WOLF-A Novel Reordering Write Buffer to Boostthe Performance of Log-Structured File
Systems

JunWangandYiming Hu
Departmenbf Electrical & ComputerEngineeringand ComputerScience
University of Cincinnati
Cincinnati,OH 45221-0030
e-mail: {wangjun,yhu} @ececs.uc.edu

Abstract

This paper presentshe design,simulationand perfor-
mance evaluation of a novel reordering write buffer
for Log-structued File SystemgLFS). While LFS pro-
videsgoodwrite performanceor smallfiles, its biggest
problemis the high overheadfrom cleaning Previous
reseach concentated on improving the cleaners effi-
ciencyafter files are written to the disk. e proposea
new methodhatreducegheamountof work the cleaner
hasto do before the data reachesthe disk. Our design
sortsactive and inactive data in memoryinto different
segmentbuffers and then writes themto different disk
segments.This approad forcesdata on the diskinto a
bimodaldistribution. Mostdatain active segmentsare
quickly invalidated,while inactive segmentsare mostly
intact. Simulationresultsbasedon bothreal-worldand
synthetidracesshowthat sud a reorderingwrite buffer
dramatically reducesthe cleaning overhead, slashing
the systens overall write costby up to 53%.

1 Intr oduction

Disk I/O is a major performancebottleneckin mod-
ern computersystems. The Log-structuredFile Sys-
tem (LFS) [12, 15, 16] triesto improve the I/O perfor
manceby combiningsmallwrite requesténto largelogs.
While LFS can significantly improve the performance
for small-write dominatedworkloads,it suffers from a
major drawvback, namely the garbage collection over
heador cleaningoverhead LFS hasto constantlyre-
organizethe dataon the disk, througha processcalled
garbage collectionor cleaning to make spacefor new
data. Previous studieshave shovn thatthe garbagecol-
lection overheadcan considerablyreducethe LFS per
formanceunderheary workloads. Seltzeretal. [17]
pointedout that cleaningoverheadreduced FS perfor

manceby more than 33% when the disk is 50% full.
Dueto this significantproblem,LFS haslimited success
in real-world operatingsystemernvironments,although
it is usedinternally by several RAID (Redundanfrray
of Inexpensve Disks) systemdq20, 10]. Thereforeit is
importantto reducethe garbagecollection overheadn
orderto improve the performanceof theseRAID sys-
temsandto make LFS moresuccessfuin the operating
systenfield.

Severalscheme$ave beenproposed?9, 20] to speedup
the garbagecollection process.Thesealgorithmsfocus
on improving the efficiency of garbagecollection after
datahasbeenwritten to the disk. In this paper we pro-
posea novel methodthat tries to reducethe I/O over-

headduringthe garbagecollection,by reomganizingdata
in two or moresegmentbuffers,before datais writtento

thedisk.

1.1 Motivation

Figure 1 shows the typical writing processin an LFS.
Data blocks and inode blocks are first assembledn a
segmentbuffer to form a largelog. Whenthe sgment
buffer is full, the entire buffer is written to a disk seg-
mentin asinglelargediskwrite. If LFShassynchronous
operation®r if dirty datain thelog have notbeenwritten
for 30 secondspartially full segmentswill bewrittento
the disk. Whensomeof thefiles areupdatedor deleted
later, the previous blocksof thatfile on the disk arein-
validatedcorrespondinglyTheseinvalidatedblocksbe-
comeholesin disk segmentsand have to be reclaimed
by thegarbagecollectionprocess.

The problemwith LFS is thatthe systemdoesnot dis-
tinguish active data (namelyshort-lived data)from in-
activedata (namelylong-liveddata)in the write buffer.
Dataaresimply groupednto asegmentbuffer randomly
mostlyaccordingo theirarrival order Thebufferisthen

(1) Data blocks first enter a Segment Buﬁm
Data Buff

Empty block Valid data block Invalidated blocl
(garbage hole)

(2) Buffer written to disk when full (Shown two newly written segments here)
Disk

(3) After a while, many blocks in segments are invalidated,
leaving holes and require garbage collection

Disk

Figurel: Thewriting procesof LFS

writtento a disk segmentwhenit is full. Within the seg-
ment,however, somedataareactive andwill be quickly
overwritten (thereforeinvalidated),while othersarein-
active andwill remainon the disk for a relatively long
period. The resultis that the garbagecollector hasto
compactthe segmentto eliminatethe holesin orderto
reclaimthedisk space.

1.2 Our New Scheme

Basedon this obsenation, we proposea nev method
called WOLF (reordering Write buffer Of Log-

structuredFile system)that candramaticallyreducethe

garbagecollectionoverhead.Insteadof usingone seg-

mentbuffer, we usetwo or more segmentbuffers(here
is two), asshawn in Figure2. Whenwrite dataarrives,
the systemsortsthem into different buffers according
to their expectedlongevity. Active dataare grouped
into one buffer, while less-actie dataare groupedinto

the otherbuffer. Whenthe buffers arefull, two buffers
arewritten into two disk segmentsusingtwo large disk

writes (onewrite for eachbuffer).

Becauselataaresortedinto active andinactive sggments
befole reachingthe disk, garbagecollectionoverheads
drasticallyreduced. Since active dataare groupedto-
gether most of an active segmentwill be quickly in-
validated(sometimesghe entire segmentwill be invali-
dated,andthe segmentcanbe reusedright away with-
out garbagecollection). On the other hand, very few
datablocksin an inactive segmentwill be invalidated,
resultingin few holes. The outcomeis thatdataon the
disk have a bimodal distribution, namelysegmentsare
eithermostly full or mostly empty Similar to Rosen-
blum andOusterhous analysig15], thisis anidealssit-
uation. In a bimodaldistribution, segmentstendto be

(1) Data blocks first enter one of two buffers I
based on expected activities Valid inactive block Invalidated block

Buffer2 D

Empty block Valid active block

Data Bufferl

Disk

(3) After a while, most blocks in active segments are invalidated,
while most in the inactive segments are intact

Disk

Figure2: Our new scheme—-\VOLF

nearlyemptyor nearlyfull, but few sggmentsarein be-
tween. The cleanercanselectmary nearlyempty seg-

mentsto cleanandcompactheir datainto a smallnum-
ber of sggments. The old sggmentsarethenfreed, re-

sulting in a large numberof available empty segments
for future use. Furthermorethereis no needto waste
timeto cleanthe nearly-full segments.

Basically while previous researchersagreedthat the
cleanerplays one of the mostimportantrolesin LFS,
their work focusedonly on makingthe cleanermore ef-
ficientafter dataarewritten onto the disk. We believe
thatthereexistsanotheropportunityto improvethe LFS
performanceBy re-oiganizingdatain RAM beforethey
reachthe disk, we could also male the systendo less
garbage collectionwork. TraditionalLFS did try to sep-
arateactive datafrom inactive dataandforce a bimodal
distribution, but only during the garbagecollection pe-
riod, long after files are written to the disk. Our sim-
ulation shaws that significantperformancegain canbe
obtainedby applyingour nev method.

1.3 File Accesslocality

Accuratepredictionof which blockswill beinvalidated
soonis thekey to thesucces®f our strateyy. We looked
at both the temporaland spatiallocality of file access-
ing patterns. File systemaccesseshowv strongtempo-
ral locality: mary files are overwrittenagainandagain
in a short period of time. For example, Hartmanand
Ousterhouf7] pointedoutthat36%—63%of datawould
be overwrittenwithin 30 secondsaind 60%—95%within
1000secondsn thesystenthey measuredln year2000,
Rosellietal. [14] pointedout thatfile accessesbey a
bimodal distribution pattern: somefiles arewritten re-
peatedlywithoutbeingread;otherfilesarealmostexclu-

sively read.Datathathave beenactively written, should
beputinto active segmentsandothersinto inactive seg-
ments.

File systemaccessealsoshow strongspatiallocality, as
mary datablocks are accessedogether For example,
datablocksof onefile arelikely to be changedogether
Similarly, whenafile blockis modified,theinodeof the

file, togethemith thedatablocksandtheinodeof thedi-

rectorycontainingthefile, arealsolikely to be updated.
Theseblocksshouldthereforebegroupedogetheiin se-
manticssuchthat whenoneblock is invalidated,all or

most other blocksin the samesggmentwill be invali-

datedalso.

1.4 RelatedWork

Many papershave tried to improve the LFS perfor
mancesincethe publicationof SpriteLFS [15]. Seltzer
[16] presentednimplementatiorof LFS for BSD. Sev-
eral new cleaning policies have also been presented
[2, 20, 9]. In traditionalcleaningpolicies[15], includ-
ing greedy cleaning and benefit-to-costcleaning the
live blocksin severalpartially emptysegmentsarecom-
binedto producea new full segment, freeing the old
partially empty segmentsfor reuse.Thesepoliciesper
form well whenthedisk spaceutilizationis low. Wilkes
etal. [20] proposedhe hole-pluggingpolicy. In their
scheme partially empty segmentsare freed by writing
their live blocksinto the holesfoundin othersegments.
Despitethe higher cost per block, at high disk utiliza-
tions, hole-pluggingdoesbetterthan traditional clean-
ing becausdt avoidsprocessingomary sggments.Re-
cently, Matthews et al. [9] shoved how adaptie algo-
rithmscanbeusedto enablel FSto provide high perfor
manceacrossa wider rangeof workloads. Thesealgo-
rithms,whichusehybrid policiesof theabovetwo meth-
ods,improvedwrite performancéy modifying the LFS
cleaningpolicy to adaptto the changesn disk utiliza-
tion. Thesystermrswitchego adifferentmethodbasecn
the cost-benefiestimates.They alsousedcacheddata
to lower cleaningcosts. Blackwell et al. [2] presented
a heuristiccleaningto run without interferingwith nor-
mal file access. They found that 97% of cleaningon
the mostheaily loadedsystemwas donein the back-
ground. We proposeda schemecalled PROFS which
incorporateghe knowledgeof Zone-Bit-Recordingnto
LFSto improve boththe readandwrite performancelt
reomganizeslataon thedisk during LFS garbagecollec-
tion and systemidle period. By putting active datain
the fasterzonesandinactive datain the slower zones,
PROFS can achieve much betterperformanceor both

readsandwrites[19]. Lumb etal. applieda new tech-

nigue called freeblockschedulingto the LFS cleaning
process.They claimedan LFS file systemcould main-

tain ideal write performancewhen cleaningoverheads
would otherwisereduceperformanceby up to a factor

of three[13].

In this paper our stratgy hasa distinctive difference
comparedwith above methods:WOLF works with the
initial writes in the reorderingwrite buffers which re-

duce the cleaningoverheadbefore writes go to disk.

This schemdfinds a new “free” time to solve the same
garbagecollectionproblemfor LFS. WOLF canbeeas-
ily combinedwith otherstratgiesto improve LFS per

formance.More importantly it helpsLFS provide high

performancevenin heary loadsandfull disks.

Severalresearcherried to improve thefile systemper
formancewithout usingLFS. Gangerand Patt [4] pro-
poseda methodcalled “Soft Updates”that can elim-
inate the needsof 95% of synchronouswrites. File
systemperformancecan be significantly improved be-
causemost writes becomeasynchronousand can be
cachedin RAM. Hu et al. proposedhe Disk Caching
Disk [8, 11] which can improve the performanceof
bothsynchronousindasynchronousvrites. WOLF and
Soft-Updatesare complementanapproachesThe lat-
ter improvesdisk schedulingin traditionalfile systems
through aggressie caching, while WOLF addresses
whatto do in write cachingbeforethe datago to me-
dia.

Theremaindeiof the paperis organizedasfollows. Sec-
tion 2 describesour designof WOLF. Section3 de-
scribesour experimentaimethodology Sectiond4 shavs
the simulationresultsand analysis. Section5 summa-
rizesour new stratey.

2 The Designof WOLF

2.1 Writing

After thefile systenrecevesawrite requestWOLF de-
cidesif therequestedlatais active or inactive and puts
the write datainto one of the sggmentbuffers accord-
ingly. (We discusshow to do thisin Section2.2.) Old
datain a disk segmentwill alsobeinvalidated.There-
guestis thenconsideredtomplete.

Whenthewrite buffersarefull, all buffersarewrittento

disksggmentsn largewrite requestsn orderto amortize
the costof mary small writes. Since WOLF contains
severalsggmentbuffersandeachbuffer is writteninto a
differentdisk sggment,severallargewritesoccurduring
theprocesgonelargewrite for eachbuffer).

As in the LFS, WOLF also writes buffers to the disk
whenone of the following conditionsis satisfied,even
whenthe buffersarenotfull:

e A buffer containamodificationsghataremorethan
30secondld.

e A fsyncor syncoccurs

Sincethe LFS usesa single segment buffer, when a
buffer write is invoked, only one large write is issued.
WOLF maintainstwo or more segment buffers. To

simplify the crashrecovery procesy discussedn Sec-
tion 2.3), when WOLF hasto write datato the disk, all

segmentbuffersin RAM will be written (logged)to the
disk at the sametime. While the logging processcon-
tainsseverallarge disk write operationssinceeachseg-

mentbufferis writtento adifferentdisk segment WOLF

considersthe log operationatomic A logging is con-
sideredsuccessfubnly if all segmentbuffers are suc-
cessfullywritten to thedisk. Theatomicloggingfeature
meanghatwe canview the multiple physicalsegments
of WOLF asasinglevirtual segment

The atomicwriting of multiple segmentscan easily be
achiered with a timestamp. All segmentswritten to-
gethewill havethesamdimestammndthesaménum-
berof sggmentswrittentogether’field. During crashre-
covery, the systemsearchedor the segmentswith the
latesttimestamp. If the numberof segmentswith the
samdatesttimestampmatcheghe“numberof segments
written together”field, thenthe systemknows that the
lastlog-writing operationwassuccessful.

2.2 SeparatingActive and Inactive data

Oneof theimportantproblemsn thedesignof WOLF is
how to find an efficient and easy-to-implementnethod
that canseparateactive datafrom inactive dataand put
theminto differentbuffersaccordingly

2.2.1 An Adaptive Grouping Algorithm

We developeda heuristiclearning methodfor WOLF.
Thetrackingprocessmplementsavariationof theleast-
recently used algorithm with frequeng information.
Our algorithmis similar to virtual memorypage-aging
techniques.

To capturethe temporallocality of file accessesgach
block in the sggmentbuffers hasa referencecountas-
sociatedwith it. This numberis incrementedvhenthe
block is accessed.The countis initialized to zeroand
is alsoresetto zerowhenthe file systembecomesdle
for a certainperiod. We call this periodastime-bar. It
is initialized to 10 minutes. If the ageof this block ex-
ceedscurrenttime-bar WOLF will resetthe reference
countof this block to zero. WOLF only doesthis zero
clearingin write buffers. The value of the countindi-
catesthe active level of the block in mostrecentactive
period, which startssincethe time-bar The higherthe
valueof the count,themoreactive ablockis. The Time-
bar could be adaptvely tunedfor the variousincoming
accessesNhenthesystemdentifiesthatthereis nosig-
nificantdifferenceamongthe blocks’ active ratiosin the
reorderbuffers, which meanghe 90% referencecounts
of blocksareequal thetime-barwill bedoubled.If most
blocks have too differentactive ratios,whenonly 10%
referencecountsof blocks are equal, the time-barwill
be halved. The Time-barmakesthe reorderingbuffers
work heuristicallyfor differentworkloads. Active data
arethenputinto theactive segmentbuffer, andotherdata
in theinactive buffer.

If two blockshave the samereferencecounts thenspa-
tial locality is consideredf the two blockssatisfyone
of the following conditions,they will be groupedinto
the samesegmentbuffer:

o If thetwo blocksbelongto the saméfile.

¢ If thetwo blocksbelongto filesin the samedirec-
tory.

If noneof the above conditionsis true, the blocks are
randomlyputinto buffers.

The overheadof this learningmethodis low. Most ac-
tive blocks have no morethana hundredaccesse a
short period. Only a small amountof additional bits

For different workloads, this thresholdmay be different. We
choosehis valuefor mostworkloads.This thresholdvorkswell when
active datalive lessthan10 minutesandinactive datalivesmorethan
10 minutes

areneededor eachblock. Time-baris managedy the
reorderingbuffer managemith little overhead.WOLF
only resetghereferencecountin thereorderingouffers.

2.2.2 DatalLifetimes

In order to choosethe proper thresholdfor different
workloads,we calculatethe byte lifetime by subtract-
ing the byte’s deletiontime from its creationtime. This
“deletion-based'methodwas usedby [1] in which all
deletedfiles aretracked. For consideringthe effectsof
overwrites, we measuredyte lifetime ratherthan file
lifetime. Figure 3 tells the byte lifetime of four real-
world workloadsin details(theséraceswill bedescribed
in section3.2.1).

100

90

80 -

70

60

50

40

30

Cumulative Percentage of Bytes

0 Il Il Il Il Il
5min10min lhour 1lday

Byte Lifetime

10days

Figure3: Byte Lifetime of Four Real-world Workloads

Fromthe picture,we canseethe active datas lifetimes
shows variousbehaiors in differentworkloads. More
than70% of thedatain INS andSitartraceshave a life-
time lessthan 10 minutes. Around 35% of the datain
RESand Harp traceshave a lifetime lessthan 10 min-
utes. Sincethe lifetime of active datavariesin differ-
ent workloads,it is necessaryo develop this adaptve
groupingalgorithmto separateactive dataandinactive
datafor differentworkloads.

2.3 Consistencyand Crash Recovery

In additionalto LFS’ high performanceanotherimpor-
tantadvantageof LFS is fastcrashrecovery. LFS uses
checkpointsand maintainsthe order of updatesin the
log format. After acrash thesystenmonly hasto roll for-
ward, readingeachpartial segmentfrom themostrecent
checkpointto the end of the log in write order, which

involvesincorporatingary modificationsthat occurred.
Thusthereis no needto performa time-consumingob
like fsck.

In WOLF, datain memoryare re-groupednto two or
moresegmentbuffersandlaterwritteninto two or more
disk segments. As a result, the original orderinginfor-
mationmay belost. To keepthe crashrecovery process
simple,WOLF emplogysthefollowing strateyies:

1. While datablocksarereorderedy WOLF to im-
provetheperformancetheir original arrival order
ing informationis keptin adatastructureandwrit-
tento thediskin thesummaryblock togethemwith
eachsegment.

2. While WOLF maintainstwo or more segment
buffers, its atomic logging feature (discussedn
Section2.1) meansthat thesemultiple physical
bufferscanbeviewedasa singlevirtual segment

Since WOLF maintainsonly a single virtual segment
which is loggedatomically and the information about
original arrival ordersof datablocksin the virtual seg-
mentis presered,crashrecovery in is nearlyassimple
asin LFS.

2.4 Reading

WOLF only changeghe write cachestructuresof LFS.
Thereadoperationsarenot affected.As aresult,we ex-
pectthatWOLF hassimilar readperformancesthat of
LFSwhenthesystemis lightly loaded.Whenthesystem
is heavily loaded WOLF shouldhave betterreadperfor-
mancebecausef its more efficient garbagecollection
processhatreduceshe competitionfor disk bandwidth.

2.5 GarbageCollection

WOLF doesnot completelyeliminate garbage there-
fore garbagecollectionis still needed.Benefit-to-Cost
cleaningalgorithmworkswell in mostcaseswhile hole-
pluggingpolicy works well whenthe disk segmentuti-
lization is very high. Since previous researchshovs
that a single cleaningalgorithmis unlikely to perform
equally well for all kinds of workloads, we usedan
adaptve approachsimilar to the Matthevs’ method[9].
This policy automaticallyselectseither the benefit-to-
costcleaneror the hole-plugying methoddependingon
the cost-benefiestimates.

In WOLF, the cleanerrunswhenthe systemis idle or

disk utilization exceedsa high watermark In our sim-
ulation, the high watermarkis when80% of the disk is

full, andidle is definedasthe file systemhasno activ-

ities in 5 minutes. The amountof datathatthe cleaner
may processat onetime canbevaried.In this paperwe
allowedthecleanerto procesaupto 20 MB atonetime.

To calculatethe benefitand overheadof garagecollec-
tion, we usedthe following mathematicainodel. These
formulawere developedby Matthews etal. (Seemore
detailsin [9]).

Thebenefit-to-costatio is definedasfollows:

benefit (1 —utilization) * age of segment
(1 + utilization)

cost

Here utilization representshe ratio of the live bytesto

one sggmentsize. Specifically the cost-benefivalues
of cleaningandhole-pluggingpoliciesarecalculatedas
follows:

Trans ferTimecicaning
SpaceFreedcieaning

CostBenefitcieaning =

Trans ferTimepiugging
SpaceF'reedpiugging

CostBene fitprygging =

The adaptie policy always picks up segmentswith the
lower Cost-Benefitestimateso clean. Segmentswith
more garbage(hencevery low segmentutilization and
high benefit-to-costatios) will be cleanedfirst. Older
segmentswill alsobe cleanedfirst, asdatain younger
segmentswill have a betterchanceto be invalidatedin
thefuture.

BecauseWOLF's buffer managerseparatesthe ac-
tive datafrom inactive datawhich leadsto a bimodal
disk sgmentlayout, both the benefit-to-costand hole-
pluggingmethodscanbenefitfrom this nice layout. For
benefit-to-costsince most active sggmentsare mostly
garbage(hencevery low utilization), their benefit-to-
cost ratios are very high. These sggmentswill be
cleanedfirst to yield mary blank segments. For hole-
plugging, when the adaptve cleanerswitchesto this
method(which will tendto occurin very high disk uti-

lization), cleanemusesheleastutilized segmentsto plug

the holesin the mostutilized sggments. WOLF simply
readsthe few remaininglive bytesfrom an active disk
segmentandplug theminto thefew availableslotsof an
inactive disk sggment(very high segmentutilization).

3 Experimental Methodology

We usedtrace-driensimulationexperimentdo evaluate
theeffectivenes®f our proposediew design.Bothreal-
world and synthetictracesare usedduring simulation.
In orderto make our experimentsandsimulationresults
morecorvincing, we usefour differentreal-world traces
andfour synthetictracesin the comprehensie covering
fields.

3.1 The Simulators

The WOLF simulatorcontainsmorethan8,000lines of
C++code.lt consistof anLFS simulator which actsas
afile systempontop of adisk simulator Thedisk model
is portedfrom Gangers disk simulator[5]. Our LFS
simulatoris developedbasedon Sprite LFS. We ported
theLFS codefrom the SpriteLFS kerneldistributionand
implementeda trace-drven classto accepttracefiles.
By changinga configurationfile, we can vary impor-
tantparametersuchasthe numberof sggmentbuffers,
the sggmentsizeandthereadcachesize. In the simula-
tor, datais channelednto the log throughsereral write
buffers. The write buffers areflushedevery 30 seconds
of simulatedtime to capturethe impactof partial seg-
mentwrites. A seggmentusagetableis implementedo
maintainthe statusof disk segments. Meta-datastruc-
turesincluding summaryblock andinode maparealso
developed.We built a checkpointdatastructureto save
blocks of inode map and segmentusagetable periodi-
cally.

The disk performance characteristics are set in
Disksim’s config files. We chosetwo disks for test-
ing, a small (1GB capacity)HP2247Adisk anda large
(9.1GB) QuantumAtlas10K disk. The smallHP2247A
was usedfor Sitar and Harp traces, becausehe two
traceshave smalldata-setgtotal dataaccessee: 1GB).
A smalldisk is neededn orderto obsene the garbage
collectionactiities. Thelargediskwasusedfor all other
traces. Using two very differentdisks also helpsus to
investigateheimpactsof disk featuredik e capacityand
speednWOLF performanceTheHP2247Adisk’ spin-
dle speedis setto 5400 RPM. The read-channeband-
width is 5 MB/sec.Its averageaccessimeis 15ms. The
QuantumAtlas10Khasa 10024RPM spindlespeedlts
read-channebandwidthis 60 MB/sec and averageac-
cesgimeis 6 ms.

3.2 Workload Models

The purposeof our experimentds to conductacompre-
hensveandunbiasegerformancetudyof theproposed
schemeandcomparetheresultswith thatof unmodified
LFS. We paid specialattentionto selectthe traces.Our

main objective wasto selecttracesthat matchasclose
to realisticworkloadsaspossible.At the sametime, we

alsowantedto cover aswide arangeof ervironmentsas

possible. The tracefiles that have beenselectedn this

paperarediscussedbelow.

3.2.1 Real-world Traces

Fourreal-world file systentraceswve usedn oursimula-
tion. We got two setsof real-life tracesfrom two differ-
entuniversitieso validateourresults.Two of themcame
from University of California, Berkeley, calledINS and
RES [14]. INS camefrom a collectionfrom a group
consistingof 20 machinedocatedin labsfor undegrad-
uate classes. RES was attainedfrom 13 desktopma-
chinesof aresearctyroup.INS andRES wererecorded
over1l12daysfrom Septembel996to Decembef996.
Both tracescamefrom their clustersrunning HP-UX
9.05. The other setof two traces,from University of
Kentuclky, containall disk activities on two SunOS4.1
machinegiuringtendaysfor Sitar traceandsevendays
for Harp trace[q. Sitar tracerepresentan office envi-
ronmentwhile Har p reflectscommonprogramdevelop-
mentactiities. More specifically Sitar traceis acollec-
tion of file accesseby graduatestudentsandprofessors
doingwork suchasemailing,compilingprogramsyun-
ning LaTeX, editingfiles, andsoon. Harp traceshavs
a collaborationof two graduatestudentsworking on a
singlemultimediaapplication.BecauseSitar andHarp
have a smallamountdata,we usethe smalldisk model
with thesetwo real-world traces. Notice in the experi-
mentswe expandSitarandHarpby appendindileswith
sameaccesgatternin original tracesbut with different
file namesn orderto explorethe systembehavior under
differentdisk utilizations. For large traceswith more
than10GBdatatraffic, we do not usethis procedure.

Thesereal-world tracesare describedn more detail in
Table 1.

3.2.2 Synthetic Traces

While real-world traceggive arealisticrepresentatioof
somereal systemssynthetictraceshave the advantage

of isolating specificbehaviors not clearly expressedn
recordedtraces. We thereforealso generateda set of
synthetictraces. We variedthe trace characteristicas
muchaspossiblein orderto cover a very wide rangeof
differentworkloads.

We generatedhefollowing four setsof synthetictraces:

1. Uniform Pattern(Uniform)

Eachfile hasequallik elihoodof beingselected.

2. Hot-and-coldPattern(Hot-cold)

Filesaredividedinto two groups.Onegroupcon-
tains10%of files; it is calledhotgroupbecausés
files arevisited 90% of thetime. The othergroup
is calledcold; it contains90% of thefiles but they
arevisited only 10% of the time. Within groups
eachfile is equallylikely to be visited. This ac-
cesspatternmodelsa simpleform of locality.

3. EphemeraBmallFile Regime (SmallFiles)

This suite containssmall files andtries to model
thebehaior of systemsuchastheelectroniamail

orthenetwork news systemsThesizesof filesare
limited from 1 KB to 1 MB. They arefrequently
createddeletedandupdated.Thedatalifetime of

this suiteis the shortesbnein this paper(90% of

bytelifetimesarelessthan5 minutes).

4. TransactiorProcessinguite(TPC-D)

Thistraceconsistof atypical TPC-Dbenchmark
which accesseswenty large size databasdiles
from 512 MB to 10 GB. The databasdiles con-
sistof thedifferentnumberof recordgangedrom
2,000,000to 40,000,000. Eachrecordis setto
100bytes.Mosttransactioroperationgarequeries
and updatesin this benchmark. The I/O access
patternis randomwrites followed by sequential
reads. Randomupdatesare appliedto the active
portionof the databaseAnd thensometimdater,
large sweepingyueriesreadrelationssequentially
[18]. This representshe typical /O behaior of
adecisionsupportdatabaseln this trace,we use
sequentiaffile readsto simulate1l7 SQL queries
for businesgjuestionsAs for implementingrT PC-
D updatefunctions,we generateandomwritesto
represenfollowing catayories: updating0.1% of
dataperquery insertingnew salesdatawith 0.1%
of tablesizeanddeletingold salesdataof 0.1%of
tablesize.

Features INS RES | SITAR HARP | Uniform | Hot-cold | TPC-D | SmallFS
Dataread(MB) 94619 | 52743 213 520 8000 8000 8000 8000
Datawrite(MB) 16804 | 14105 183 249 8000 8000 4000 8000
Read:Writeratio 5.6 3.7 1.16 2.08 1.0 1.0 2.0 1.0
Reads(thousands) 71849 | 9433 57 26 800 800 800 4000
Writes(thousands) 4650 2216 49 12 800 800 400 4000
File Sizek 16KB) 82.8% | 63% 80% 73 80% 80% 0% 95%
File Size(16KB-1MB) | 16.9% | 36.5% | 19.96% | 26.98% | 19.95% | 19.95% 0% 5%
File Size(1MB+) 0.2% | 0.5% | 0.04% | 0.02% 0.05% 0.05% 100% 0%

Tablel: Fourreal-world tracesandFour synthetictraces

The otherinformationof thesefour synthetictracescan
beseenin Tablel.

4 Simulation Results and Performance
Analysis

In orderto understandhe insight effect of WOLF, we

compareour designwith the most recentLFS using
adaptve methodwhich is the baselinesystem.Therea-
sonis that we want to explore the effect with our re-

orderingwrite buffers ratherthanthe adaptve cleaning
policy. Thereforetwo comparedsystemaisethe same
adaptve garbagecleaningstrateyy. In experimentssys-
tem automatically selectseither benefit-to-costor the

hole-plugying dependingon the cost-benefiestimates.
WOLF separatesctive datafrom cold datato gener

ate active/inactve segmentsin initial writes. The dif-

ferentdisk layoutsin two systemdeadto differentper

formance.

In our experimentsof this paper we set several de-
fault parametersinlessspecified:a 64 MB readcache,
eachdisk sggmentis 256KB andeachsegmentbuffer is

256KB.

4.1 Overall Write Cost

Write costis the metrictraditionally usedin evaluating
LFS write performance.It only considerghe effect of
the numberof sggments. Matthews et al. pointedout
segmentsizealsoplaysalargerrole in thewrite perfor
mance.They describeda way to quantify this trade-of
betweeramortizingdisk accessime acrosdargertrans-
fer units andreducingcleaneroverhead:Oveiall Write
Cost which capturesboth the overheadof cleaningas
well asthe bandwidthdegradationcausedby seekand

rotationallateng of log writes[9].

In this papemwe usedthis new metric— overallwrite cost
to evaluateWOLF performanceThefollowing formula
areadaptedrom [9]:

First, two terms, write cost and TransferIneficiency
(briefly calledInef fx ser) aredefined:

Segments Trans ferred
WriteCost = g f Total

Segments TransferredyewpData

_ SegszewData + Segs-RClean + SQQSWClean
SegszewData

Here SegsWnewbData iS the total numberof segments
writtento thedisk causedy new data.SegsRcieqrn and
SegsWeiean arethetotalnumbersf sggmentseadand
written by the cleanerrespectiely. This termdescribes
theoverheadf cleaningprocess.

DiskBandwidth
Inef fxser = AccessTime x ISEZanawidth |
SegmentSize

Inef fx rer measurethebandwidthdegradationcaused
by seekandrotationaldelaysof log writes. AccessTme
representshe averagedisk accessime.

And finally,

Overall Write Cost = WriteCost x Inef fx fer

4.1.1 Performanceunder Differ ent Workloads

In orderto understandhow the WOLF andLFS perform
underdifferentworkloads,resultsfor the four synthetic
tracesand four real-world tracesare comparedn Fig-
ure4.

It is clearfrom the figure that the WOLF significantly
reduceghe overallwrite costcomparedo theLFS. The
new designreduceghe overall write costby up to 53%.
The overall write costis most reducedwhen the disk
spaceutilization is high. Whenthe disk becomesnore
full, the garbagecollectionis moreimportant. WOLF
plays the more importantrole in reducinggarbageon
thedisk.

Althoughthe eight traceshave differentcharacteristics,
we can seethat the performanceof WOLF is not sen-
sitive to the variationin workloads. This derivesfrom
our heuristicreomganizingalgorithm.Ontheotherhand,
LFS performsespeciallypoor for the TPC-D workload
becausef its randomupdatingbehaior. Thisis nota
surprise.Similar behavior wasobsenedby Seltzerand
Smithin [17]. WOLF, on the otherhand,significantly
reducesthe garbagecollection overheadso it still per
formswell underTPC-D.

4.1.2 Effects of the Number of SegmentBuffers
with Real-world Traces

Figure5 shavstheresultsof theoverallwrite costversus
disk utilization for the four real-world traces.We varied
the numberof sggmentbuffers of WOLF from 2 to 4.

We alsovariedthe segmentbuffer size of the LFS from

256 KB to 1024KB.

Increasingthe number of segment buffers in WOLF
would slightly reducethe overall write costbut doesnot
have a significantimpactonthe overall performance.

Thereasorwe studiedLFSwith differentsegmentbuffer
sizes,is to shaw thatthe performancegain of WOLF is
not dueto the increaseduffer numbers(hencethe in-
creasedotal buffer size). The separatedctive/inactve
datalayout on disk sggmentscontributesto the perfor
manceimprovement. In fact, for LFS, increasingthe
segmentbuffer sizesmay actually increasethe overall
write cost. This obsenationis consistentvith previous
studieq9, 15|

Note that becauseWOLF usesmore segment buffers
thanthe LFS does datamay stayin RAM longetr How-
ever, this doesnot posesa reliability problem. As dis-
cussedbefore,in WOLF, if the segmentbufferscontain
dataolder than 30 secondsthey will be flushedto the
disk, justasLFS.

4.1.3 Effects of Segment Sizes with Real-world
Traces

The size of the disk segmentis also a substantialfac-
tor on the performanceof both WOLF andLFS. If the
size of the disk segmentis too large, it would be a lit-
tle difficult to find enoughactive datato fill onesegment
andenoughinactive datafor anothersegment.Theresult
will be active dataandinactive dataare mixedtogether
in alarge sgment,resultingin poor garbagecollection
performanceThelimited disk bandwidthwill alsohave
anegativeimpactontheoverallwrite costwhenthe seg-
mentbuffer size exceedsa threshold. On the contrary
if the sggmentsizeis too small, the original benefitof
LFS, namelytakingthe advantageof largedisk transfer
is lost.

Figure 6 shows the simulationresultswith the overall
write costversusthe sizesof seggmentbuffers. We can
seethat for both WOLF and LFS, a sggmentbetween
256-1024KB is goodfor thesekind of workloads.

4.1.4 SegmentUtilization Distrib ution

In order to provide insights into understandingwhy
WOLF significantlyoutperformghe LFS, we alsocom-
paredthe segmentutilization distributionsof WOLF and
LFS. Sgmentutilization is calculatedby the total live
bytesin the sggmentdividedby the sizeof this segment.

Figure 7 shaws the distribution of segmentutilizations

underthefour real-world traces We canseetheobvious

bimodalsegmentdistributionin WOLF whencompared
to theLFS. Resultsfor otherworkloadsaresimilar. The

nice bimodaldistribution is the key to the performance
adwantageof WOLF overtheLFS.

4.2 Read/Write Latency

In previous discussion,we usedoverall write costas
the performancemetric. Overall write costis a direct
measurementf systemefficiengy. We have shovn that
WOLF performsencouraginglybetterthanLFS, asthe
formerhasmuchsmalleroverall write costthanthe lat-
ter.

However, end-usersvould be more interestedn user
measurablemetrics such as the accesslatencies[3].
Overallwrite costquantifieghe additionall/O overhead
whenLFS doesthe garbagecleaning. The LFS perfor

manceis very sensitve to this overhead.To seewhether
the low overall write costin WOLF canbetranslatedo

low accesdatencieswe alsomeasuredhe averagefile

read/writeresponsdimesin the file systemlevel. We

collectedthe total file read/writelatenciesand divided
the total numberof file reads/writegequests All these
resultsinclude the cleaningoverhead. The resultsare
presentedh this subsection.

4.2.1 Write Latencies

Figure 8(a) shows the file write performanceof LFS

and WOLF under eight traces. Figure 8(b) plots the

performancémprovementof WOLF over LFS. We can

seethat WOLF significantlyenhanceshe write perfor

manceby 27-35.5%,in terms of improved response
times. The lower overall write costin WOLF directly

leadsto a smallerwrite responsdime. The Hot-cold

traceachievzesthe bestimprovementbecausef its good

active behaior.

4.2.2 ReadPerformance

Figure9(a) shavs thefile readperformanceof LFS and
WOLF undereight traces. Figure 9(b) plots the per
formanceimprovementof WOLF over LFS. The re-
sults shawv that, for mosttraces,the readperformance
of WOLF is at leastcomparableto that of LFS. This
is expected,asWOLF doesnot directly affect the read
operationf LFS. Although WOLF changeghe physi-
callayoutondiskfor LFS, WOLF's groupingalgorithm
includesthe similar policy which is usedin locality-
groupingrules of regular LFS, suchthat files in same
directoryareputin samesggmentandetc, WOLF does
nothave muchimpactonthereadperformancavhenthe
loadis light. Whentheloadis heary, we may seea lit-
tle betterreadperformanceof WOLF thanthatof LFS
becauseNNOLF reducesthe cleaningoverheadso that
WOLF ameliorateghe competitionof disk bandwidth.
RES and TPC-D got little lossfor their more random
readsbecausaandomreadshave poor spatiallocality
which resultsin much longer disk seeksand rotations
duringgarbagecollection.

4.3 Implication of Different Disk Models

From the resultsof sections4.1 and 4.2, we can see
WOLF achievessignificantperformancegainsfor both

the small/slav andthe large/fastdisk models. The re-
sultssuggesthatthe disk characteristicglo not have a
directimpactonWOLF. While theabsolutgperformance
parametersayvary on differentdisk models the over-
all trendis clear: WOLF canmarkedly reducegarbage
collectionoverheadundermary differentworkloadson
differentdisk models.

5 Conclusionand Futur e Work

We have proposeda novel reorderingwrite buffer de-
sign called WOLF for the Log-structuredrile System.
WOLF improvesthedisk layoutby reorderingthe write
datain sggmentbuffers before writing datato the disk.
By utilizing an adaptve algorithm that separatesac-
tive datafrom inactive data, and taking advantagesof
file temporalandspatiallocalities,the reorderingbuffer
forcesactively-accessedatablocks into one hot seg-
mentandinactive datainto anothercold segment.Since
mostof theblocksin active segmentswill bequickly in-
validatedwhile mostblocksin inactive segmentswill be
left intact, dataon the disk form a good bimodaldistri-
bution. This bimodaldistribution significantlyreduces
thegarbagecollectionoverhead.

BecauseNVOLF works beforeinitial writes go to disk,
it can be integratedwith other stratgies smoothlyto
improve LFS performance By reducingcleaningover-
head WOLF ameliorateghe competitionof disk band-
width. Simulationexperimentdasedn awide rangeof
real-world andsyntheticworkloadsshawv thatour strat-
egy canreducethe overall write costby 53% andim-
prove write responsdime by 35.5%. The readperfor
manceis generallybetterthanor comparabldo theLFS.
Our schemestill guaranteegast crashrecovery, a key
adwantageof LFS.

We believethatour methodcansignificantlyimprovethe
performancef thoselO systemgsuchassomeRAIDS)
that usethe LFS technology It may alsoincreasethe
chanceof LFS successin the OS ervironmentslike
Linux. Moreover, sincelogging is a commonly used
technologyto improve the I/O performanceye believe
that our new schemewill have a broadimpacton high
performancd/O systemsaswell. We alsoplanto apply
this techniqueto othergeneralfile systemdike FFSin
thefuture.

Acknowledgments

This work is supportedin part by the National Sci-

enceFoundationCareerAward CCR-9984852and an
OhioBoardof RegentsComputeiScienceCollaboration
Grant. We would like to thank our shepherdRichard
Goldingfor his mary valuablesuggestion®n the final

versionof this paper We would alsolike to thankthe
anorymousreviewersfor their usefulcomments.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,

SHIRRIFF, K. W., AND OUSTERHOUT, J. K. Measure-
mentsof adistributedfile system.In Proceeding®f 13th
ACM Symposiunon Openting System®rinciples(Oct.

1991), Associationfor ComputingMachinerySIGOPS,
pp.198-212.

BLACKWELL, T., HARRIS, J., AND SELTZER, M.
Heuristic cleaningalgorithmsin log-structuredile sys-
tems. In Proceedingsof the 1995 USENIX Tech-
nical Confeence: January 16-20, 1995, New Or-
leans,Louisiana,USA(Berkelgy, CA, USA, Jan.1995),
USENIX AssociationEd.,USENIX, pp.277-288.

ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER,
M. Using lateng to evaluateinteractive systemperfor
mance.In Proceeding®f the 1996 Symposiunon Oper
ating SystenDesignand Implementation(Seattle, WA,
Oct.1996).

GANGER, G. R., AND PATT, Y. N. Metadataupdateper
formancein file systemsln USENIXSymposiunon Op-
erating SystenbesignandImplementatiofOSDI) (Nov.
1994),pp. 49-60.

GANGER, G. R., AND PATT, Y. N. Usingsystem-leel
modelsto evaluatel/O subsystentesigns.|EEE Trans-
actionson Computes 47, 6 (Junel998),667—678.

GRIFFIOEN, J., AND APPLETON, R. The design,im-
plementationandevaluationof a predictive cachingdfile
system.Tech.Rep.CS-264-96 Departmenbf Computer
ScienceUniversity of Kentucly, Junel996.

HARTMAN, J. H., AND OUSTERHOUT, J. K. letterto
theeditor Openmting SystemfKeview 27, 1 (1993),7-9.

Hu, Y., AND YANG, Q. DCD—disk cachingdisk: A
new approachfor boostingl/O performance. In Pro-
ceedingf the 23rd International Symposiunon Com-
puter Architectue (ISCA96) (Philadelphia,Pennsyla-
nia, May 1996),pp. 169-178.

MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M.,
WANG, R. Y., AND ANDERSON, T. E. Improving the
performanceof log-structuredile systemswith adaptve
methods. In SixteenthACM Symposiunon Opeiating
SystenPrinciples(SOSP97) (1997).

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

MENON, J. A performancecomparisonof RAID-5

andlog-structuredarrays. In Proceedingof the Fourth

IEEE International Symposiumon High Performance
DistributedComputing(Aug. 1995),pp. 167-178.

NIGHTINGALE, T., HU, Y., AND YANG, Q. Thedesign
andimplementatiorof DCD device driver for UNIX. In
Proceedingof the 1999 USENIXTednical Confeence
(Montergy, CA, Jan.1999),pp.295-308.

OUSTERHOUT, J., AND DouGLIS, F. Beatingthe I/O
bottleneck:A casefor log-structuredile systems.Tech.
Rep. UCB/CSD 88/467, Computer Science Division,
Electrical Engineeringand ComputerSciencesJniver
sity of Californiaat Berkeley, Berkeley, CA 94720,0ct.
1988.

R.LumMB, C., SCHINDLER, J., GANGER, G. R., AND
NAGLE, D. F. Towards higher disk head utilization:
Extracting free bandwidthfrom busy disk drives. In
Proceedingsf the 2000 Confeenceon Opemting Sys-
temDesignandImplementatiofOSDI)(SanDiego, Oct.
2000).

ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A
comparisorof file systemworkloads. In Proceedingof
the 2000USENIXConfeence(June2000).

ROSENBLUM, M., AND OUSTERHOUT, J. K. Thede-
signandimplementatiorof a log-structuredile system.
ACM Transactionson ComputerSystemslO, 1 (Feb
1992),26-52.

SELTZER, M., BosTic, K., McKusick, M. K., AND
STAELIN, C. An implementationof a log-structured
file systemfor UNIX. In Proceedingsof Winter 1993
USENIX(SanDiego, CA, Jan.1993),pp. 307-326.

SELTZER, M., SMITH, K. A., BALAKRISHNAN, H.,
CHANG, J., MCMAINS, S., AND PADMANABHAN, V.
File systemlogging versusclustering: A performance
comparison.In Proceedingof 1995USENIX(New Or-
leans,LA, Jan.1995),pp.249-264.

TRANSACTION PROCESSING PERFORMANCE COUN-
CiL. TPC benchmarkD standardspecification,April
1995. WatersideAssociatesfFremont,CA.

WANG, J., AND Hu, Y. Profs-performance-orientethta
reoiganizationfor log-structuredfile systemon multi-
zonedisks. In Proceedingsf the 9th Int'l Symposium
on Modeling Analysisand Simulationof Computerand
Telecommunicatioystems(MASCI3'2001)(2001).

WILKES, J., GOLDING, R., STAELIN, C., AND SUL-
LIVAN, T. The HP AutoRaid hierarchicalstoragesys-
tem.ACM Transaction®n ComputelSystem&4, 1 (Feb
1996),108-136.

overall write cost

overall write cost

overall write cost

overall write cost

(a) WOLF & LFS under INS

30

25 -

' LFs ———
WOLF -3¢

0 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization
(c) WOLF & LFS under Harp
30 T T T T
LFS —+—
WOLF ---5---
25 -

0 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization
(e) WOLF & LFS under Uniform
30 T T
LFS —+—
WOLF ------
25 -

0 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization
(9) WOLF & LFS under Small Files
30 T T T T T T
LFS —+—
WOLF ---5¢-—
25 E

L
0.4 05 0.6 0.7 0.8 0.9
disk utilization

overall write cost

overall write cost

overall write cost

overall write cost

(b) WOLF & LFS under RES

30

LFS ———
WOLF -3¢

30

L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization

(d) WOLF & LFS under Sitar

' LFs ———
WOLF -3¢

30

L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization

(f) WOLF & LFS under Hold-Cold

25 -

LFS ———
WOLF ¢

30

L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization

(h) WOLF & LFS under TPC-D

L L
0.3 0.4 05 0.6 0.7 0.8 0.9
disk utilization

Figure4: Overall Write-costversusDisk Utilization underdifferentworkloads.WOLF with 2 segmentbuffers.

overall write cost

overall write cost

overall write cost

overall write cost

(a) INS trace

25 T T T T
LFS with 256KB buffer
LFS with 512KB buffer
LFS with 1024KB buffer -
20 + WOLF with 2 segment buffers

15

10

WOLF with 3 segment buffers
WOLF with 4 segment buffers

o L L L L L L L L
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
disk utilization
(c) Harp trace
25 T T T T
LFS with 256KB buffer
LFS with 512KB buffer
LFS with 1024KB buffer -
20 + WOLF with 2 segment buffers

15

10

WOLF with 3 segment buffers
WOLF with 4 segment buffers

overall write cost

overall write cost

(b) RES trace

25 T T T T
LFS with 256KB buffer
LFS with 512KB buffer
LFS with 1024KB buffer ----
20 + WOLF with 2 segment buffers

15

10

WOLF with 3 segment buffers -
WOLF with 4 segment buffers

(
25

disk utilization

0.5 0.6

) Sitar trace

15

10

traditional LFS with 256KB buffer
traditional LFS with 512KB buffer
traditional LFS with 1024KB buffer ----

WOLF with 2 segment buffers
WOLF with 3 segment buffers
WOLF with 4 segment buffers

g

0 L L L L L L L L 0 1 L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
disk utilization disk utilization
Figure5: Overallwrite costversusDisk Utilization.
(a) INS trace (b) RES trace
45 T T T 45 T T T T
LFS —+— LFS —+—
40 WOLF with 2 segment buffers --->--- _| 40 WOLF with 2 segment buffers --->--- _|
WOLF with 3 segment buffers ----x-- WOLF with 3 segment buffers ----x---
WOLF with 4 segment buffers o

35

5 i
o L L L L L L L L
8k 16k 32k 64k 128k 256k 512k imM 2M amM
segment size
(c) Harp trace
45 T T T
LFS —+—
WOLF with 2 segment buffers --->---
40 WOLF with 3 segment buffers ----x--- 7]
WOLF with 4 segment buffers o

8k

128k 256k
segment size

512k

overall write cost

overall write cost

35 -

WOLF with 4 segment buffers o

5F -
o L L L L L L L L
8k 16k 32k 64k 128k 256k 512k imM 2M amM
segment size
(d) Sitar trace
45 T T T T
LFS —+—
40 L WOLF with 2 segment buffers --->---

WOLF with 3 segment buffers ----x--- 7]
WOLF with 4 segment buffers o

8k 16k 12

se

L
256k

L
8k
gment size

512k am

Figure6: Overall write costversusSegmentSizes.Disk utilization is 95%

(a) INS trace

(b) RES trace

0.025 T — T T
LFS with 256KB buffer —+—
WOLF wtih 2 buffers --->---
0.02 E
7 ’,’
0.015 i/ -
0.01
0.005
) L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
segment utilization
(d) Sitar trace
0.025 T — T T
LFS with 256KB buffer —+—
WOLF with 2 buffers --->---
0.02
x x
n iy
AN A
0.015 | [\ FA
\ FER
0.01 4 | / \
/ \ * \
X / \
0.005
0.1 0.2

0.4 0.5 0.6

segment utilization

0.7 0.8 0.9 1

Figure7: SgmentUtilization versusFractionof Seggments.Disk utilization is 80%.

(b) I/O Write Performance of WOLF versus LFS

0.025 T — T T
LFS with 256KB buffer —+—
WOLF wtih 2 buffers --->---
0.02 -
&2 &2
= =
g g
£ 0.015 S
D D
2 2
s s
= =
2 0.01 S
5] 5]
< <
[[
0.005
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
segment utilization
(c) Harp trace
0.025 T — T T
LFS with 256KB buffer —+—
x WOLF wtih 2 buffers --->---
0.02 |\ B
£ X ;o £
2 x / 2
£ 0.015 \ . g
D) ’ D
2] \ /]
s \ / s
= | / =
S o.o01 | % - S
=1 \ ; =1
< | / <
w \ / w
\
0.005 |
o _Xo
o I N e
0.1 0.2 0.3 0.4 0.5 0.6 1
segment utilization
(a) Average File Write Response Time
16 T
LFS 40
WOLF
14 |- errorbar * 35
@
E 12 - 30
£
E B Ly- =
'u_) 10 R g 257
o] ! s
k=3 i =3
8 8 ! 5§ 20 -
2 ! ! s
@ . ! | £ 15 |
R =+ | | 5 -
= | | | 1 |
! | | ! 10 4
g0 1 3 : 1
| | | 1 |
2 3 i | | i 7
| | | i !
o 1 1 1 i 1 o
INS RES HARP SITAR TPC-D Uni

SFiles HotCold

RES

Harp Sitar TPC-D Uniform Small

Files

Hot-Cold

Figure8: AverageFile Write Responsd&ime. Errorbarshavs the standardieviation. Disk utilization is 90%.

16

(a) Average File Read Response Time

14

12

10

File Read Response Time(ms)

[Fs
WOLF
errorbar +

T

INS RES

HARP SITAR TPC-D

Uni SFiles HotCold

(b) /O Read Performance of WOLF versus LFS.

I
L

Improvement(%)
N

Harp

Sitar Uniform Small Files Hot-Cold

Figure9: AveragerFile ReadResponsdime. Errorbarshowvs the standarddeviation. Disk utilization is 90%.

