalies re-
sult in violation of performance guarantees provided to applications
by a multimedia operating system, especially on servers running
network applications (e.g., http servers). Lazy receiver processing
(LRP) is a technique that overcomes this drawback [6]. LRP post-
pones protocol processing from packet arrival time to the time a

process actually receives data by reading it from a socket. Postpon-
ing protocol operations to socket read time enables the OS to charge
these overheads to the process that actually receives the data. The
key challenge in designing an LRP-based network subsystem is to
ensure only those protocol operations are postponed that do not
affect protocol performance or semantics. For instance, TCP per-
forms asynchronous operations such as sending acknowledgements
for received packets. Delaying acknowledgements can severely af-
fect the throughput received by an application (since the window-
based flow control mechanism in TCP won’t permit the sender to
send additional data without receiving acknowledgements). Since
such asynchronous operations can not be postponed, LRP employs
a special kernel thread for each application to perform these oper-
ations as and when required. The kernel thread executes indepen-
dently of the application process and its CPU usage is charged to
the parent process.

The implementation of LRP in QLinux employs a queue per
socket in the data link layer and employs early demultiplexing of
incoming packets—a technique that classifies packets into these
queues immediately upon arrival. Thus, interrupt processing upon
the arrival of a process only involves packet classification to the ap-
propriate queue and does not involve any expensive protocol pro-
cessing; these operations are deferred to socket read time. Special
kernel threads are employed to handle asynchronous operations as
well as to implement protocols such as ARP and ICMP that are
not process-specific. Finally, observe that LRP is transparent to
applications—no additional system calls are required to support it,
nor do you need to modify applications.

� ��� �"��� ��"�� � ��� ����� ����� ��� �#" ���
In this section, we experimentally evaluate the performance of

QLinux and compare it to vanilla Linux. In particular, we examine
the efficacy of the resource allocation mechanisms within QLinux
to (i) allocate resource bandwidth in a predictable manner, (ii) pro-
vide application isolation, (iii) support multiple traffic classes, and
(iv) accurately account for resource usage. We use several real ap-
plications, benchmarks and micro-benchmarks for our experimen-
tal evaluation. In what follows, we first describe the test-bed for
our experiments and then present the results of our experimental
evaluation.

� � ��� �"��� ��"�� ��� � ��� � � �����
The test-bed for our experiments consists of a cluster of PC-

based workstations. Each PC used in our experiments is a 350MHz
Pentium II with 64MB RAM and runs RedHat Linux 6.1. Each PC
is equipped with a 100 Mb/s 3-Com ethernet card (model 3c595);
all machines are interconnected by a 100 Mb/s ethernet switch
(model 3Com SuperStack II). The version of QLinux used in our
experiments is based on the 2.2.0 Linux kernel; comparisons with
vanilla Linux use the identical version of the kernel. All machines
and the network are assumed to be lightly loaded during our exper-
iments.

The workload for our experiments consists of a combination of
real-world applications, benchmarks, and sample applications that
we wrote to demonstrate specific features. These applications are
as follows: (i) Inf: an application that executes an infinite loop and
represents a simple compute-intensive best-effort application; (ii)
mpeg play: the Berkeley software MPEG-1 decoder; represents
a compute-intensive soft real-time application; (iii) Apache web
server and webclient: a widely-used web server and a configurable
client application that generates http requests at a specified rate;
represents an I/O-intensive best-effort application; (iv) Streaming
media server: a server that transmits (streams) MPEG-1 files over



the network using UDP; represents an I/O-intensive soft real-time
application; (v) Net inf: an application that sends UDP data as fast
as possible on a socket; represents an I/O-intensive best-effort ap-
plication; (vi) Dhrystone: a compute-intensive benchmark for mea-
suring integer CPU performance; (vii) lmbench: a comprehensive
benchmark suite that measures various aspects of operating system
performance such as context switching, memory, file I/O, network-
ing, and cache performance.

In what follows, we present the results of our experimental eval-
uation using these applications and benchmarks. Since the code for
the Cello disk scheduler was unstable at the time of writing, we
have not included experimental results for Cello.

� � � � �����$��� �#" ��#�� ��� �#"��� � � ����� "  � �#" �$� � � �9� � ������� " �9# � 
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To demonstrate that the H-SFQ CPU scheduler can allocate CPU

bandwidth to applications in proportion to their weights, we created
two classes in the scheduling hierarchy and ran the Inf application
in each class. We assigned different combination of weights to the
two classes (e.g., 1:1, 1:2, 1:4) and measured the number of loops
executed by Inf in each case. Figures 5(a) and (b) depict our results.
Figure 5(a) shows the progress made by the two Inf applications for
a specific weight assignment of 1:4. Figure 5(b) shows the number
of iterations executed by the two processes at t=337 seconds for dif-
ferent weight assignments. Together, the two figures show that each
application gets processor bandwidth in proportion to its weight.

Next, we conducted an experiment to demonstrate the fair work-
conserving nature of H-SFQ. Again, we created two application
classes and gave them equal weights (1:1). The Inf application was
run in each class and as expected each received 50% of the CPU
bandwidth. At t=250 seconds, we suspended one of the Inf pro-
cesses. Since H-SFQ is work-conserving in nature, the scheduler
reallocated bandwidth unused by the suspended processes to the
running Inf process (causing it’s rate of progress to double). The
suspended process was restarted at t=350 seconds, causing the two
processes to again receive bandwidth in the proportion 1:1. Fig-
ure 5(c) depicts this scenario by plotting the progress made by the
continuously running Inf process. As shown, the process makes
progress at twice the rate between ��������� 3
	���� and receives its
normal share in other time intervals.

We then conducted experiments to show that real-world applica-
tions also benefit from H-SFQ. To show that the CPU scheduler can
effectively isolate applications from one another, we created two
classes—soft real-time and best-effort—and assigned them equal
weights. The best-effort leaf class was scheduled using the stan-
dard time sharing scheduler, while the soft real-time leaf class was
scheduled using SFQ. We ran the Berkeley software MPEG de-
coder (mpeg play) in the soft real-time class and used it to decode
a five minute long MPEG-1 clip with an average bit rate of 1.49
Mb/s. The Dhrystone benchmark constituted the load in the best-
effort class. We increased the load in the best-effort class (by in-
creasing the number of independent Dhrystone processes) and mea-
sured the CPU bandwidth received by the MPEG decoder in each
case. We then repeated this experiment using vanilla Linux. Figure
6(a) plots our results. As shown in the figure, in case of QLinux,
the CPU bandwidth received by the MPEG decoder was indepen-
dent of the load in the best-effort classes. Since vanilla Linux em-
ploys a best-effort scheduler, all applications, including the MPEG
decoder, are degraded equally as the load increases. This demon-
strates that H-SFQ, in addition to proportionate allocation, can also
isolate application classes from one another. To further demon-
strate this behavior, we ran two Apache web servers in two different
classes and gave them different weights. The webclient application

was used to send a large number of http requests to each web server
and we measured the processor bandwidth received by each class.
As shown in Figure 6(b), the H-SFQ scheduler allocates processor
bandwidth to the two classes in proportion to their weights. These
experiments demonstrate that QLinux can be employed for web
hosting scenarios where multiple web domains are hosted from the
same physical server. Each web domain can be allocated a certain
fraction of the resources and can be effectively isolated from the
load in other domains.
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To demonstrate that the H-SFQ packet scheduler can allocate
network interface bandwidth to applications in proportion to their
weights, we created two classes in the scheduling hierarchy and
ran the Net inf application in each class. The UDP packets sent
by Net inf were received as fast as possible by a receiver process
running on a lightly loaded PC. We varied the weights assigned
to the two classes and measured the number of packets sent by
the two processes for different weight assignments. Figure 7(a)
depicts the number of bytes received from each Net inf for one
particular weight assignment (1:4). As expected, both classes re-
ceive bandwidth in proportion to their weights. To demonstrate
that bandwidth received by a class is independent of the packet
size, we repeated the experiment using different packet sizes for the
two classes. Figure 7(b) shows that, despite using different packet
sizes, the two classes again receive bandwidth in proportion to their
weights.

To demonstrate that real-world applications also benefit from
these features, we conducted an experiment with two classes—soft
real-time and best-effort. The streaming media server was run in
the soft real-time class and was used to stream a five minute long
variable bit-rate MPEG-1 clip (average bit rate of the clip was 1.49
Mb/s). We ran an increasing number of Net inf applications in the
best-effort class and measured their impact on the bandwidth re-
ceived by the streaming media server. We then repeated this exper-
iment on vanilla Linux. As shown in Figure 8, QLinux is able to
effectively isolate the streaming media server from the best-effort
class—the server is able to stream data at its real-time rate regard-
less of the best-effort load. Linux, on the other hand, is unable
to provide this isolation—increasing the best-effort load reduces
the bandwidth received by the streaming media server and also in-
creases the amount of packet loss incurred by all applications.

� � � � � ��� " ����� � � ���  !� �����
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To demonstrate the combined benefits of the CPU and packet

schedulers, we considered a scenario consisting of a loaded web
server and several I/O intensive applications. We created two classes
in the CPU and packet scheduler hierarchies. We ran a simulated
web server in one CPU/packet scheduler class and ran all the I/O-
intensive Net inf applications in the other CPU/packet scheduler
class. Our simulated web server consisted of a sender application
that reads an actual web server trace and sends data using TCP
(each send corresponds to an http request in the trace file; the tim-
ing and size of each request was taken directly from the informa-
tion specified in the traces). The publicly-available ClarkNet server
traces were employed to simulate the web server workload [4]. We
increased the number of Net inf applications in the best-effort class
and measured their impact on the throughput of the web server. The
experiment was then repeated for vanilla Linux. Figure 9 depicts
our results. Observe that, the web server simulates the http proto-
col which runs on TCP. TCP employs congestion control mecha-
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Figure 9: Impact of the H-SFQ CPU and packet schedulers on web
workloads.

nisms that back off in the presence of congestion. Consequently,
as the load due to Net inf applications increases, congestion builds
up in the ethernet switch interconnecting the senders and receivers
(due to the presence of limited buffers at switches), causing TCP
to reduce its sending rate. Both QLinux and Linux experience this
phenomenon, resulting in a degradation in throughput for the web
workload. However, since the QLinux CPU and packet schedulers
reserve bandwidth for the web server, they can effectively isolate
the web workload from the Net inf applications. Hence, the degra-
dation in throughput in QLinux is significantly smaller than that in
Linux. This demonstrates that use of fair, predictable schedulers for
each resource in an OS can yield significant performance benefits
to applications.
� � � � ��� � ��� � " � � � �   !�$�$���#" ��# � � � ��� � �� ��� � � �  �"� � " �9# ����� � �
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To demonstrate the impact of lazy receiver processing, we ran

two Apache web servers in QLinux. In the presence of a light load,
the response time of a server to retrieve a 1.9KB file was measured
to be 50.7ms. We then simulated a simple denial of service attack
scenario, in which one server was bombarded with http requests at
a high rate (300 reqs/s). In the presence of this load, the response
time of the other server (which was lightly loaded) was found to

Table 4: Lmbench Results
Test QLinux Linux

syscall overhead 1 � s 1 � s
fork() 400 � s 400 � s
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 4 � s 1 � s
Context switch (16 proc/ 64KB) 286 � s 283 � s

Local UDP latency 47 � s 53 � s
Local TCP latency 83 � s 82 � s

File create (0 KB file) 21 � s 21 � s
File delete (0 KB file) 2 � s 2 � s

be 70.1ms. We then repeated the experiment on vanilla Linux
and found the response time of the lightly loaded web server to
be 79.8ms. Since LRP ensures that protocol processing overheads
for a packet are charged to the application receiving that packet, the
lightly loaded server is not charged for the packets received by the
overloaded server. Hence, it provides a better response time to its
requests (note that, some degradation in response time is inevitable
due to the congestion control mechanism in TCP and the increased
load). Linux, on the other hand, does not account for protocol pro-
cessing overheads in the same manner, resulting in a greater degra-
dation in response time. This demonstrates that proper accounting
of kernel overheads can improve application performance and help
isolate unrelated applications during overloads or denial of service
attacks.
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In the previous sections, we demonstrated that applications can

benefit from the sophisticated resource management techniques em-
ployed by QLinux. In what follows, we measure the overheads
imposed by these mechanisms using microbenchmarks.

To measure the overhead imposed by the CPU scheduler, we cre-
ated a leaf node and ran a solitary Inf process in that class. We
then progressively increased the depth of the scheduling hierarchy
(by introducing intermediate nodes between this leaf and the root)
and measured the bandwidth received by Inf in each case. Ob-
serve that, increasing the depth of the scheduling hierarchy may
increase the scheduling overhead (since H-SFQ recursively calls
the scheduler at each intermediate node until a thread in the leaf
class is selected). A larger scheduling overhead will correspond-
ingly reduce the bandwidth received by applications (since a larger
fraction of the CPU time would be spent in making scheduling de-
cisions). Figure 10(a) plots the number of iterations executed by
Inf in 300 seconds as we increase the depth of the scheduling hier-
archy. As shown in the figure, the bandwidth received by Inf is rel-
atively unaffected by the increasing scheduling overhead, thereby
demonstrating that the overheads imposed by H-SFQ are small in
practice.

We then performed a similar experiment for the H-SFQ packet
scheduler. The experiment consisted of running the Net inf process
in a scheduling hierarchy with increasing depth and measuring the
bandwidth received by Net inf in each case. As in the case of the
CPU scheduler, the bandwidth received by Net inf was relatively
unaffected by the scheduling overhead (see 10(b)). Together, these
experiments show that hierarchical schedulers such as H-SFQ are
feasible in practice.

� ��� � � �� "
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In our final experiment, we employed the widely used Lmbench
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Figure 10: Microbenchmarking QLinux: overheads imposed by the CPU and Packet Schedulers

benchmark to compare QLinux and Linux. Lmbench is a sophis-
ticated benchmark that measures several aspects of system perfor-
mance, such as system call overheads, context switch times, net-
work I/O, file I/O and memory performance [10]. We employed
Lmbench version 1.9 for our experiments. We first ran Lmbench in
the default best-effort class on QLinux and then repeated the exper-
iment on Linux. In each case, we averaged the statistics reported
by Lmbench over several runs to eliminate experimental error. Ta-
ble 4 summarizes our results (Lmbench produces a large number of
statistics; we only list those statistics that are relevant to QLinux).

Note that the QLinux code is untuned, while Linux code is care-
fully tuned by the Linux kernel developers. Table 4 shows that the
performance of QLinux is comparable to Linux; however, the in-
creased complexity of the QLinux schedulers do result in a larger
overhead. For instance, the context switch overhead increases from
1 � s to 4 � s for two active processes; however this overhead is still
several orders of magnitude smaller than the quantum duration of
100 ms. The network latency for TCP and UDP, as well as file I/O
overheads and system call overheads are comparable in both cases.

��� � ��� � � � ��� ��� �
The growing popularity of the multimedia applications has re-

sulted in several research efforts that have focused on the design
of predictable resource allocation mechanisms. Consequently, in
the recent past, several techniques have been proposed for the pre-
dictable allocation of processor [7, 9, 14, 21, 22], network interface
[3, 5, 8, 18] and disk [1, 11, 23] bandwidth. While each effort dif-
fers in the exact mechanism employed to provide predictable per-
formance (e.g., admission control, rate-based allocation, fair queu-
ing), the broad goals are similar—add quality of service support to
an operating system. The key contribution of QLinux is to synthe-
size/integrate many of these mechanisms into a single system and
demonstrate the benefits of this integration on application perfor-
mance. Whereas the mechanisms instantiated in QLinux are based
on our past work in this area, we believe that it would have been
relatively easy to implement some other predictable resource allo-
cation mechanisms and demonstrate similar benefits.

Some other recent operating system efforts have also focused
on the design of predictable resource allocation mechanisms. The
Nemesis operating system, for instance, employs mechanisms that
provide quality of service guarantees when allocating processor,

network and disk bandwidth [1, 16]. Unlike QLinux, which em-
ploys weights to express resource requirements, Nemesis requires
applications to specify their resource requirements in terms of tu-
ples ��� ��� � 6�� , where � units of the resource are requested every� units of time, and 6 is the additional bandwidth requested, if
available. Nemesis is a multi-service multimedia operating sys-
tem that was designed from the grounds up; QLinux, on the other
hand, builds upon the Linux kernel and benefits from the continu-
ing enhancement made to the kernel by the Linux developers. The
Eclipse operating system, based on FreeBSD, is in many respects
similar to QLinux [2]. Like QLinux, Eclipse employs hierarchical
schedulers to allocate OS resources (the actual scheduling algo-
rithms that are employed are, however, different). Eclipse employs
a special file system called /reserv that is used by applications
to specify their resource requirements [2]. QLinux and Eclipse are
independent and parallel research efforts, both of which attempt to
improve upon conventional best effort operating systems. Finally,
many commercial operating systems are beginning to employ some
of these features. High end versions of Solaris 2.7, for instance, in-
clude a resource manager that enables fine-grain allocation of vari-
ous resources to processes and process groups [20].

� � � �$�� "� ���$" �9# � � � � � �"�
Emerging multimedia and web applications require conventional

operating systems to be enhanced along several dimensions. In this
paper, we presented the QLinux multimedia operating system that
enhances the resource management mechanisms in vanilla Linux.
QLinux employs four key components: the H-SFQ CPU sched-
uler, the H-SFQ packet scheduler, the Cello disk scheduler and the
lazy receiver processing-based network subsystem. Together, these
mechanisms ensure fair, predictable allocation of processor, net-
work and disk bandwidth as well as accurate accounting of resource
usage. We experimentally demonstrated the efficacy of these mech-
anisms using benchmarks as well as common multimedia and web
applications. Our experimental results showed that multimedia and
web applications can indeed benefit from predictable resource allo-
cation and application isolation offered by QLinux. Furthermore,
the overheads imposed by these mechanisms were shown to be
small. Based on these results, we argue that all conventional op-
erating systems should be enhanced with such mechanisms to meet
the needs of emerging applications.



As part of future work, we plan to enhance QLinux along sev-
eral dimensions. In particular, we are designing resource allocation
mechanisms that will enable QLinux to scale to large symmetric
multiprocessors and clusters of servers.
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