
WOLF–A Novel Reordering Write Buffer to Boostthe Performanceof Log-Structured File
Systems

JunWangandYiming Hu
Departmentof Electrical & ComputerEngineeringandComputerScience

Universityof Cincinnati
Cincinnati,OH 45221-0030

e-mail:
�
wangjun,yhu� @ececs.uc.edu

Abstract

This paperpresentsthe design,simulationand perfor-
manceevaluation of a novel reordering write buffer
for Log-structured File Systems(LFS).While LFS pro-
videsgoodwrite performancefor smallfiles,its biggest
problemis the high overheadfrom cleaning. Previous
research concentratedon improving the cleaner’s effi-
ciencyafter files are written to the disk. We proposea
new methodthat reducestheamountof work thecleaner
hasto do before the data reachesthe disk. Our design
sortsactiveand inactivedata in memoryinto different
segmentbuffers and then writes themto different disk
segments.This approach forcesdata on the disk into a
bimodaldistribution. Most data in activesegmentsare
quickly invalidated,while inactivesegmentsare mostly
intact. Simulationresultsbasedon bothreal-worldand
synthetictracesshowthatsuch a reorderingwrite buffer
dramatically reducesthe cleaning overhead,slashing
thesystem’soverall write costbyup to 53%.

1 Intr oduction

Disk I/O is a major performancebottleneckin mod-
ern computersystems. The Log-structuredFile Sys-
tem (LFS) [12, 15, 16] tries to improve the I/O perfor-
mancebycombiningsmallwrite requestsinto largelogs.
While LFS can significantly improve the performance
for small-writedominatedworkloads,it suffers from a
major drawback, namely the garbage collection over-
heador cleaningoverhead. LFS hasto constantlyre-
organizethe dataon the disk, througha processcalled
garbage collectionor cleaning, to make spacefor new
data.Previousstudieshave shown that thegarbagecol-
lection overheadcanconsiderablyreducethe LFS per-
formanceunderheavy workloads. Seltzeret al. [17]
pointedout thatcleaningoverheadreducesLFS perfor-

manceby more than 33% when the disk is 50% full.
Dueto thissignificantproblem,LFShaslimited success
in real-world operatingsystemenvironments,although
it is usedinternallyby severalRAID (RedundantArray
of Inexpensive Disks) systems[20, 10]. Thereforeit is
importantto reducethe garbagecollectionoverheadin
order to improve the performanceof theseRAID sys-
temsandto make LFS moresuccessfulin theoperating
systemfield.

Severalschemeshavebeenproposed[9, 20] to speedup
the garbagecollectionprocess.Thesealgorithmsfocus
on improving the efficiency of garbagecollectionafter
datahasbeenwritten to thedisk. In this paper, we pro-
posea novel methodthat tries to reducethe I/O over-
headduringthegarbagecollection,by reorganizingdata
in two or moresegmentbuffers,beforedatais written to
thedisk.

1.1 Moti vation

Figure 1 shows the typical writing processin an LFS.
Data blocks and inode blocks are first assembledin a
segmentbuffer to form a large log. Whenthe segment
buffer is full, the entirebuffer is written to a disk seg-
mentin asinglelargediskwrite. If LFShassynchronous
operationsor if dirty datain theloghavenotbeenwritten
for 30 seconds,partially full segmentswill bewritten to
thedisk. Whensomeof thefiles areupdatedor deleted
later, the previousblocksof thatfile on the disk arein-
validatedcorrespondingly. Theseinvalidatedblocksbe-
comeholesin disk segmentsandhave to be reclaimed
by thegarbagecollectionprocess.

The problemwith LFS is that the systemdoesnot dis-
tinguishactivedata (namelyshort-lived data)from in-
activedata (namelylong-liveddata)in thewrite buffer.
Dataaresimplygroupedintoasegmentbuffer randomly,
mostlyaccordingto theirarrivalorder. Thebuffer is then

������������������ ������ ���
��� 	�	�		�	�		�	�		�	�	
�
�

�
�

�
�

�
�

��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��

�����
�
�����
� ���������������
���
���������������
��� �����

�
�����
� �����
�
�����
� ������������������������������
������������������������������ ���������������

���
�����
� ���������������
���
���������������
��� �����

�
�����
� �����
�

 !�!!�!!�!!�!!�!
!�!
"�""�""�""�""�"
"�"

(1) Data blocks first enter a Segment Buffer

(3) After a while, many blocks in segments are invalidated,

(2) Buffer written to disk when full (Shown two newly written segments here)

Data Buffer

Disk

Disk

......

......

leaving holes and require garbage collection

#�##�##�#
#�#
$�$$�$$�$
$�$
%�%�%%�%�%%�%�%%�%�%
&�&&�&&�&
&�&

'''
'
(((
(
)))
)

*

+�++�++�+
+�+
,�,,�,,�,
,�,

-
...
.
///
/
000
0
1�1�11�1�11�1�11�1�1
2�2�22�2�22�2�22�2�2

333
3
444
4
5�55�55�5
5�5
6�66�66�6
6�6

7�77�77�7
7�7
8�88�88�8
8�8

9�99�99�9
9�9
:�::�::�:
:�:

Empty block Valid data block Invalidated block
(garbage hole)

Figure1: Thewriting processof LFS

written to adisksegmentwhenit is full. Within theseg-
ment,however, somedataareactiveandwill bequickly
overwritten(thereforeinvalidated),while othersarein-
active andwill remainon the disk for a relatively long
period. The result is that the garbagecollector hasto
compactthe segmentto eliminatethe holesin orderto
reclaimthediskspace.

1.2 Our NewScheme

Basedon this observation, we proposea new method
called WOLF (reordering Write buffer Of Log-
structuredFile system)thatcandramaticallyreducethe
garbagecollectionoverhead.Insteadof usingoneseg-
mentbuffer, we usetwo or more segmentbuffers(here
is two), asshown in Figure2. Whenwrite dataarrives,
the systemsorts them into different buffers according
to their expectedlongevity. Active data are grouped
into onebuffer, while less-active dataaregroupedinto
the otherbuffer. Whenthe buffers arefull, two buffers
arewritten into two disk segmentsusingtwo largedisk
writes(onewrite for eachbuffer).

Becausedataaresortedintoactiveandinactivesegments
before reachingthedisk,garbagecollectionoverheadis
drasticallyreduced. Sinceactive dataare groupedto-
gether, most of an active segmentwill be quickly in-
validated(sometimesthe entiresegmentwill be invali-
dated,andthe segmentcanbe reusedright away with-
out garbagecollection). On the other hand,very few
datablocks in an inactive segmentwill be invalidated,
resultingin few holes. Theoutcomeis thatdataon the
disk have a bimodaldistribution, namelysegmentsare
eithermostly full or mostly empty. Similar to Rosen-
blum andOusterhout’sanalysis[15], this is anidealsit-
uation. In a bimodaldistribution, segmentstend to be

;<;;<;;<;==
=><><>?<?<?

@<@<@<@<@<@<@<@<@<@<@<@<@<@@<@<@<@<@<@<@<@<@<@<@<@<@<@@<@<@<@<@<@<@<@<@<@<@<@<@<@A<A<A<A<A<A<A<A<A<A<A<A<AA<A<A<A<A<A<A<A<A<A<A<A<AA<A<A<A<A<A<A<A<A<A<A<A<A

B<B<BB<B<BB<B<BC<C<CC<C<CC<C<C
D<DD<DD<DE<EE<EE<E

F<F<F<F<F<FF<F<F<F<F<FF<F<F<F<F<FG<G<G<G<GG<G<G<G<GG<G<G<G<G H<H<H<H<H<HH<H<H<H<H<HH<H<H<H<H<H
I<I<I<I<II<I<I<I<II<I<I<I<I

J<J<J<J<J<J<J<J<J<J<J<J<JJ<J<J<J<J<J<J<J<J<J<J<J<JJ<J<J<J<J<J<J<J<J<J<J<J<JK<K<K<K<K<K<K<K<K<K<K<K<KK<K<K<K<K<K<K<K<K<K<K<K<KK<K<K<K<K<K<K<K<K<K<K<K<K
(3) After a while, most blocks in active segments are invalidated,

(2) Buffer written to disk when full (Shown an active & an inactive newly written segments here)

Data

......

......

while most in the inactive segments are intact

(1) Data blocks first enter one of two buffers
based on expected activities

Buffer1 Buffer2

Disk

Disk L<LL<LL<LMM
M

NNNOO
O

Empty block

Valid inactive block Invalidated block

Valid active block

P<P<P<P<P<P<P<P<P<P<P<P<PP<P<P<P<P<P<P<P<P<P<P<P<PP<P<P<P<P<P<P<P<P<P<P<P<PQ<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<QQ<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<QQ<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q<Q
Figure2: Our new scheme–WOLF

nearlyemptyor nearlyfull, but few segmentsarein be-
tween. The cleanercanselectmany nearlyemptyseg-
mentsto cleanandcompacttheir datainto a smallnum-
ber of segments. The old segmentsare then freed, re-
sulting in a large numberof availableemptysegments
for future use. Furthermore,thereis no needto waste
time to cleanthenearly-full segments.

Basically, while previous researchersagreedthat the
cleanerplays one of the most importantroles in LFS,
their work focusedonly on makingthecleanermore ef-
ficient after dataarewritten onto the disk. We believe
thatthereexistsanotheropportunityto improvetheLFS
performance.By re-organizingdatain RAM beforethey
reachthe disk, we could alsomake the systemdo less
garbagecollectionwork. TraditionalLFSdid try to sep-
arateactive datafrom inactive dataandforcea bimodal
distribution, but only during the garbagecollectionpe-
riod, long after files arewritten to the disk. Our sim-
ulation shows that significantperformancegain canbe
obtainedby applyingournew method.

1.3 File AccessLocality

Accuratepredictionof which blockswill beinvalidated
soonis thekey to thesuccessof ourstrategy. We looked
at both the temporalandspatiallocality of file access-
ing patterns.File systemaccessesshow strongtempo-
ral locality: many files areoverwrittenagainandagain
in a short period of time. For example,Hartmanand
Ousterhout[7] pointedout that36%–63%of datawould
beoverwrittenwithin 30 secondsand60%–95%within
1000secondsin thesystemthey measured.In year2000,
Roselli et al. [14] pointedout that file accessesobey a
bimodaldistribution pattern: somefiles arewritten re-
peatedlywithoutbeingread;otherfilesarealmostexclu-

sively read.Datathathavebeenactively written,should
beput into activesegments,andothersinto inactiveseg-
ments.

File systemaccessesalsoshow strongspatiallocality, as
many datablocksareaccessedtogether. For example,
datablocksof onefile arelikely to bechangedtogether.
Similarly, whenafile block is modified,theinodeof the
file, togetherwith thedatablocksandtheinodeof thedi-
rectorycontainingthefile, arealsolikely to beupdated.
Theseblocksshouldthereforebegroupedtogetherin se-
manticssuchthat whenoneblock is invalidated,all or
most other blocks in the samesegmentwill be invali-
datedalso.

1.4 RelatedWork

Many papershave tried to improve the LFS perfor-
mancesincethepublicationof SpriteLFS [15]. Seltzer
[16] presentedanimplementationof LFSfor BSD.Sev-
eral new cleaning policies have also been presented
[2, 20, 9]. In traditionalcleaningpolicies[15], includ-
ing greedycleaning and benefit-to-costcleaning, the
liveblocksin severalpartiallyemptysegmentsarecom-
bined to producea new full segment, freeing the old
partially emptysegmentsfor reuse.Thesepoliciesper-
form well whenthediskspaceutilization is low. Wilkes
et al. [20] proposedthe hole-pluggingpolicy. In their
scheme,partially emptysegmentsare freedby writing
their live blocksinto theholesfoundin othersegments.
Despitethe highercost per block, at high disk utiliza-
tions, hole-pluggingdoesbetterthan traditional clean-
ing becauseit avoidsprocessingsomany segments.Re-
cently, Matthews et al. [9] showed how adaptive algo-
rithmscanbeusedto enableLFSto providehighperfor-
manceacrossa wider rangeof workloads.Thesealgo-
rithms,whichusehybridpoliciesof theabovetwo meth-
ods,improvedwrite performanceby modifying theLFS
cleaningpolicy to adaptto the changesin disk utiliza-
tion. Thesystemswitchesto adifferentmethodbasedon
the cost-benefitestimates.They alsousedcacheddata
to lower cleaningcosts. Blackwell et al. [2] presented
a heuristiccleaningto run without interferingwith nor-
mal file access. They found that 97% of cleaningon
the mostheavily loadedsystemwasdonein the back-
ground. We proposeda schemecalled PROFS which
incorporatestheknowledgeof Zone-Bit-Recordinginto
LFS to improveboththereadandwrite performance.It
reorganizesdataon thediskduringLFS garbagecollec-
tion andsystemidle period. By putting active datain
the fasterzonesand inactive datain the slower zones,
PROFScanachieve muchbetterperformancefor both

readsandwrites [19]. Lumb et al. applieda new tech-
nique called freeblockschedulingto the LFS cleaning
process.They claimedan LFS file systemcouldmain-
tain ideal write performancewhen cleaningoverheads
would otherwisereduceperformanceby up to a factor
of three[13].

In this paper, our strategy hasa distinctive difference
comparedwith above methods:WOLF works with the
initial writes in the reorderingwrite buffers which re-
duce the cleaningoverheadbefore writes go to disk.
This schemefinds a new “free” time to solve the same
garbagecollectionproblemfor LFS.WOLF canbeeas-
ily combinedwith otherstrategiesto improve LFS per-
formance.More importantly, it helpsLFS provide high
performanceevenin heavy loadsandfull disks.

Severalresearcherstried to improvethefile systemper-
formancewithout usingLFS. GangerandPatt [4] pro-
poseda methodcalled “Soft Updates”that can elim-
inate the needsof 95% of synchronouswrites. File
systemperformancecan be significantly improved be-
causemost writes becomeasynchronousand can be
cachedin RAM. Hu et al. proposedthe Disk Caching
Disk [8, 11] which can improve the performanceof
bothsynchronousandasynchronouswrites. WOLF and
Soft-Updatesare complementaryapproaches:The lat-
ter improvesdisk schedulingin traditionalfile systems
through aggressive caching, while WOLF addresses
what to do in write cachingbeforethe datago to me-
dia.

Theremainderof thepaperis organizedasfollows.Sec-
tion 2 describesour designof WOLF. Section3 de-
scribesour experimentalmethodology. Section4 shows
the simulationresultsandanalysis. Section5 summa-
rizesour new strategy.

2 The Designof WOLF

2.1 Writing

After thefile systemreceivesawrite request,WOLF de-
cidesif the requesteddatais active or inactive andputs
the write datainto one of the segmentbuffers accord-
ingly. (We discusshow to do this in Section2.2.) Old
datain a disk segmentwill alsobe invalidated.The re-
questis thenconsideredcomplete.

Whenthewrite buffersarefull, all buffersarewritten to

disksegmentsin largewrite requestsin orderto amortize
the cost of many small writes. SinceWOLF contains
severalsegmentbuffersandeachbuffer is written into a
differentdisksegment,severallargewritesoccurduring
theprocess(onelargewrite for eachbuffer).

As in the LFS, WOLF also writes buffers to the disk
whenoneof the following conditionsis satisfied,even
whenthebuffersarenot full:

R A buffer containsmodificationsthataremorethan
30secondsold.R A fsyncor syncoccurs

Since the LFS usesa single segment buffer, when a
buffer write is invoked, only one large write is issued.
WOLF maintainstwo or more segment buffers. To
simplify the crashrecovery process(discussedin Sec-
tion 2.3), whenWOLF hasto write datato thedisk, all
segmentbuffersin RAM will bewritten (logged)to the
disk at the sametime. While the logging processcon-
tainsseveral largedisk write operationssinceeachseg-
mentbuffer is writtento adifferentdisksegment,WOLF
considersthe log operationatomic. A logging is con-
sideredsuccessfulonly if all segmentbuffers are suc-
cessfullywritten to thedisk. Theatomicloggingfeature
meansthatwe canview themultiple physicalsegments
of WOLF asa singlevirtual segment.

The atomicwriting of multiple segmentscaneasilybe
achieved with a timestamp. All segmentswritten to-
getherwill havethesametimestampandthesame“num-
berof segmentswrittentogether”field. Duringcrashre-
covery, the systemsearchesfor the segmentswith the
latest timestamp. If the numberof segmentswith the
samelatesttimestampmatchesthe“numberof segments
written together”field, thenthe systemknows that the
lastlog-writing operationwassuccessful.

2.2 SeparatingActive and Inactive data

Oneof theimportantproblemsin thedesignof WOLF is
how to find an efficient andeasy-to-implementmethod
that canseparateactive datafrom inactive dataandput
theminto differentbuffersaccordingly.

2.2.1 An AdaptiveGrouping Algorithm

We developeda heuristic learningmethodfor WOLF.
Thetrackingprocessimplementsavariationof theleast-
recently used algorithm with frequency information.
Our algorithmis similar to virtual memorypage-aging
techniques.

To capturethe temporallocality of file accesses,each
block in the segmentbuffers hasa referencecountas-
sociatedwith it. This numberis incrementedwhenthe
block is accessed.The count is initialized to zeroand
is alsoresetto zerowhenthe file systembecomesidle
for a certainperiod. We call this periodastime-bar. It
is initialized to 10 minutes1. If theageof this block ex-
ceedscurrenttime-bar, WOLF will resetthe reference
countof this block to zero. WOLF only doesthis zero
clearingin write buffers. The valueof the count indi-
catesthe active level of the block in mostrecentactive
period, which startssincethe time-bar. The higherthe
valueof thecount,themoreactiveablock is. TheTime-
bar could be adaptively tunedfor the variousincoming
accesses.Whenthesystemidentifiesthatthereis nosig-
nificantdifferenceamongtheblocks’activeratiosin the
reorderbuffers,which meansthe90%referencecounts
of blocksareequal,thetime-barwill bedoubled.If most
blockshave too differentactive ratios,whenonly 10%
referencecountsof blocksareequal,the time-barwill
be halved. The Time-barmakesthe reorderingbuffers
work heuristicallyfor differentworkloads. Active data
arethenputinto theactivesegmentbuffer, andotherdata
in theinactivebuffer.

If two blockshave thesamereferencecounts,thenspa-
tial locality is considered.If the two blockssatisfyone
of the following conditions,they will be groupedinto
thesamesegmentbuffer:

R If thetwo blocksbelongto thesamefile.R If thetwo blocksbelongto files in thesamedirec-
tory.

If noneof the above conditionsis true, the blocks are
randomlyput into buffers.

The overheadof this learningmethodis low. Most ac-
tive blockshave no morethana hundredaccessesin a
short period. Only a small amountof additional bits

1For different workloads, this thresholdmay be different. We
choosethisvaluefor mostworkloads.This thresholdworkswell when
active datalive lessthan10 minutesandinactive datalivesmorethan
10minutes

areneededfor eachblock. Time-bar is managedby the
reorderingbuffer managerwith little overhead.WOLF
only resetsthereferencecountin thereorderingbuffers.

2.2.2 Data Lifetimes

In order to choosethe proper thresholdfor different
workloads,we calculatethe byte lifetime by subtract-
ing thebyte’s deletiontime from its creationtime. This
“deletion-based”methodwasusedby [1] in which all
deletedfiles aretracked. For consideringthe effectsof
overwrites,we measuredbyte lifetime rather than file
lifetime. Figure 3 tells the byte lifetime of four real-
world workloadsin details(thesetraceswill bedescribed
in section3.2.1).

0

10

20

30

40

50

60

70

80

90

100

1sec 30sec 5min 10min 1hour 1day 10days

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 B

yt
es

S

Byte Lifetime

INS
RES

HARP
SITAR

Figure3: Byte Lifetime of Four Real-world Workloads

Fromthe picture,we canseetheactive data’s lifetimes
shows variousbehaviors in differentworkloads. More
than70%of thedatain INS andSitartraceshavea life-
time lessthan10 minutes. Around 35% of the datain
RESandHarp traceshave a lifetime lessthan10 min-
utes. Sincethe lifetime of active datavariesin differ-
ent workloads,it is necessaryto develop this adaptive
groupingalgorithmto separateactive dataandinactive
datafor differentworkloads.

2.3 Consistencyand Crash Recovery

In additionalto LFS’ high performance,anotherimpor-
tant advantageof LFS is fastcrashrecovery. LFS uses
checkpointsand maintainsthe order of updatesin the
log format.After acrash,thesystemonly hasto roll for-
ward, readingeachpartialsegmentfrom themostrecent
checkpointto the endof the log in write order, which

involvesincorporatingany modificationsthat occurred.
Thusthereis no needto performa time-consumingjob
like TVU�WYX .

In WOLF, datain memoryare re-groupedinto two or
moresegmentbuffersandlaterwritten into two or more
disk segments.As a result,the original orderinginfor-
mationmaybelost. To keepthecrashrecovery process
simple,WOLF employs thefollowing strategies:

1. While datablocksarereorderedby WOLF to im-
provetheperformance,theiroriginalarrivalorder-
ing informationiskeptin adatastructureandwrit-
tento thedisk in thesummaryblocktogetherwith
eachsegment.

2. While WOLF maintains two or more segment
buffers, its atomic logging feature(discussedin
Section2.1) meansthat thesemultiple physical
bufferscanbeviewedasa singlevirtual segment.

Since WOLF maintainsonly a single virtual segment
which is loggedatomically, and the informationabout
original arrival ordersof datablocksin the virtual seg-
mentis preserved,crashrecovery in is nearlyassimple
asin LFS.

2.4 Reading

WOLF only changesthewrite cachestructuresof LFS.
Thereadoperationsarenot affected.As a result,weex-
pectthatWOLF hassimilar readperformanceasthatof
LFSwhenthesystemis lightly loaded.Whenthesystem
is heavily loaded,WOLF shouldhavebetterreadperfor-
mancebecauseof its moreefficient garbagecollection
processthatreducesthecompetitionfor diskbandwidth.

2.5 GarbageCollection

WOLF doesnot completelyeliminate garbage,there-
fore garbagecollection is still needed.Benefit-to-Cost
cleaningalgorithmworkswell in mostcaseswhile hole-
pluggingpolicy works well whenthe disk segmentuti-
lization is very high. Since previous researchshows
that a singlecleaningalgorithmis unlikely to perform
equally well for all kinds of workloads, we usedan
adaptive approachsimilar to theMatthews’ method[9].
This policy automaticallyselectseither the benefit-to-
costcleaneror thehole-plugging methoddependingon
thecost-benefitestimates.

In WOLF, the cleanerrunswhen the systemis idle or
disk utilization exceedsa high water-mark. In our sim-
ulation,thehigh water-mark is when80%of thedisk is
full, and idle is definedasthe file systemhasno activ-
ities in 5 minutes. The amountof datathat the cleaner
mayprocessat onetimecanbevaried.In this paper, we
allowedthecleanerto processup to 20 MB at onetime.
To calculatethe benefitandoverheadof garagecollec-
tion, we usedthefollowing mathematicalmodel.These
formula weredevelopedby Matthews et al. (Seemore
detailsin [9]).

Thebenefit-to-costratio is definedasfollows:

Z<[�\][T_^a`WYbcUY` d
egfihkj `l^lmn^loqpr`l^lb \tsvu pxw [bcTyU [w{z [|\ `e}f�~�j `l^lm�^�orpr`l^lb \ts

Hereutilization representsthe ratio of the live bytesto
onesegmentsize. Specifically, the cost-benefitvalues
of cleaningandhole-pluggingpoliciesarecalculatedas
follows:

� bcU|`}� [�\][T_^�`}�]���g�<�c����� d
��� p \ U�T [��� ^�z [�t���}�<�c������v� p{W [�� � [�[�� �]���}�<�c�����

� bcU|`}� [|\][T_^�`}�V�������<���c� d
��� p \ U�T [��� ^�z [�V���|���<������v� p{W [�� � [�[�� �V�������<���c�

Theadaptive policy alwayspicksup segmentswith the
lower Cost-Benefitestimatesto clean. Segmentswith
moregarbage(hencevery low segmentutilization and
high benefit-to-costratios)will be cleanedfirst. Older
segmentswill alsobe cleanedfirst, asdatain younger
segmentswill have a betterchanceto be invalidatedin
thefuture.

BecauseWOLF’s buffer managerseparatesthe ac-
tive datafrom inactive datawhich leadsto a bimodal
disk segmentlayout, both the benefit-to-costandhole-
pluggingmethodscanbenefitfrom this nicelayout. For
benefit-to-cost,sincemost active segmentsare mostly
garbage(hencevery low utilization), their benefit-to-
cost ratios are very high. These segments will be
cleanedfirst to yield many blank segments. For hole-
plugging, when the adaptive cleanerswitchesto this
method(which will tendto occurin very high disk uti-
lization),cleanerusestheleastutilizedsegmentsto plug
the holesin themostutilized segments.WOLF simply
readsthe few remaininglive bytesfrom an active disk
segmentandplug theminto thefew availableslotsof an
inactivedisksegment(veryhigh segmentutilization).

3 Experimental Methodology

Weusedtrace-drivensimulationexperimentsto evaluate
theeffectivenessof ourproposednew design.Both real-
world andsynthetictracesare usedduring simulation.
In orderto makeour experimentsandsimulationresults
moreconvincing,weusefour differentreal-world traces
andfour synthetictracesin thecomprehensivecovering
fields.

3.1 The Simulators

TheWOLF simulatorcontainsmorethan8,000linesof
C++code.It consistsof anLFSsimulator, whichactsas
afile system,on topof adisksimulator. Thediskmodel
is portedfrom Ganger’s disk simulator [5]. Our LFS
simulatoris developedbasedon SpriteLFS. We ported
theLFScodefrom theSpriteLFSkerneldistributionand
implementeda trace-driven classto accepttracefiles.
By changinga configurationfile, we can vary impor-
tantparameterssuchasthenumberof segmentbuffers,
thesegmentsizeandthereadcachesize. In thesimula-
tor, datais channeledinto the log throughseveralwrite
buffers. Thewrite buffersareflushedevery 30 seconds
of simulatedtime to capturethe impactof partial seg-
mentwrites. A segmentusagetableis implementedto
maintainthe statusof disk segments. Meta-datastruc-
turesincludingsummaryblock andinodemaparealso
developed.We built a checkpointdatastructureto save
blocks of inode mapandsegmentusagetableperiodi-
cally.

The disk performance characteristics are set in
Disksim’s config files. We chosetwo disks for test-
ing, a small (1GB capacity)HP2247Adisk anda large
(9.1GB)QuantumAtlas10Kdisk. ThesmallHP2247A
was usedfor Sitar and Harp traces,becausethe two
traceshavesmalldata-sets(total dataaccessed� 1GB).
A small disk is neededin orderto observe the garbage
collectionactivities. Thelargediskwasusedfor all other
traces. Using two very differentdisksalsohelpsus to
investigatetheimpactsof disk featureslikecapacityand
speedonWOLF performance.TheHP2247Adisk’ spin-
dle speedis setto 5400RPM. The read-channelband-
width is 5 MB/sec.Its averageaccesstimeis 15ms.The
QuantumAtlas10Khasa10024RPMspindlespeed.Its
read-channelbandwidthis 60 MB/secandaverageac-
cesstime is 6 ms.

3.2 Workload Models

Thepurposeof ourexperimentsis to conductacompre-
hensiveandunbiasedperformancestudyof theproposed
schemeandcomparetheresultswith thatof unmodified
LFS. We paidspecialattentionto selectthetraces.Our
main objective wasto selecttracesthat matchasclose
to realisticworkloadsaspossible.At thesametime,we
alsowantedto coveraswidearangeof environmentsas
possible.The tracefiles that have beenselectedin this
paperarediscussedbelow.

3.2.1 Real-world Traces

Fourreal-world file systemtracesweusedin oursimula-
tion. We got two setsof real-life tracesfrom two differ-
entuniversitiestovalidateourresults.Twoof themcame
from Universityof California,Berkeley, calledINS and
RES [14]. INS camefrom a collection from a group
consistingof 20machineslocatedin labsfor undergrad-
uateclasses.RES was attainedfrom 13 desktopma-
chinesof aresearchgroup.INS andRESwererecorded
over112daysfrom September1996to December1996.
Both tracescamefrom their clustersrunning HP-UX
9.05. The other set of two traces,from University of
Kentucky, containall disk activities on two SunOS4.1
machinesduringtendaysfor Sitar traceandsevendays
for Harp trace[6]. Sitar tracerepresentsanoffice envi-
ronmentwhile Harp reflectscommonprogramdevelop-
mentactivities. Morespecifically, Sitar traceis acollec-
tion of file accessesby graduatestudentsandprofessors
doingwork suchasemailing,compilingprograms,run-
ning LaTeX, editingfiles, andsoon. Harp traceshows
a collaborationof two graduatestudentsworking on a
singlemultimediaapplication.BecauseSitar andHarp
have a smallamountdata,we usethesmalldisk model
with thesetwo real-world traces. Notice in the experi-
ments,weexpandSitarandHarpbyappendingfileswith
sameaccesspatternin original tracesbut with different
file namesin orderto explorethesystembehavior under
different disk utilizations. For large traceswith more
than10GBdatatraffic, wedo not usethis procedure.

Thesereal-world tracesaredescribedin moredetail in
Table 1.

3.2.2 SyntheticTraces

While real-world tracesgivea realisticrepresentationof
somereal systems,synthetictraceshave the advantage

of isolatingspecificbehaviors not clearly expressedin
recordedtraces. We thereforealso generateda set of
synthetictraces. We variedthe tracecharacteristicsas
muchaspossiblein orderto cover a very wide rangeof
differentworkloads.

Wegeneratedthefollowing four setsof synthetictraces:

1. Uniform Pattern(Uniform)

Eachfile hasequallikelihoodof beingselected.

2. Hot-and-coldPattern(Hot-cold)

Filesaredividedinto two groups.Onegroupcon-
tains10%of files; it is calledhotgroupbecauseits
files arevisited90%of thetime. Theothergroup
is calledcold; it contains90%of thefilesbut they
arevisited only 10% of the time. Within groups
eachfile is equally likely to be visited. This ac-
cesspatternmodelsasimpleform of locality.

3. EphemeralSmallFile Regime(SmallFiles)

This suitecontainssmall files andtries to model
thebehavior of systemssuchastheelectronicmail
or thenetwork newssystems.Thesizesof filesare
limited from 1 KB to 1 MB. They arefrequently
created,deletedandupdated.Thedatalifetime of
this suiteis theshortestonein this paper(90%of
bytelifetimesarelessthan5 minutes).

4. TransactionProcessingSuite(TPC-D)

This traceconsistsof a typicalTPC-Dbenchmark
which accessestwenty large size databasefiles
from 512 MB to 10 GB. The databasefiles con-
sistof thedifferentnumberof recordsrangedfrom
2,000,000to 40,000,000. Eachrecord is set to
100bytes.Mosttransactionoperationsarequeries
and updatesin this benchmark. The I/O access
patternis randomwrites followed by sequential
reads. Randomupdatesareappliedto the active
portionof thedatabase.And thensometimelater,
largesweepingqueriesreadrelationssequentially
[18]. This representsthe typical I/O behavior of
a decisionsupportdatabase.In this trace,we use
sequentialfile readsto simulate17 SQL queries
for businessquestions.As for implementingTPC-
D updatefunctions,wegeneraterandomwritesto
representfollowing categories: updating0.1%of
dataperquery, insertingnew salesdatawith 0.1%
of tablesizeanddeletingold salesdataof 0.1%of
tablesize.

Features INS RES SITAR HARP Uniform Hot-cold TPC-D SmallFS
Dataread(MB) 94619 52743 213 520 8000 8000 8000 8000
Datawrite(MB) 16804 14105 183 249 8000 8000 4000 8000
Read:Writeratio 5.6 3.7 1.16 2.08 1.0 1.0 2.0 1.0
Reads(thousands) 71849 9433 57 26 800 800 800 4000
Writes(thousands) 4650 2216 49 12 800 800 400 4000
File Size(� 16KB) 82.8% 63% 80% 73 80% 80% 0% 95%
File Size(16KB–1MB) 16.9% 36.5% 19.96% 26.98% 19.95% 19.95% 0% 5%
File Size(1MB+) 0.2% 0.5% 0.04% 0.02% 0.05% 0.05% 100% 0%

Table1: Four real-world tracesandFoursynthetictraces

Theotherinformationof thesefour synthetictracescan
beseenin Table1.

4 Simulation Results and Performance
Analysis

In order to understandthe insight effect of WOLF, we
compareour designwith the most recentLFS using
adaptive methodwhich is thebaselinesystem.Therea-
son is that we want to explore the effect with our re-
orderingwrite buffers ratherthanthe adaptive cleaning
policy. Therefore,two comparedsystemsusethe same
adaptivegarbagecleaningstrategy. In experiments,sys-
tem automaticallyselectseither benefit-to-costor the
hole-plugging dependingon the cost-benefitestimates.
WOLF separatesactive data from cold data to gener-
ate active/inactive segmentsin initial writes. The dif-
ferentdisk layoutsin two systemsleadto differentper-
formance.

In our experimentsof this paper, we set several de-
fault parametersunlessspecified:a 64 MB readcache,
eachdisk segmentis 256KB andeachsegmentbuffer is
256KB.

4.1 Overall Write Cost

Write costis the metric traditionally usedin evaluating
LFS write performance.It only considersthe effect of
the numberof segments. Matthews et al. pointedout
segmentsizealsoplaysa largerrole in thewrite perfor-
mance.They describeda way to quantify this trade-off
betweenamortizingdiskaccesstimeacrosslargertrans-
fer units andreducingcleaneroverhead:Overall Write
Cost, which capturesboth the overheadof cleaningas
well as the bandwidthdegradationcausedby seekand

rotationallatency of log writes[9].

In thispaperweusedthisnew metric– overallwrite cost
to evaluateWOLF performance.Thefollowing formula
areadaptedfrom [9]:

First, two terms, write cost and TransferInefficiency
(briefly called � \][TVT��i� �l) aredefined:

¡¢� ^�` [� bcU|` d
� [w{z [|\ `gU ��� p \ U�T [��� [��q£v¤g¥ ���� [w{z [|\ `gU ��� p \ U�T [��� [��q¦ �l§V¨�� ¥ �

d
� [w©U ¡ ¦ �l§V¨ª� ¥ � ~ � [w«U�¬­�t���}�<� ~ � [w©U ¡ �]���}�®�� [w©U ¡ ¦ �}§V¨ª� ¥ �

Here
� [w«U ¡ ¦ �l§V¨�� ¥ � is the total numberof segments

writtento thediskcausedby new data.
� [w«U�¬­�t���}�<� and� [w«U ¡ �]���}�<� arethetotalnumbersof segmentsreadand

written by thecleaner, respectively. This termdescribes
theoverheadof cleaningprocess.

� \][TVT �i� �l d°¯ W®W [U�U � ^�z [²±´³ ^}U�X©�µp \]�q¶ ^ � `g·� [w{z [|\ ` � ^�o [~°f

� \][TVT �¸� �l measuresthebandwidthdegradationcaused
by seekandrotationaldelaysof log writes.AccessTime
representstheaveragedisk accesstime.

And finally,¹»º [� p{m¼m ¡¢� ^�` [� bcUY` d ¡¢� ^�` [� bcU|` ± � \][TVT��i� �}
4.1.1 Performanceunder Differ ent Workloads

In orderto understandhow theWOLF andLFSperform
underdifferentworkloads,resultsfor thefour synthetic
tracesand four real-world tracesarecomparedin Fig-
ure4.

It is clear from the figure that the WOLF significantly
reducestheoverallwrite costcomparedto theLFS.The
new designreducestheoverallwrite costby up to 53%.
The overall write cost is most reducedwhen the disk
spaceutilization is high. Whenthe disk becomesmore
full, the garbagecollection is more important. WOLF
plays the more importantrole in reducinggarbageon
thedisk.

Although the eight traceshave differentcharacteristics,
we canseethat the performanceof WOLF is not sen-
sitive to the variation in workloads. This derivesfrom
ourheuristicreorganizingalgorithm.Ontheotherhand,
LFS performsespeciallypoor for the TPC-D workload
becauseof its randomupdatingbehavior. This is not a
surprise.Similar behavior wasobservedby Seltzerand
Smith in [17]. WOLF, on the otherhand,significantly
reducesthe garbagecollectionoverheadso it still per-
formswell underTPC-D.

4.1.2 Effects of the Number of Segment Buffers
with Real-world Traces

Figure5 showstheresultsof theoverallwrite costversus
disk utilization for thefour real-world traces.We varied
the numberof segmentbuffers of WOLF from 2 to 4.
We alsovariedthesegmentbuffer sizeof theLFS from
256KB to 1024KB.

Increasingthe number of segment buffers in WOLF
wouldslightly reducetheoverallwrite costbut doesnot
haveasignificantimpacton theoverallperformance.

ThereasonwestudiedLFSwith differentsegmentbuffer
sizes,is to show that theperformancegainof WOLF is
not due to the increasedbuffer numbers(hencethe in-
creasedtotal buffer size). The separatedactive/inactive
datalayout on disk segmentscontributesto the perfor-
manceimprovement. In fact, for LFS, increasingthe
segmentbuffer sizesmay actually increasethe overall
write cost. This observation is consistentwith previous
studies[9, 15]

Note that becauseWOLF usesmore segment buffers
thantheLFS does,datamaystayin RAM longer. How-
ever, this doesnot posesa reliability problem. As dis-
cussedbefore,in WOLF, if thesegmentbufferscontain
dataolder than30 seconds,they will be flushedto the
disk, just asLFS.

4.1.3 Effects of Segment Sizes with Real-world
Traces

The size of the disk segmentis also a substantialfac-
tor on the performanceof both WOLF andLFS. If the
sizeof the disk segmentis too large, it would be a lit-
tle difficult to find enoughactivedatato fill onesegment
andenoughinactivedatafor anothersegment.Theresult
will beactive dataandinactive dataaremixedtogether
in a largesegment,resultingin poorgarbagecollection
performance.Thelimited diskbandwidthwill alsohave
anegativeimpactontheoverallwrite costwhentheseg-
mentbuffer sizeexceedsa threshold. On the contrary,
if the segmentsize is too small, the original benefitof
LFS,namelytakingtheadvantageof largedisk transfer,
is lost.

Figure 6 shows the simulationresultswith the overall
write costversusthe sizesof segmentbuffers. We can
seethat for both WOLF and LFS, a segmentbetween
256-1024KB is goodfor thesekind of workloads.

4.1.4 SegmentUtilization Distrib ution

In order to provide insights into understandingwhy
WOLF significantlyoutperformstheLFS,wealsocom-
paredthesegmentutilizationdistributionsof WOLF and
LFS. Segmentutilization is calculatedby the total live
bytesin thesegmentdividedby thesizeof thissegment.

Figure7 shows the distribution of segmentutilizations
underthefour real-world traces.Wecanseetheobvious
bimodalsegmentdistribution in WOLF whencompared
to theLFS.Resultsfor otherworkloadsaresimilar. The
nice bimodaldistribution is the key to the performance
advantageof WOLF over theLFS.

4.2 Read/Write Latency

In previous discussion,we usedoverall write cost as
the performancemetric. Overall write cost is a direct
measurementof systemefficiency. We have shown that
WOLF performsencouraginglybetterthanLFS, asthe
formerhasmuchsmalleroverall write costthanthelat-
ter.

However, end-userswould be more interestedin user-
measurablemetrics such as the accesslatencies[3].
Overallwrite costquantifiestheadditionalI/O overhead
whenLFS doesthe garbagecleaning.The LFS perfor-

manceis verysensitive to thisoverhead.To seewhether
thelow overallwrite costin WOLF canbetranslatedto
low accesslatencies,we alsomeasuredtheaveragefile
read/writeresponsetimes in the file systemlevel. We
collectedthe total file read/writelatenciesanddivided
the total numberof file reads/writesrequests.All these
resultsinclude the cleaningoverhead. The resultsare
presentedin this subsection.

4.2.1 Write Latencies

Figure 8(a) shows the file write performanceof LFS
and WOLF under eight traces. Figure 8(b) plots the
performanceimprovementof WOLF over LFS. We can
seethatWOLF significantlyenhancesthe write perfor-
manceby 27–35.5%,in terms of improved response
times. The lower overall write cost in WOLF directly
leadsto a smallerwrite responsetime. The Hot-cold
traceachievesthebestimprovementbecauseof its good
activebehavior.

4.2.2 ReadPerformance

Figure9(a)shows thefile readperformanceof LFS and
WOLF undereight traces. Figure 9(b) plots the per-
formanceimprovementof WOLF over LFS. The re-
sults show that, for most traces,the readperformance
of WOLF is at leastcomparableto that of LFS. This
is expected,asWOLF doesnot directly affect the read
operationsof LFS.AlthoughWOLF changesthephysi-
cal layoutondisk for LFS,WOLF’sgroupingalgorithm
includesthe similar policy which is usedin locality-
groupingrules of regular LFS, suchthat files in same
directoryareput in samesegmentandetc., WOLF does
nothavemuchimpactonthereadperformancewhenthe
load is light. Whenthe load is heavy, we mayseea lit-
tle betterreadperformanceof WOLF thanthat of LFS
becauseWOLF reducesthe cleaningoverheadso that
WOLF amelioratesthe competitionof disk bandwidth.
RES and TPC-D got little loss for their more random
readsbecauserandomreadshave poor spatial locality
which resultsin much longer disk seeksand rotations
duringgarbagecollection.

4.3 Implication of Different Disk Models

From the resultsof sections4.1 and 4.2, we can see
WOLF achievessignificantperformancegainsfor both

the small/slow and the large/fastdisk models. The re-
sultssuggestthat the disk characteristicsdo not have a
directimpactonWOLF. While theabsoluteperformance
parametersmayvary on differentdisk models,theover-
all trendis clear: WOLF canmarkedly reducegarbage
collectionoverheadundermany differentworkloadson
differentdiskmodels.

5 Conclusionand Future Work

We have proposeda novel reorderingwrite buffer de-
sign calledWOLF for the Log-structuredFile System.
WOLF improvesthedisk layoutby reorderingthewrite
datain segmentbuffersbefore writing datato the disk.
By utilizing an adaptive algorithm that separatesac-
tive datafrom inactive data,and taking advantagesof
file temporalandspatiallocalities,thereorderingbuffer
forcesactively-accesseddatablocks into one hot seg-
mentandinactivedatainto anothercold segment.Since
mostof theblocksin activesegmentswill bequickly in-
validatedwhile mostblocksin inactivesegmentswill be
left intact,dataon thedisk form a goodbimodaldistri-
bution. This bimodaldistribution significantly reduces
thegarbagecollectionoverhead.

BecauseWOLF works beforeinitial writes go to disk,
it can be integratedwith other strategies smoothly to
improve LFS performance.By reducingcleaningover-
head,WOLF amelioratesthecompetitionof disk band-
width. Simulationexperimentsbasedonawiderangeof
real-world andsyntheticworkloadsshow thatour strat-
egy can reducethe overall write costby 53% and im-
prove write responsetime by 35.5%. The readperfor-
manceis generallybetterthanor comparableto theLFS.
Our schemestill guaranteesfast crashrecovery, a key
advantageof LFS.

Webelievethatourmethodcansignificantlyimprovethe
performanceof thoseIO systems(suchassomeRAIDs)
that usethe LFS technology. It may also increasethe
chanceof LFS successin the OS environmentslike
Linux. Moreover, since logging is a commonly used
technologyto improve theI/O performance,we believe
that our new schemewill have a broadimpacton high
performanceI/O systemsaswell. We alsoplanto apply
this techniqueto othergeneralfile systemslike FFSin
thefuture.

Acknowledgments

This work is supportedin part by the National Sci-
enceFoundationCareerAward CCR-9984852,and an
OhioBoardof RegentsComputerScienceCollaboration
Grant. We would like to thank our shepherdRichard
Golding for his many valuablesuggestionson the final
versionof this paper. We would also like to thank the
anonymousreviewersfor their usefulcomments.

References

[1] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K. W., AND OUSTERHOUT, J. K. Measure-
mentsof adistributedfile system.In Proceedingsof 13th
ACM Symposiumon Operating SystemsPrinciples(Oct.
1991),Associationfor ComputingMachinerySIGOPS,
pp.198–212.

[2] BLACKWELL , T., HARRIS, J., AND SELTZER, M.
Heuristiccleaningalgorithmsin log-structuredfile sys-
tems. In Proceedingsof the 1995 USENIX Tech-
nical Conference: January 16–20, 1995, New Or-
leans,Louisiana,USA(Berkeley, CA, USA, Jan.1995),
USENIX Association,Ed.,USENIX, pp.277–288.

[3] ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER,
M. Using latency to evaluateinteractive systemperfor-
mance.In Proceedingsof the1996SymposiumonOper-
ating SystemDesignand Implementation(Seattle,WA,
Oct.1996).

[4] GANGER, G. R., AND PATT, Y. N. Metadataupdateper-
formancein file systems.In USENIXSymposiumonOp-
eratingSystemDesignandImplementation(OSDI)(Nov.
1994),pp.49–60.

[5] GANGER, G. R., AND PATT, Y. N. Usingsystem-level
modelsto evaluateI/O subsystemdesigns.IEEE Trans-
actionsonComputers 47, 6 (June1998),667–678.

[6] GRIFFIOEN, J., AND APPLETON, R. The design,im-
plementation,andevaluationof a predictive cachingfile
system.Tech.Rep.CS-264-96,Departmentof Computer
Science,Universityof Kentucky, June1996.

[7] HARTMAN, J. H., AND OUSTERHOUT, J. K. letter to
theeditor. OperatingSystemsReview 27, 1 (1993),7–9.

[8] HU, Y., AND YANG, Q. DCD—disk cachingdisk: A
new approachfor boostingI/O performance. In Pro-
ceedingsof the 23rd InternationalSymposiumon Com-
puter Architecture (ISCA’96) (Philadelphia,Pennsylva-
nia,May 1996),pp.169–178.

[9] MATTHEWS, J. N., ROSELLI , D., COSTELLO, A. M.,
WANG, R. Y., AND ANDERSON, T. E. Improving the
performanceof log-structuredfile systemswith adaptive
methods. In SixteenthACM Symposiumon Operating
SystemPrinciples(SOSP’97) (1997).

[10] MENON, J. A performancecomparisonof RAID-5
andlog-structuredarrays. In Proceedingsof the Fourth
IEEE International Symposiumon High Performance
DistributedComputing(Aug. 1995),pp.167–178.

[11] NIGHTINGALE, T., HU, Y., AND YANG, Q. Thedesign
andimplementationof DCD device driver for UNIX. In
Proceedingsof the1999USENIXTechnical Conference
(Monterey, CA, Jan.1999),pp.295–308.

[12] OUSTERHOUT, J., AND DOUGLIS, F. Beatingthe I/O
bottleneck:A casefor log-structuredfile systems.Tech.
Rep. UCB/CSD 88/467, Computer ScienceDivision,
ElectricalEngineeringandComputerSciences,Univer-
sity of Californiaat Berkeley, Berkeley, CA 94720,Oct.
1988.

[13] R.LUMB, C., SCHINDLER, J., GANGER, G. R., AND

NAGLE, D. F. Towards higher disk headutilization:
Extracting free bandwidthfrom busy disk drives. In
Proceedingsof the 2000Conferenceon Operating Sys-
temDesignandImplementation(OSDI)(SanDiego,Oct.
2000).

[14] ROSELLI , D., LORCH, J. R., AND ANDERSON, T. E. A
comparisonof file systemworkloads.In Proceedingsof
the2000USENIXConference(June2000).

[15] ROSENBLUM , M., AND OUSTERHOUT, J. K. The de-
signandimplementationof a log-structuredfile system.
ACM Transactionson ComputerSystems10, 1 (Feb.
1992),26– 52.

[16] SELTZER, M., BOSTIC, K., MCKUSICK , M. K., AND

STAELIN, C. An implementationof a log-structured
file systemfor UNIX. In Proceedingsof Winter 1993
USENIX(SanDiego,CA, Jan.1993),pp.307–326.

[17] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H.,
CHANG, J., MCMAINS, S., AND PADMANABHAN, V.
File systemlogging versusclustering: A performance
comparison.In Proceedingsof 1995USENIX(New Or-
leans,LA, Jan.1995),pp.249–264.

[18] TRANSACTION PROCESSING PERFORMANCE COUN-
CIL. TPC benchmarkD standardspecification,April
1995.WatersideAssociates,Fremont,CA.

[19] WANG, J., AND HU, Y. Profs-performance-orienteddata
reorganizationfor log-structuredfile systemon multi-
zonedisks. In Proceedingsof the 9th Int’l Symposium
on Modeling, AnalysisandSimulationof Computerand
TelecommunicationSystems(MASCOTS’2001)(2001).

[20] WILKES, J., GOLDING, R., STAELIN, C., AND SUL -
L IVAN, T. The HP AutoRaid hierarchicalstoragesys-
tem.ACM TransactionsonComputerSystems14, 1 (Feb.
1996),108–136.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(a) WOLF & LFS under INS

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(b) WOLF & LFS under RES

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(c) WOLF & LFS under Harp

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(d) WOLF & LFS under Sitar

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(e) WOLF & LFS under Uniform

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(f) WOLF & LFS under Hold-Cold

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(g) WOLF & LFS under Small Files

LFS
WOLF

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(h) WOLF & LFS under TPC-D

LFS
WOLF

Figure4: OverallWrite-costversusDisk Utilization underdifferentworkloads.WOLF with 2 segmentbuffers.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(a) INS trace

LFS with 256KB buffer
LFS with 512KB buffer

LFS with 1024KB buffer
WOLF with 2 segment buffers
WOLF with 3 segment buffers
WOLF with 4 segment buffers

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(b) RES trace

LFS with 256KB buffer
LFS with 512KB buffer

LFS with 1024KB buffer
WOLF with 2 segment buffers
WOLF with 3 segment buffers
WOLF with 4 segment buffers

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(c) Harp trace

LFS with 256KB buffer
LFS with 512KB buffer

LFS with 1024KB buffer
WOLF with 2 segment buffers
WOLF with 3 segment buffers
WOLF with 4 segment buffers

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ov
er

al
l

w
rit

e
 c

os
t½

disk utilization

(d) Sitar trace

traditional LFS with 256KB buffer
traditional LFS with 512KB buffer

traditional LFS with 1024KB buffer
WOLF with 2 segment buffers
WOLF with 3 segment buffers
WOLF with 4 segment buffers

Figure5: Overallwrite costversusDisk Utilization.

0

5

10

15

20

25

30

35

40

45

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

ov
er

al
l

w
rit

e
 c

os
t½

segment size

(a) INS trace

LFS
 WOLF with 2 segment buffers
 WOLF with 3 segment buffers
 WOLF with 4 segment buffers

0

5

10

15

20

25

30

35

40

45

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

ov
er

al
l

w
rit

e
 c

os
t½

segment size

(b) RES trace

LFS
 WOLF with 2 segment buffers
 WOLF with 3 segment buffers
 WOLF with 4 segment buffers

5

10

15

20

25

30

35

40

45

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

ov
er

al
l

w
rit

e
 c

os
t½

segment size

(c) Harp trace

LFS
 WOLF with 2 segment buffers
 WOLF with 3 segment buffers
 WOLF with 4 segment buffers

5

10

15

20

25

30

35

40

45

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

ov
er

al
l

w
rit

e
 c

os
t½

segment size

(d) Sitar trace

LFS
 WOLF with 2 segment buffers
 WOLF with 3 segment buffers
 WOLF with 4 segment buffers

Figure6: Overallwrite costversusSegmentSizes.Disk utilization is 95%.

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 s

eg
m

en
ts

¾

segment utilization

(a) INS trace

LFS with 256KB buffer
WOLF wtih 2 buffers

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 s

eg
m

en
ts

¾

segment utilization

(b) RES trace

LFS with 256KB buffer
WOLF wtih 2 buffers

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 s

eg
m

en
ts

¾

segment utilization

(c) Harp trace

LFS with 256KB buffer
WOLF wtih 2 buffers

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 s

eg
m

en
ts

¾

segment utilization

(d) Sitar trace

LFS with 256KB buffer
WOLF with 2 buffers

Figure7: SegmentUtilization versusFractionof Segments.Disk utilization is 80%.

0

2

4

6

8

10

12

14

16

INS RES HARP SITAR TPC-D Uni SFiles HotCold

Fi
le

 W
rit

e
R

es
po

ns
e

Ti
m

e(
m

s)

¿

(a) Average File Write Response Time

LFS
WOLF

errorbar

(b) I/O Write Performance of WOLF versus LFS

0

5

10

15

20

25

30

35

40

INS RES Harp Sitar TPC-D Uniform Small
Files

Hot-Cold

Im
pr

ov
em

en
t(%

)

Figure8: AverageFile Write ResponseTime. Errorbarshows thestandarddeviation. Disk utilization is 90%.

0

2

4

6

8

10

12

14

16

INS RES HARP SITAR TPC-D Uni SFiles HotCold

Fi
le

 R
ea

d
R

es
po

ns
e

Ti
m

e(
m

s)

¿

(a) Average File Read Response Time

LFS
WOLF

errorbar

(b) I/O Read Performance of WOLF versus LFS

-4

-2

0

2

4

6

8

INS RES Harp Sitar TPC-D Uniform Small Files Hot-Cold

Im
pr

ov
em

en
t(%

)

Figure9: AverageFile ReadResponseTime. Errorbarshows thestandarddeviation. Disk utilization is 90%.

