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Abstract— To support latency sensitive traffic such as voice, network
providers can either use service differentiation to prioritize such traffic
or provision their network with enough bandwidth so that all traffic
meets the most stringent delay requirements. In the context of wide-
area Internet backbones, two factors make overprovisioning an attractive
approach. First, the high link speeds and large volumes of traffic make
service differentiation complex and potentially costly to deploy. Second,
given the degree of aggregation and resulting traffic characteristics, the
amount of overprovisioning necessary may not be very large. This study
develops a methodology to compute the amount of overprovisioning
required to support a given delay requirement. We first develop a model
for backbone traffic which is needed to compute the end-to-end delay
through the network. The model is validated using 331 one-hour traffic
measurements collected from the Sprint IP network. We then develop a
procedure which uses this model to find the amount of bandwidth needed
on each link in the network so that an end-to-end delay requirement is
satisfied. Applying this procedure to the Sprint network, we find that
satisfying end-to-end delay requirements as low as 3 ms requires only
15% extra bandwidth above the average data rate of the traffic.

I. INTRODUCTION

IP networks carry many types of traffic. Some traffic, such as
web and email, can tolerate long queuing delays which occur
during periods of network congestion. Other traffic, such as
voice, audio, and video, have unacceptable performance if long
delays are incurred. To provide low delay service for such appli-
cations, there are two basic approaches which can be used. One
option, known as service differentiation, is to give preferential
treatment to latency sensitive traffic. The second option, known
as bandwidth provisioning, is to provide sufficient bandwidth
so that all traffic meets the most stringent delay requirement.

In the context of IP backbone networks, two factors make
the bandwidth provisioning approach attractive. First, there are
costs associated with traffic differentiation. While some of this
cost is related to additional complexity required in network
routers, much of the cost is associated with the management and
operation of the network. Installers must be trained to configure
the traffic differentiation mechanisms when routers are installed
in the network and network operators must be trained to manage
the different traffic classes. Second, traffic differentiation may
not provide much benefit in backbone networks. Traffic in back-
bone networks is aggregated from many thousands of users. As
a result of the high degree of aggregation, as well as the low
packet transmission times (a 1500 byte packet takes only 5 µs to
transmit on a 2.5 Gb/s OC-48 link), it is expected that queuing
delays in backbone networks will be low, and therefore little

overprovisioning is required.
This paper investigates the amount of overprovisioining re-

quired in backbone networks. Using a set of 331 one-hour
traffic measurements from the Sprint IP network, we develop a
procedure to evaluate the amount of bandwidth needed on each
link in the network in order to meet a given delay requirement.

A. Bandwidth provisioning

Backbone IP networks provide high bandwidth connectivity
across a wide geographic area. A backbone network consists of
a set of nodes, known as Points-of-Presence (POPs), connected
by high speed links. For example, a backbone may have POPs
in New York, Chicago, and San Francisco connected by 10 Gb/s
links. Customers of the backbone ISP connect to the network at
one or more of the POPs.

Bandwidth provisioning is the process by which a backbone
ISP determines the amount of bandwidth needed on each of
the links in order to support a desired level of performance.
For real-time applications such as voice, a reasonable method
to specify this performance requirement is in terms of a prob-
abilistic delay requirement of the form P [d(i,j) > Dreq] < ε,
that is the probability that the delay between POP i and POP j
exceeds Dreq is less than ε.

It is important to emphasize that this delay requirement is
the same between all pairs of POPs and for all types of traffic.
Since traffic differentiation is not used, it is not possible to offer
one level of service to data traffic a higher level of service
to real-time traffic. It is also not possible to offer one level
of service to one customer and a second level of service to
another customer. All traffic receives the same service, and
this service must be sufficient to meet the needs of the most
stringent application. While this may seem inefficient, we will
see that supporting end-to-end queuing delay requirements as
low as 3 ms requires bandwidth only marginally greater than
the average traffic volume.

To provision the network, the network provider must know
the traffic demand between each pair of POPs, and the path
each of these traffic demands follows through the network.
These demands can be forecast using techniques such as [15].
With this information, the bandwidth required on each link is
found by solving a network optimization problem known as the
Capacity Assignment (CA) problem.



The CA problem has been solved for networks where the
traffic demands are modeled as a Poisson process and where
the objective is to minimize the average delay [11]. Using the
Kleinrock independence approximation and Jackson’s theorem
one can derive expressions for the average queuing delay. Given
an expression for the average delay, techniques such as La-
grangian relaxation are used to find the bandwidth assignment
which minimizes the total network cost, where cost is a function
of the bandwidth on each link in the network.

Our problem is different in several respects. First, we con-
sider probabilistic requirements rather than average delay re-
quirements. Second, the Poisson model has been shown to not
be an accurate model for actual network traffic [16], [20]. Third,
many solutions to the CA problem allow a link to have any
possible capacity. In an actual network, a the link capacity must
be selected from a discrete set (e.g. 155 Mb/s or 622 Mb/s).

In order to solve the CA problem, we therefore need:

• A realistic model for the traffic demand between POPs in
a backbone network.

• A method to assess end-to-end queuing delay using this
model.

• An procedure to find the bandwidth needed on each link in
order to meet the delay constraints.

We develop a model for backbone traffic by analyzing traffic
measurements from the Sprint IP backbone. We find that back-
bone traffic is significantly easier to model than traffic consid-
ered in prior studies such as [9], [8], and [17]. These studies
found that at time scales less than 100 ms, the distribution of the
traffic arrival process is quite complex. However, the average
traffic arrival rate of the measurements used in these studies was
between 100 kb/s and 10 Mb/s. We find that once traffic volume
reaches 50 Mb/s (and for some traffic between 5 Mb/s and 50
Mb/s), the distribution of the traffic arrival process becomes
Gaussian at small time scales and can be modeled using an
extension of Fractional Brownian Motion (FBM) [13]. We call
this model two-scale FBM.

We then develop a method to compute the end-to-end delay
through a network where all of traffic demands between POP
pairs are modeled using two-scale FBM. Using this method, we
develop an algorithm to find the bandwidth needed on each link
in the network so that the end-to-end delay delay requirement
is satisfied. The remainder of the paper is organized as follows.
Section II presents the two-scale FBM model and derives an
expression for the delay distribution for a queue fed by a two-
scale FBM process. Using the model we evaluate the maximum
utilization that may be achieved on a single link while meeting
a particular delay requirement. Section III presents the method
to compute the end-to-end delay through the network. Section
IV describes the algorithm to find the minimum cost network
and applies it to the Sprint network. Section V concludes and
discusses areas of future research.

II. TRAFFIC MODEL

In a backbone network, the traffic demand between a pair of
POPs is the aggregate of traffic from many individual users. In
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Fig. 1. Distribution of At/t for DEC-WRL-2

this section we develop a model for such aggregate traffic and
derive the delay distribution for a queue fed by such traffic.

The model must capture the characteristics of the traffic
which affect the queueing delay. We therefore begin by review-
ing the procedure used to compute queuing delay distributions.
Consider an infinite buffer queue with a constant bit rate server
of capacity C. Let A[s, t] be the amount of traffic that arrives
at the queue over the time interval (s, t], and let At = A[−t, 0].
The queue length at time 0 is

Q = sup
t≥0

(At − Ct)

and the probability that the queue length exceeds x is

P [Q > x] = P [sup
t≥0

(At − Ct) > x]

This expression is difficult to evaluate, so we use the lower
bound

P [sup
t≥0

(At − Ct) > x] ≥ sup
t≥0
P [At > x+ Ct] (1)

This may seem to be a rather crude approximation, but it has
been shown to be logarithmically accurate for large x [7].

The queueing delay experienced by a packet of size b bits is
the sum of the waiting time in the queue, xC , and the service
time of the packet, bC . The distribution of the waiting time,W ,
is found directly from the queue length distribution P (W >
d) = supt≥0 P (At > C(d + t)). We do not model the service
time distribution, as it is significantly smaller than the delay
bounds in which we are interested. On an OC-3 link (one of
the lowest speed backbone links), the transmission time of a
maximum size packet is only 80 µs.



Name Start time Average data rate

T1 Wed9Aug00 9:56am 74.6 Mb/s

T2 Wed9Aug00 9:56am 90.1 Mb/s

T3 Wed9Aug00 9:56am 56.8 Mb/s

T4 Wed5Sep01 10:00am 219 Mb/s

T5 Wed5Sep01 10:00am 103 Mb/s

T6 Wed5Sep01 10:00am 132 Mb/s

T7 Wed5Sep01 10:00am 171 Mb/s

T8 Wed5Sep01 10:00am 208 Mb/s

T9 Wed5Sep01 10:00am 179 Mb/s

TABLE I

TRACE DATA

A. Traffic Characteristics

From (1), the dominant characteristic which affects queuing
delay is the marginal distribution of the traffic arrival process A
at different time scales, t. Prior measurement studies have found
that at time scales greater than several hundred milliseconds the
distribution of At is approximately Gaussian, while for t less
than several hundred milliseconds the distribution ofAt is quite
complex [16], [20], [9].

To illustrate this point, we present results from a mea-
surement known as DEC-WRL-2, collected on DEC’s primary
Internet connection and used in [16]. To compute the marginal
distribution at time scale t, we divide the DEC-WRL-2 mea-
surement into non-overlapping blocks of size t and compute
the number of bits that arrive over each of these blocks (e.g.
we compute the number of bits that arrive over every 100 ms
time interval). Fig. 1 plots the empirical distribution of At

t at
100 ms and 10 ms time scales for DEC-WRL-21. At t = 100 ms,
the distribution appears approximately Gaussian, while at t =
10 ms the distribution is clearly non-Gaussian.

DEC-WRL-2 is an accurate representation for WAN back-
bone traffic as observed in the early 1990s. However, traffic
volume has substantially increased from the average rate of 267
kb/s observed in DEC-WRL-2. To investigate the characteristics
of high volume traffic, we make use of measurements from the
Sprint IP backbone network collected on 25 links in August
2000, July 2001, and September 2001. The set of links included
155 Mb/s OC-3 links and 622 Mb/s OC-12 links, and included
a variety of link types including links to peering points, links
to large web servers, links to large dial-up networks, and links
to large corporations. The measurements are one hour traces
which contain the arrival time, packet size, and first 40 bytes of
every packet transmitted on a link. The packet timestamps are
synchronized to a global GPS reference clock and are accurate
to within 5 µs. The complete set of measurements includes 331
traces. Table I gives the start time and average traffic volume for
nine of the traces considered in detail later in the paper. While
all 9 of these traces were collected at 10 am on a Wednesday,
the complete set of traces contains data from multiple days of

1We have plotted the distribution of the traffic rate (At/t) rather than the
distribution of the traffic volume (At) to normalize the x-axis.
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Fig. 2. Marginal distribution of traffic arrivals for trace T1

the week and every hour of the day.
Our goal is to model the traffic demand between two POPs in

a backbone network, which is slightly different than the traffic
observed in the measurements. The measurements were col-
lected from links within a single POP and represent a fraction
of the entire traffic demand between two POPs. However, both
the inter-POP traffic demands and these measurements are both
aggregates of a large number of individual user connections.
As a result, both are expected to exhibit the same character-
istics. Later in this paper we will confirm that increasing the
traffic volume to the range of inter-POP traffic demands does
not change the fundamental characteristics presented in this
section. We therefore present the traffic model by studying the
characteristics observed in a single trace.

We begin by studying the characteristics of trace T1. Fig. 2
plots the distribution of At for T1 at time scales of 100 ms, 10
ms, and 1 ms. At t = 100 ms it appears Gaussian with mean 74.7
Mb/s and variance 49.5 (Mb/s)2. This distribution is similar
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Fig. 3. Minimum time scale at which marginal distributions are Gaussian

to the distribution of DEC-WRL-2 at the 100 ms time scale. At
the 10 ms time scale, the T1 trace is much different from DEC-
WRL-2. Rather than exhibit a complex distribution similar to
that shown in Fig. 1(b), T1 appears Gaussian with mean 74.7
Mb/s and variance 178 (Mb/s)2. Even at a time scale of 1 ms,
T1 appears Gaussian with mean 74.7 Mb/s and variance 852
(Mb/s)2.

To determine if these distributions are in fact Gaussian, we
use a statistical test known as the Kolmogorov-Smirnov test
(K-S test) for normality [4]. Applying the K-S test to each
distribution confirms that they are consistent with a Gaussian
distribution. Repeating this process for time scales up to 60
seconds and down to 100 µs finds the distributions at these time
scales are also Gaussian. Below 100 µs the distributions are
quite complex, but we do not need to consider these since we
are interested in queuing delays on the order of milliseconds.

The reason for the difference between T1 and DEC-WRL-2
is that T1 is aggregated from a very large population of users.
The DEC-WRL-2 measurement and nearly all other traffic mea-
surements used in the prior studies, have average traffic volume
between several hundred kb/s and 2 Mb/s. This represents
traffic from a relatively small number of users (10,000 user
connections over a one hour period for the measurement used
in [20]). The T1 trace has an average traffic volume of 75 Mb/s,
and has nearly 5 million unique user connections.

A natural question to ask is: how much aggregation is needed
before the marginal distribution at small time scales becomes
Gaussian? We can investigate this by considering the complete
set of 331 one hour traffic measurements. For some of the
measurements (especially for those collected between 1:00 am
and 4:00 am), the average traffic arrival rate can reach as low
as 1 Mb/s. For other measurements collected during afternoon
hours on highly utilized links, the traffic volume can reach
almost 300 Mb/s. Using the K-S test, we can determine which
of these traces have Gaussian marginal distributions at small
time scales, and which have the more complex distributions.

More precisely, we compute the marginal distribution of the
traffic arrival process at time scales from 1 ms to 1 sec for
each of the traces. At each time scale we apply the K-S test
to determine if the distribution is Gaussian. For each trace we
find the smallest time scale at which the marginal distribution
is Gaussian.

Fig. 3 plots the minimum Gaussian time scale versus the

mean arrival rate of the traffic for each of the traces. We see
that for all but four traces with traffic volume greater than 50
Mb/s, the minimum time scale is between 1 ms and 8 ms. These
traces have characteristics very similar to those shown for T1.
Below 50 Mb/s there is much more variation. Two-thirds of the
traces with traffic volume between 5 Mb/s and 50 Mb/s have a
minimum Gaussian time scale between 1 ms and 64 ms, while
one-third exhibit distributions similar to those shown for the
DEC-WRL-2 measurement. For traces with traffic volume less
than 5 Mb/s, the marginal distributions are never Gaussian. All
of these low volume traffic measurements resemble the DEC-
WRL-2 traffic. This confirms the results of [9], which found that
for low volume traffic, the distribution at small time scales is
quite complex. However, as the traffic volume increases, these
distributions become much less complex. During the busy hour
of the day traffic volume on nearly all backbone links is greater
than 50 Mb/s and the distributions are expected to be Gaussian.

It should be noted that there are situations where 50 Mb/s
traffic will not have enough aggregation to use Gaussian mod-
els. Consider, for example, a link carrying three 20 Mb/s HDTV
video streams. The bandwidth guidelines we present are only
valid for the traffic with the same mix of user connections that
we see in today’s backbone. In particular, the traffic must be
aggregated from a large population of users, and the rate of an
individual user should be much less than the rate of the total
traffic aggregate.

Since a Gaussian distribution is fully specified by its mean
and variance, for backbone traffic it is sufficient to know the
mean and variance of At at each time scale t. The mean
remains the same for all time scales as seen from Fig. 2. The
variance, however, changes from one time scale to the next. The
relationship between the variance and time scale can be studied
using a technique known as the variance-time (VT) plot. This is
simply a plot of the variance versus the time scale t.

Before proceeding, it is important to note that prior studies,
such as [9], have demonstrated that the VT plot may not provide
much information about the structure of network traffic at
time scales less than 100 ms. The reason for this is that the
variance does not provide sufficient information to describe
a distribution similar to that shown in Fig. 1(b). For such
distributions one needs to know information about the higher
moments. From Fig. 2, however, we can see that for large traffic
aggregates the distribution at small time scales is Gaussian and
can therefore be fully described using only the mean and vari-
ance. The VT plot, therefore, provides enough information to
completely characterize the traffic arrival process for backbone
traffic. Later in this section we will address the statistical bias
that may be introduced by using the VT plot to estimate the
variance at small time scales.

Fig. 4 shows the VT plot for trace T1. The variance exhibits
a two-piece linear relationship with the time scale t. It decays
quite rapidly at time scales between 1 ms and 75 ms, and
starts to decay more slowly after that point. The slow decay
of the variance at large time scales is indicative of a statistical
property known as long-range dependence (LRD) which has
been observed in network traffic [16], [20]. For traffic with
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Fig. 4. Variance-time plot for T1

LRD, the variance of the traffic arrival rate decays as a power
of the time scale t

var(At/t) ∼ t2H−2, as t→ ∞

where H is known as the Hurst parameter and takes a range of
0.5 < H < 1. For all the other traces, the variance exhibits the
same two piece linear behavior as seen in Fig. 4. For 88% of
the traces, the transition point between the two linear regions
occurs at time scales between 75 ms and 400 ms.

We now investigate the causes of these two linear regions. At
large time scales, the LRD of network traffic has been shown
to be the result of the heavy-tailed distribution of individual
user connection sizes [20]. A heavy-tailed distribution is one
in which P (X > x) ∼ x−α, 1 < α < 2, as x → ∞. The
Hurst parameter is directly related to the α parameter of the
connection size distribution according toH = (3 − α)/2 [20].

To validate that the user connection size distribution is re-
sponsible for the large time scale behavior observed in T1, we
compute both α and H for trace T1. To avoid the statistical
bias of the VT plot, we use use a wavelet estimator developed
by Abry and Veitch [19] which yields H = 0.862 for T1. To
estimate α we use the Hill estimator as described in [20],
and validate it using the procedure described in [5]. We find
the connection size distribution is heavy-tailed with α = 1.30
indicating H should be 0.85, which is within the confidence
intervals of the Abry-Veitch estimator. For reference, in Fig. 4,
we plot a line corresponding to an LRD process with a variance
that decays withH = 0.862.

Next we investigate the behavior of the variance at time
scales less than 75 ms. We see from Fig. 4 that the variance
at small time scales has a linear relationship with t, but the
the variance is much higher than can be explained by the con-
nection size distribution. The reason for this is that the theory
relating the connection size distribution to H considers user
connections to be constant bit rate (CBR). In a real network,
however, user connections are far from CBR. In T1, as well
as all but five other traces, over 90% of the traffic in the
network is generated by TCP. TCP connections transmit a burst
of packets corresponding to the TCP window size, wait one
round-trip-time (rtt) for the acknowledgment, and then transmit
another burst of packets. At time scales greater than the rtt,
it has been empirically demonstrated that the connections can
be approximated as CBR streams [20]. However, as the time

scale falls below the rtt, individual TCP connections become
much more variable than CBR streams resulting in the higher
variance.

A direct relationship between the rtt and the break point
between the two scaling regions of the VT plot has been demon-
strated though the use of simulation [9]. This study performed
a simulation where all connections had a rtt of 24 ms and a
second simulation where all connections had a rtt of 610 ms.
They found that the linear relationship between the variance
and time scale which was observed at large time scales (i.e. the
relationship due to the connection size distribution) broke down
at a time scale just above the rtt of the user connections. In
general, for each of the 331 one-hour measurements we study,
we find that the transition point occurs “near” the median rtt of
the connections observed in the traces2. For T1 in particular, the
median rtt is 96.9 ms which is approximately the point at which
the variance begins to rapidly increase.

However, we do not find a statistically significant correlation
between the median or mean rtt and the breakpoint location.
In general the rtt distribution is quite complex, and the mean or
median value is insufficient to fully describe the distribution. As
a result, we are unable to fully explain the exact location of the
breakpoint and the cause of the linear behavior in the variance
at small time scales. However, we are able to develop a model to
capture this behavior and compute the resulting queuing delays.

B. Two-Scale Fractional Brownian Motion

To model backbone traffic we would like a process which has
Gaussian marginals with a variance that obeys the two-piece
linear relationship observed in the traces. Fractional Brownian
Motion (FBM) is a process whose marginal distributions are
Gaussian with a variance that has a single linear relationship
with t and decays as t2H−2. FBM was originally applied to
network traffic by Norros [13], and accurately models the large
time scale characteristics of network traffic. Modeling the small
time scale characteristics, however, has been quite challenging.
Cascade based models have been proposed to capture both
the large and small time scale characteristics [9], [17], [8].
These models, however, were developed to capture the complex
small time scale distributions shown in Fig. 1(b). Since large
volume backbone traffic has Gaussian distributions at small
time scales the complexities introduced by cascade models are
unnecessary, and a simple extension to FBM is sufficient.

Multiscale FBM, (MK) − FBM , is an extension of FBM
with a Hurst parameter that varies at different time scales. We
can therefore use one Hurst parameter,H0, for large time scales
and another Hurst parameter,H1, for small time scales. (MK)−
FBM has been used by Benassi and Deguy [2] for image
synthesis and Bardet and Bertrand [1] to model biomechanic
data.

There are several other processes which could also be used to
represent the two-piece linear relationship between the variance
and time scale. One such process is a traditional FBM with a
periodic component. All such processes, however, will produce

2We estimate the rtt using the procedure described in [10].



the same results in terms of queuing delay. For our purposes
all of these processes provide an equally accurate model of
network traffic, so we have chosen (MK) − FBM to simplify
the analysis.

To construct (MK)−FBM , we start with the harmonizable
representation of the traditional FBM process, BH(t) [18]

BH(t) =
∫ ∞

−∞

eiωt − 1

C(H) |ω|H+1/2 W̃ (dω)

W (dx) is a Brownian measure and W̃ (dω) is its Fourier
transform, and C(H) = π

HΓ(2H)sinHπ
1/2. (MK) − FBM is

a generalization of this process where H is a function of the
frequency (inverse of the time scale). We define an (MK) −
FBM , Xη(t), as a process such that

Xη(t) =
∫ ∞

−∞

eiωt − 1
η(ω)

W̃ (dω) ,−∞ < t <∞

where
• K ∈ N , represents the number of Hurst parameters
• for i = 0, 1, . . . ,K there exist (ωi , ai , Hi )∈(R+, R+,

(0.5, 1)) such that η(ω) = C(Hi)|ω|Hi+1/2
√
ai

for ωi ≤ ω <
ωi+1 with 0 = ω0 < ω1 < · · · < ωK < ωK+1 = ∞

• η(−ω) = η(ω)
[1] has shown thatXη(t) is a Gaussian process with stationary
increments and variance at time scale δ, var(δ) = E[Xη(t +
δ) −Xη(t)]2, given by

var(δ) = 4
K∑

i=0

δ2Hi
ai

C(Hi)2

∫ δωi+1

δωi

1 − cosυ
υ2Hi+1 dυ (2)

To derive the queue length distribution for this process, we
follow the same procedure Norros used to derive the queue
length distribution for FBM [13]. Let Aη be the cumulative
traffic arrival process

Aη(t) = mt+
√
mXη(t)

m is the mean arrival rate of the traffic, and the term
√
mXη(t)

describes the fluctuations around the mean.
We use the lower bound (1) to compute the queue length

distribution. Since at time scale t, Aη(t) has a Gaussian distri-
bution with meanmt and variancem · var(t) the queue length
distribution is

P [Q > x] = sup
t≥0

Φ(
x+ Ct−mt√
m · var(t)

) (3)

where Φ is the residual distribution function of the standard
Gaussian distribution.

In the general case for Mk − FBM with many Hurst
parameters, finding the t which maximizes the right hand side
of (3) is difficult. However, our traffic has only two distinct
scaling regions. We therefore consider specific the case when
K = 1 and call this two-scale FBM. In this case we can use the
following approximation

var(δ) =

{
δ2H1 a1

C(H1)2
, 0 ≤ δ < 1

ω1

δ2H0 a0
C(H0)2

, 1
ω1
< δ <∞ (4)
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Fig. 5. Simulation delay and two-scale FBM delay for T1

where (a1,H1) represent the linear region at small time scales,
(a0,H0) represent the linear region at large time scales, and
1
ω1

is the transition point between the two regions.
Using (4), we find that (3) is maximized at

t = t∗ =

{
H1

1−H1

x
C−m , x < xc

H0
1−H0

x
C−m , x ≥ xc

and the queue length distribution is

P [Q > x] ∼
{

exp(−κ(a1,H1))x2−2H1 , x < xc
exp(−κ(a0,H0))x2−2H0 , x ≥ xc

(5)

where

κ(a,H) =
(C −m)2H

2am(1 −H)2−2H(H)2H

xc =
(C −m)(1 −H1)

H1
e

H0 log(
H1
H0

)+(H0−1) log(
H1−1
H0−1 )+ 1

2 log(
a1
a0

)

H0−H1

A similar result can be derived for a queue fed by N inde-
pendent two-scale FBM processes. If mn and varn(t) are the
mean and variance at time scale t for flow n, the queue length
distribution is

P [Q > x] = sup
t≥0

Φ(
x+ Ct−

∑
mnt√∑

mn · varn(t)
) (6)

Unlike the single flow case, we cannot use the variance ap-
proximation (4) because the variance of the aggregated flow
has more than two distinct regions. As a result, (6) cannot be
further simplified. While analytically cumbersome, (6) can be
easily computed using Matlab or C programs.

C. Model Validation

To validate the model we compare the actual delay experi-
enced by the measured traffic with the delay computed using
the model. To determine the actual delay for the traffic we
use a queuing simulator. The simulator reads a packet trace
and simulates injecting the traffic into an infinite buffer queue
served by a constant bit rate server.

There are three factors that would cause the delay in the
simulator to be different than the delay that the traffic would
see in the actual network. The first source of error is that a
router does not implement an ideal FIFO queue. There may be
effects due to routing lookups and other operations that affect
the delay. In a prior study, we measured the delay experienced
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Fig. 6. two-scale FBM performance for 300 sample traces, ε = 0.001

through routers in the Sprint network and found that such router
behavior has little effect on the total queuing delay [14].

The second source of error is the simulator emulates an
infinite buffer queue, while the buffers in the actual network
are finite. Typical buffer sizes in the actual network correspond
to between 250 ms and 1 second of queuing delay. In the
simulation results we present, the maximum delay observed
in the simulator is typically less than 100 ms for the range
of link utilizations in which we are interested. In such cases,
no loss would be experienced in the actual network and there
is no difference between the infinite buffer queue used in the
simulation and the actual routers in the network.

The final source of error is that we do not consider the
feedback mechanism of TCP. If we simulate a network in which
there is a large amount of loss or large delays, the TCP con-
gestion control mechanism would cause the sources to reduce
their transmission rate. We do not account for this behavior in
our simulator. However, as we shall see, over the range of link
utilizations in which we are interested, only a small number of
packets experience delays greater than several milliseconds and
no packets experience loss. In such a case the TCP feedback
mechanism would have minimal impact. To further address this
point, in several of the figures we will indicate by a dotted line
the point at which the maximum delay for any packet exceeds
250 ms. To the right of this line, some of the traffic may be
affected by TCP effects. As we will see, the regions in which
the network operates will be to the left of this line, so the results
will be unaffected by the behavior of TCP.

To compute the delay using our model, we must estimate
the model parameters from our traces. We use the Abry-Veitch
estimator [19] to determine the H0 and H1 parameters and
use linear regression on the variance-time plot to estimate a0
and a1. However, we do not know a priori over which time
scales to estimate (a0,H0) and over which time scales to
estimate (a1,H1). As we have seen in the previous section,
the breakpoint between the two regions of the model typically
occurs at time scales of 100 ms - 500 ms. We therefore do
not consider this region and estimate (a1,H1) from the traffic
characteristics at time scales of 2 ms - 64 ms, and we estimate
(a0,H0) from the traffic characteristics at time scales of 512 ms
- 2 min. These two regions are consistently above and below the
breakpoint, respectively.

We first investigate how well the model estimates the delay

for T1. The parameters for T1 areH1=0.62, H0=0.89, a1=69.6
kb·sec, a0=338 kb·sec, andm=75 Mb/s. We compare the delay
distribution obtained using the model and the delay distribu-
tion obtained from the simulation for a range of output link
utilizations, ρ. The results are shown in Fig. 5, which plots the
99.9th percentile of the delay distribution for different ρ 3. This
percentile corresponds to a delay requirement with ε = 0.001, a
somewhat strict requirement for real time applications such as
voice which can tolerate a small number of packets that exceed
the delay requirement. For reference, we also show the delays
that are predicted using the standard FBM model.

From the figure we see that the traditional FBM and the
two-scale FBM models perform the same when the output
utilization is high. In this region, the large time scale charac-
teristics dominate the queuing performance. Both FBM and the
two-scale FBM are accurate models for the large time scale
characteristics, so they perform the same. At low utilization,
the two-scale FBM model performs much better than traditional
FBM. In this region t∗ is less than several hundred msec. Since
two-scale FBM is a much better model for the small time scale
characteristics, the delay estimate is much more accurate.

Next we evaluate the model performance for the rest of the
traces. It is not possible to repeat Fig. 5 for all traces. Instead we
evaluate the model performance at a link utilization ρ = 0.7 and
at ρ = 0.9. The performance at ρ = 0.7 determines how well the
model fits before the knee of the curve shown in Fig. 5, and the
performance at ρ =0.9 is indicative of how well the model fits
after the knee. While ρ = 0.9 may not be a reasonable operating
point for a commercial network as the delays are quite large,
we would still like to evaluate the model performance in this
region. We only show results for ε = 0.001 as this value showed
the worst performance for T1 and most of the other traces.

Fig. 6 plots the difference in the delay estimated by the
two-scale FBM model and the delay obtained in simulation:
error = |dtwo−scaleF BM −dsimulator|

dsimulator
. From the Fig. we see that

at ρ = 0.7, 80% of the flows have an error less than 0.75, and
96% of the flows have an error of less than 1. An error of 1 may
seem to be quite large (100% error). However, in terms of actual
delay, it represents a difference between 1 ms and 2 ms or 4 ms
and 8 ms. For a reference, at ρ = 0.7, the results for the T1 trace
shown in Fig. 5 have dsimulator = 1.6 ms and dtwo−scaleFBM =
2.2 ms. This corresponds to an error of 0.37, close to the median
error for all traces.

At ρ = 0.9 the model does not appear to perform as well. Only
75% of the flows have an error of less than 1. However, consider
Fig. 5. Due to the rapid increase in delay, shifting one of the
curves to the left or right can result in a very large difference
between the two delay values. In fact, for T1, the error at ρ =
0.9 and ε = 0.001 is almost 10, one of the highest errors of all
traces considered. We can consider the results shown in Fig. 5 to
be among the worst of all traces we have studied. Furthermore,
from a bandwidth provisioning point of view, the location of the
knee of the curve shown in Fig. 5 is the most important aspect
rather than the actual magnitude of the delay above the knee.

3Results for other percentiles are similar and can be found in [10].
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Fig. 7. two-scale FBM parameters for all traffic measurements

The model does accurately predict this knee location.
We have also performed simulations to validate (6), the

queue length distribution of a queue fed by multiple two-scale
FBM processes. We performed simulations of a queue fed by
two flows. We consider the first flow to correspond to the T1
trace and the second flow to correspond to another trace, T2.
Both of these traces were collected on input links to the same
router over the same time interval. Our measurement systems
are synchronized to within 5 µs using GPS, so it is reasonable to
consider both of these measurements as representing the input
to the same queue. The results show similar performance to that
seen in Fig. 5 for the single flow delay. We omit the actual figure
due to space constraints. Repeating this experiment with more
than two traces produced similar results.

D. Bandwidth provisioning for a single link

Using the two-scale FBM model, we can make some interest-
ing observations about the bandwidth requirements for a single
link. A common question is: what is the maximum utilization
at which a link can be operated while still meeting a particular
delay requirement? The maximum achievable utilization on a
link carrying two-scale FBM traffic can be computed directly
from (5). (5) gives the delay distribution for a link of capacity
C carrying traffic with an average arrival rate m. To find the
maximum achievable utilization, we use binary search to find
the maximum m which can be supported and still satisfy the
delay constraint.

The only remaining question is what are the four model
parameters, (H0, a0,H1, a1) for traffic with an arrival rate of
m. Using the measurements, we can make some projections.

Fig. 7 plots the model parameters for each trace against the
traces’s mean arrival rate,m. We see that the a1 parameter (the
variance at small time scales) exhibits a moderate increase with
m. Using linear regression we find that a1 = 97m + 52562
wherem is in Mb/s. The parameter a0, on the other hand, does
not show as clear a trend. The best fit using linear regression
finds the relationship a0 = 1027m+149400, but there is a wide
range for the actual values of a0. The H1 and H0 parameters
seem to be relatively stable across all values of m. For very
small m (less than 20 Mb/s) we do see a wide range of values
forH0, but they converge to a value of 0.90 asm increases. This
is to be expected since H0 is a function of the connection size
distribution. The connection size distribution should not change
asm increases, as long as we are multiplexing similar streams.
H1 converges to 0.59 in a similar fashion.

Since there is not a clear trend in the a0 parameter, we
consider a worst-case approximation which we call the “most
variable” traffic. This represents the traffic with the highest
variability seen in all of our measurements and corresponds
to the “most variable” line shown in Fig. 7. For this traffic,
we compute the maximum link utilization over a range of link
capacities and plot the results in Fig. 8. We show results for
two different maximum delay requirements,Dreq = 10ms and
Dreq = 1ms and three different delay percentiles, ε = 0.01,
ε = 0.001, and ε = 0.0001. We consider Dreq = 10ms as
it is comparable to the 20 ms propagation delay for backbone
networks. With Dreq = 10ms, the sum of the queuing and
propagation delay would be 30 ms. Dreq = 1ms may seem
quite small relative to the propagation delay. However, we
consider it to account for low jitter services. With a propagation
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Fig. 8. Maximum achievable link utilization

delay of 20 ms and Dreq = 1ms, a provider could offer a
service with an end-to-end delay of 20 ms and 1 ms of jitter.

From Fig. 8 we see that the maximum link utilization reaches
a plateau around 1 Gb/s. For links greater than 1 Gb/s, the
typical bandwidth found in most backbone networks, link uti-
lization can reach 80% to 90% for all but the most stringent
delay guarantees.

III. END-TO-END DELAY

In the previous section we developed a method to compute
the delay distribution for a single queue. Now we address how
to compute the end-to-end queuing delay through a network.
Consider the sample network shown in Fig. 9. The network
consists of nine POPs and six customers attached to different
POPs4. Each customer transmits data to all other customers.

To model the traffic demand between two POPs we use a
two-scale FBM process. In the case of our simulation, each
traffic demand represents the traffic between a pair of customers
while in the actual network each traffic demand would be the
aggregate of traffic from many customers. However, as seen
in the previous section, increasing the traffic volume will not
change the fundamental Gaussian characteristics of the traffic
demand. We can therefore approximate the full inter-POP traffic
demands by the single customer demands used in this section.

For this network, we would like to compute the end-to-end
delay between any of the six edge POPs. To do this, we use the
following procedure. For each link in the network we determine
which traffic demands arrive at the link and compute the delay
experienced on that link. The end-to-end delay over a path in
the network is found by convolving the delay distributions for
every link along the end-to-end path.

In order to use this procedure we must make two assump-
tions. First, we assume that the characteristics of a traffic
demand remain the same throughout the network. While it
is not possible to do this in all networks, in many practical
situations it is reasonable to consider the characteristics of a
flow are unchanged throughout the network. The most well
known example of this behavior is Kleinrock’s independence
approximation [11]. For a queue fed by multiple Poisson input

4Most commercial backbone networks would have many customers con-
nected to each POP. This sample network, however, provides sufficient com-
plexity to evaluate the proposed delay model.

C1

C2

C3
C4

C5

C6

Fig. 9. Sample Network

Customer Destination Addresses

C1 0.0.0.0-127.255.255.255

C2 128.0.0.0-191.255.255.255

C3 192.0.0.0-199.255.255.255

C4 200.0.0.0-207.255.255.255

C5 208.0.0.0-215.255.255.255

C6 216.0.0.0-223.255.255.255

note: addresses 224.0.0.0 - 255.255.255.255 are the multicast and reserved
address range. We do not observe any packets with these destination addresses.

TABLE II

MAPPING BETWEEN CUSTOMER AND DESTINATION IP ADDRESS

streams, the output of the queue is also Poisson. Similar results
have been derived for traffic such as FBM which exhibits a so-
called Large Deviations Principle [21]. Similar arguments have
also been used to justify that the effective bandwidth of a flow
remains unchanged throughout the network [6]. The basic idea
behind these arguments is that as long as a queue has sufficient
output capacity so that very little queueing occurs, the flows
passing through the queue will not be affected by the queueing.
For the delay requirements we consider, which specify that only
a small percentage of the traffic experiences long delay, this is
exactly the behavior that will occur.

Second, we assume that the delays at each queue are inde-
pendent and the end-to-end delay can therefore be obtained by
convolution. Since each queue server traffic from many streams
and it is unlikely the streams will be correlated, this assumption
should be reasonable. Both of these assumptions have been
validated in detail in [10]. In this section we present results
of a simulation of the entire network to validate the proposed
scheme to compute end-to-end delays.

A. End-to-end delay validation

To validate this approach of computing the end-to-end delay,
we perform a simulation of the network shown in Fig. 9. We use
the measurements T4 - T9 to represent the traffic generated by
customers C1 - C6 respectively. To generate traffic demand be-
tween each customer, we subdivide each trace into six separate
sub-traces according to the destination IP address of the packets
in the trace. The mapping between destination IP address and
customer is shown in Table II.

We find that all but three of the sub-traces have sufficient
aggregation to be modeled using two-scale FBM. However,
these three traces have an average rate of 0.81, 1.51, and 1.94
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Fig. 10. Difference between end-to-end delay predicted by the model and
actual end-to-end delay

Mb/s. Since these flows are so small, we find there is little
difference between the end-to-end delay computed when we
model these flows as two-scale FBM and when we completely
ignore these flows in the computation. We therefore do not
consider them in the computation. We do, however, include
these flows in the simulation results.

As in the previous section we perform two simulations, one
with ρ = 0.7 for all links and one with ρ = 0.955. For each
pair of POPs we compute the percentage difference between
the 99.9th percentile of delay distribution computed using
the model and the 99.9th percentile of the delay distribution
obtained in the simulation. We plot the cumulative distribution
of the difference for all POP pairs in Fig. 10. From this figure
we see that between 80% of the POP pairs, the difference in
the model delay and the simulation delay is less than 1. These
results are very similar to the error in the single hop delay
shown in Fig. 6. The most noticeable difference is that the error
at ρ = 0.95 in the end-to-end delay case is quite a bit higher
than the error for ρ = 0.9 in the single queue case. Recall
at high utilization, the difference between the model and the
simulation are diverging. As a result, the error at ρ = 0.95 will
be higher than at ρ = 0.9. Since the error in the end-to-end
delay is comparable to the error for the single queue seen in the
previous sections we conclude that our procedure provides an
accurate estimate of the actual end-to-end delay.

IV. NETWORK OPTIMIZATION

With a method to compute the end-to-end delay over a path
in the network, we can now develop a procedure to determine
the amount of bandwidth required on each link in a network
to meet a particular delay constraint without the use of traffic
differentiation. This can be formalized as the following network
optimization problem:

Given: a network with fixed topology, fixed routing, and a
known traffic demand matrix

Minimize: the total network costM =
∑
l∈L Cl

Subject to: P [d(i,j) > D(i,j)
req ] < ε(i,j), ∀i ∈ N, , j ∈ N, i �=

j

5We use ρ = 0.95 rather than ρ = 0.9 as done for the single queue case
because for some links in the network ρ = 0.9 is still below the knee of
the performance curve as a result of the larger traffic volumes used in this
simulation.

where:

• L is the set of links in the network
• N is the set of nodes in the network
• Cl is the capacity of link l
• (m(i,j),H

(i,j)
1 , a

(i,j)
1 ,H

(i,j)
0 , a

(i,j)
0 ) are the parameters of

the traffic demand between POPs i and j

For this problem, we consider the total cost of the network to
be the sum of the individual link capacities, but the algorithm
may be easily extended to handle more complex cost functions.

The procedure begins by selecting an initial capacity for each
link using the following approach. We know that the queuing
delay on a single link cannot exceed the total end-to-end delay
allowed along the entire path. For a particular link, we can
compute the minimum amount of bandwidth needed to satisfy
this requirement. This process is repeated for every link, and
the end-to-end delay along every path is computed. If the end-
to-end delay constraints are satisfied, then we have found the
capacity assignment which has the minimum network cost.

In most situations, this procedure finds the minimum cost
network. The reason for this is that the end-to-end delays distri-
butions are computed by convolving the delay distributions at
each hop (rather than summing the delays as is done to compute
the average end-to-end delay). If the delay requirements are
satisfied for each queue independently, then it is likely the end-
to-end delay is satisfied.

However, this procedure is not guaranteed to work for all
possible networks. In the cases where this procedure does not
work, more complex heuristics must be used to search for the
minimum capacity assignment. We chose to implement the
simulated annealing heuristic which has been shown to perform
well when applied to the Capacity Assignment problem [12].

A. Capacity Assignment for the Sprint network

In this section we evaluate the feasibility of the bandwidth
provisioning approach in the Sprint IP network. To do this,
we use the procedure described above to find the amount
of bandwidth needed to support a range of end-to-end delay
requirements. The inputs to this procedure are the network
topology, routing, and traffic demand matrix. The topology
and routing of the Sprint network are known, but we do not
have measurements of the actual traffic matrix. To generate the
traffic demand matrix, we use the approach outlined in [3]. We
randomly classify 20% of the POPs as “big,” 40% as “medium,”
and 40% as “small”. The mean traffic volume between POPs i
and j is selected from a Gaussian distribution withmean(i,j) =
(sizei + sizej)/2 where sizebig = 2.48 Gb/s, sizemedium =
622 Mb/s, and sizesmall = 155 Mb/s. The remaining four
model parameters (a(ij)1 ,H

(ij)
1 , a

(ij)
0 ,H

(ij)
0 ) are determined

based on the mean arrival rate as described in Section II. We
consider the “most variable” traffic model.

Since we do not know which specific POPs are “big”,
“medium”, and “small”, we generate five random node clas-
sifications and the resulting traffic matrices. For each of these
scenarios we compute the capacity assignment using the proce-
dure described above. The set of possible link capacities is 155
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Fig. 11. Excess bandwidth required to meet delay guarantees

Mb/s, 310 Mb/s, 622 Mb/s, 1.24 Gb/s, 2.48 Gb/s, 4.98 Gb/s,
9.95 Gb/s, and 19.9 Gb/s.

Once we have found the bandwidth needed in the network
to support the different delay guarantees, we can evaluate
the feasibility of the bandwidth provisioning approach. If the
network were to be designed without any delay guarantees, it
would need enough bandwidth just to support the average data
rate of the traffic. It is not possible to reduce the bandwidth in
the network beyond this point. To evaluate the bandwidth pro-
visioning approach we compare this minimum bandwidth with
the bandwidth found using the capacity assignment algorithm
for different delay guarantees.

We define the excess bandwidth as the percentage difference
between the average rate of the traffic and the link capacity that
is found in the solution to the capacity assignment problem:
bwe =

∑
l∈L

cl−average traffic volumel

average traffic volumel
. For each of the five

traffic matrices we compute the excess bandwidth, and the
average is plotted in Fig. 11. This figure shows that for the
“most variable” traffic queuing delays can be reduced to 4
ms before requiring large amounts of excess bandwidth. Even
voice traffic, which is one of the most stringent latency-sensitive
applications, does not require such low delays. As a result it
appears bandwidth provisioning is an attractive option.

V. CONCLUSION

This paper developed an approach to compute the amount of
bandwidth required on each link in a network so that an end-
to-end delay constraint is satisfied. We first analyzed a set of
traffic measurements from a commercial IP backbone network
and found that straightforward Gaussian processes are an ac-
curate model for aggregate network traffic. Using this model
to represent the traffic flow between POPs in the network, we
developed a method to compute the end-to-end delay along any
path in the network. We then developed a procedure to find the
network with the minimum total bandwidth which satisfies the
delay constraint.

When applying our approach to a real network we found sev-
eral interesting results. First, for links with capacity greater than
1 Gb/s, utilization can reach 80%-90% and still meet nearly all
delay requirements. For the complete Sprint IP network, we find
that between 5% - 15% excess bandwidth is needed to support
end-to-end delay requirements as low as 4 ms. Implementing
traffic differentiation would only allow the network provider to

further decrease the delay by at most 4 ms. Across the entire
Internet, this would represent the difference between 124 ms
end-to-end delay and 120 ms end-to-end delay. Even stringent
applications such as voice would not notice a significant im-
provement in quality for such a marginal improvement in the
total delay.
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