
DFS: A De-fragmented File System

Woo Hyun Ahn, Kyungbaek Kim, Yongjin Choi and Daeyeon Park
Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology, Daejeon, Korea
fwhahn, kbkim, yjchoig@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract

Small file accesses are still limited by disk head move-
ment on modern disk drives with the high disk bandwidth.
Small file performance can be improved by grouping and
clustering, each of which places multiple files in a direc-
tory and places blocks of the same file on disks contigu-
ously. These schemes make it possible for file systems to
use large data transfers in accessing small files, reducing
disk accesses. However, as file systems become aged, disks
become too fragmented to support the grouping and clus-
tering of small files. This fragmentation makes it difficult
for file systems to take advantage of large data transfers,
increasing disk I/Os. To offer a solution to this problem,
we describe a De-fragmented File System (DFS). By using
data cached in memory, DFS relocates and clusters data
blocks of small fragmented files in a dynamic manner. Be-
sides, DFS clusters related small files in the same directory
at contiguous disk locations. Measurements of DFS imple-
mentation show that the techniques alleviate file fragmenta-
tion significantly and, in particular, performance for small
file reads exceeds that of a traditional file system by 78%.

1 Introduction

In modern disk drives, the media bandwidth has been
improved significantly to such an extent that its peak value
is 40 MB/second. Unfortunately, small file (< 64 KB) ac-
cesses, the majority of file system usages [1][13], are lim-
ited by disk access latency (seek and rotational delay) rather
than disk bandwidth since file systems spend a large amount
of time in waiting for the disk head to reach its destination
during small file accesses [7][3].

The Fast File System (FFS) [5] uses clustering [6][10] to
increase performance for small file I/Os, It attempts to place
logically sequential blocks of a file on physically contigu-
ous disk blocks. When a new block is allocated, FFS deter-
mines the location of the last allocated block of its file and
attempts to allocate the next contiguous disk block. When

blocks of a file are clustered, multiple block transfers can
be used to read/write the file, reducing separate disk I/Os
and amortizing disk access latency. In particular, perfor-
mance of small file accesses, which are sensitively affected
by the number of disk I/Os, is enhanced by multiple block
transfers if blocks of each small file are clustered. Besides,
FFS divides the disk into cylinder groups, each of which is
a set of consecutive cylinders. Cylinder groups are used to
exploit locality: related data (e.g, files in a directory and
blocks in a file) are located in the same cylinder to reduce
disk seeks. Thus, FFS allocates logically sequential blocks
of a file in the same cylinder group, and likewise allocates
all of the files in a directory to the same cylinder group.

In the Co-located Fast File System (C-FFS) [3], small
files in the same directory are allocated to contiguous disk
locations, where they form a group. When a new block of
a small file is allocated, C-FFS attempts to cluster it into an
existing group associated with the same directory as that of
the block. This succeeds if there is a free block outside of
the group the size of which does not exceed a certain max-
imum size (e.g., 64 KB); otherwise, the new block cannot
be added to the group and C-FFS creates a new group with
one block. When a block is read, C-FFS finds the group
holding the block and then reads all blocks in the group at
one time by using the high disk bandwidth of modern disk
drives. Then subsequent accesses of the prefetched files can
be satisfied in memory without disk I/Os. Hence, C-FFS
improves small file performance by an order of magnitude
over traditional file systems in experiments on several po-
tential applications.

A significant challenge for FFS and C-FFS is fragmen-
tation of free and allocated space. As file systems become
aged by many file creates/deletes, FFS cannot find clusters
of free blocks in order to allocate blocks of a newly cre-
ated file on the disk contiguously. This fragmentation of a
file is defined as IntrA-file Fragmentation (IAF). Moreover,
file system aging has a negative impact on explicit grouping
of C-FFS. As files become created/deleted, some files in a
group that has multiple files placed adjacently on the disk
can be deleted, and thus fragmented free space is produced

among the explicitly grouped files. This separation (or frag-
mentation) among the related files is defined as IntEr-file
Fragmentation (IEF), reducing the number of files that can
be fetched from disks at one time. To sum up, IAF and
IEF prevent file systems from exploiting large data trans-
fers, increasing the number of disk I/Os and large disk ac-
cess latency. Specifically, the increase of disk I/Os seriously
degrades small file performance. All data that suffer from
either IEF or IAF can be called fragmented data.

In this paper, we propose a new file system called the De-
fragmented file system (DFS), which relocates fragmented
data in a dynamic manner so that the fragmented data can
be placed contiguously on the disk. More specifically, DFS
concentrates on the relocation of small files among the frag-
mented data to increase performance of small file reads. As
related data in a directory become accessed together within
a short period of time, they can be together contained in
the file cache (or buffer cache). Accessing data on much
fragmented disks causes fragmented data to be cached in
memory. By using the fragmented data in the cache, DFS
attempts to perform two techniques as follows: first, blocks
within a small file are relocated in order to be physically
contiguous with each other on the disk where FFS cannot
cluster them due to a shortage of clusters of free blocks.
Note that no additional disk access is required for fetching
data from the disk since DFS relocates data cached in mem-
ory only. Second, DFS dynamically clusters small files that
have not been adjacently placed with other related files on
the disks. Hence, DFS alleviates fragmentation of both mul-
tiple files and blocks within the same file.

We implement DFS as a module of FFS in an OpenBSD
operating system to measure its potential effectiveness. The
rest of the paper is organized as follows: Section 2 and
Section 3 explain the backgrounds and main ideas of our
DFS respectively. Section 4 discusses some emergent issues
for DFS implementation on an OpenBSD operating system.
Section 5 presents our experimental methodology and re-
sults. Finally, we conclude in Section 6.

2 Related Works

The de-fragmentation concept of DFS resembles tools
(e.g., disk reorganizer) on the Windows operating systems
that de-fragment disks upon user commands. However,
the disk reorganizer is different from DFS in the following
points: first, the reorganizer should be executed during idle
time when users do not use their computers. Otherwise,
the overall performance of computer systems is degraded
very seriously. Second, the reorganizer does not attempt to
keep related files in the same directory together. It greed-
ily reorganizes only fragmented files and free space without
consideration of relationships among data in the same di-
rectory. Third, many of computer illiterates may not use the

F1 F4 F4 (b) F3 F3 F1 F4 F4 F3 F3

F1 F2 F2 F2 F1 F2 F2 F2 F3 (a) F3 F4 F4

 (1)

 Relocation

 Relocation

 (2)

 (1) (2)

Figure 1. Two types of relocatable fragmented
data. A file Fx is composed of blocks marked by Fx. For example, a

file ’F2’ has three blocks, as shown in Figure(a).

reorganizer because they do not recognize the necessity of
the de-fragmentation. However, DFS implicitly reorganizes
fragmented data regardless of user expertism.

The log-structured File system (LFS) [8][9] increases
synchronous write performance of all file system data. LFS
re-maps all modified blocks into large, contiguous regions
called segments on disks. Each segment is then written to
disks with a single I/O operation. LFS is similar to DFS’s
mechanism in that data are gathered, re-mapped and stored
at a single disk I/O, but it is different from DFS in that
the goal of DFS is to reduce fragmentation of disk lay-
outs and improve file read performance. However, there are
some important problems with LFS. First, LFS performs a
garbage collection process called cleaning to reserve empty
segments for new modified data. However, the cleaning can
significantly degrade file system performance in a busy sys-
tem [9][10]. Second, LFS often fails to keep the contents
of a directory together. For example, if all files in the direc-
tory are actively read but only some are actively written, the
written files will move far away from the read-only ones. In
such disk layout, the penalty of fetching the files from disk
is much higher than in FFS and C-FFS.

3 A De-fragmented File System

3.1 Motivations

DFS is motivated by the fact that FFS and C-FFS take a
kind of update-in-place approaches; once a new block has
been placed in a given disk location, it does not move and all
subsequent read/update requests for the block will be sent
to that location. Unfortunately, once these file systems be-
come fragmented, the performance penalty described above
persists. Owing to this characteristic, FFS and C-FFS fail
to make good use of the following opportunity; fragmented
data that are in memory can be moved in a dynamic manner
to reduce both IEF and IAF. Most operating systems imple-
ment file caching, which contains frequently accessed data
in memory to avoid unnecessary disk accesses. As multiple
files in the same directory are accessed within a short pe-
riod of time due to the directory locality, most of the files
can be cached in memory. Among data in the cache, there
can be an amount of fragmented data, which traditional file

F1 F4 F3 F4 F3

F1
F4

F4 F3

F3

F5

F5

DD 1

F3F4 F4 F3 F5 F5

Buffer

F1 F4 F4 F3 F3 F5 F5

File Cache

Gather &
remap

Single disk I/O

(a) Initial disk layout

F5 F5

(b) Disk layout after grouping of DFS

Disk

Dirty block

Target region

Figure 2. Overview of DFS’s de-fragmentation

systems have not dealt with efficiently enough to reduce the
fragmentation. Hence, it is necessary to perform an effi-
cient in-memory block management that can relocate disk
locations of the fragmented data to solve both IEF and IAF.
Note that the relocatable fragmented data should be cached
in memory because the relocation of uncached data requires
additional disk I/O to fetch them into memory.

Relocatable fragmented data are classified into two types
where it is necessary to use relocation schemes appropri-
ately, according to whether fragmentation of the data is in-
curred by related data or free space on disks. The first type
has the following characteristic of the disk layout as shown
in Figure 1(a)-(1): blocks of a file are not physically con-
tiguous with each other due to interference with blocks of
other related files that are currently cached in memory. Fig-
ure 1(a)-(2) illustrates how an efficient relocation scheme
solves the IAF problem. This mechanism relocates not only
blocks of the fragmented file, but also the neighboring data
(see F3 and F4 in Figure 1(a)-(1)) that incur fragmentation
of the file, placing blocks of the fragmented files at contigu-
ous disk locations.

The characteristic of the second type is that blocks of
fragmented data (or related files) are separated from each
other by free blocks on disks (see Figure 1(b)-(1)). Fig-
ure 1(b)-(2) shows how careful relocation of the blocks can
eliminate the IEF. When the second block of F4 and two
blocks of F3 in Figure 1(b)-(1) are moved toward the first
of F4, the related files are grouped contiguously on the disk
and, thus, their IEF problems can be solved.

3.2 Basic Concepts

DFS introduces two techniques as a general relocation
framework to reduce fragmentation of small files1 (2 blocks
– 12 blocks): IntrA file De-fragmentation (IAD) and IntEr
file De-fragmentation (IED) mechanisms. By using the high
disk bandwidth of modern disk drives, they solve IAF and
IEF problems of the two types of relocatable fragmented

1Note that K. Smith and M. Seltzer [12] defines files less than 13 blocks
as small files because accessing files with the sizes considers to be affected
by disk head movement dominantly.

data in a dynamic manner. Whenever each dirty (or mod-
ified) block in the file cache using write back is flushed to
the disk, DFS checks whether a fixed window called the tar-
get region, which starts from the disk location of the dirty
block, has any type of relocatable fragmented data. If so,
DFS applies IAD and IED to the fragmented data and, then,
the data relocated by these techniques are written together
with the dirty block at a single disk I/O. Otherwise, only the
dirty block is flushed as with traditional file systems.

Figure 2 shows how DFS’s IAD and IED reduce frag-
mentation of files and free space. When target region de-
termined by the position of a dirty block has IAF or IEF,
DFS’s de-fragmentation mechanisms are triggered. First of
all, relocatable fragmented data, which include all data not
only cached in memory but also contained in the same di-
rectory as the dirty block, are gathered into a buffer, which
is an entry of the file cache. Note that the dirty block is the
beginning of the buffer and then the fragmented data follow
the dirty block in the buffer. Once the buffer gathering is
completed, IAD and IED are applied to the fragmented data
of the buffer in the following steps: (1) if there are any files
(e.g., F3 and F4) with IAF, IAD clusters blocks of each file
on the disk contiguously; (2) if there are any related files
(e.g., F3 and F4) that are not contiguous with each other
due to interference with free space, IED re-maps their disk
locations to simply cluster them contiguously and compact
the free space contiguously; (3) if the target region has con-
tiguous free space either that is compacted by IED or that
has existed before the de-fragmentation, the free space is
used to relocate small fragmented files (F5) not included
in the target region. Finally, the relocating data contained
in the buffer are stored to the original location of the dirty
block at a single I/O. Despite these large data transfers, the
incremental disk overhead is fairly small because accessing
several blocks rather than just one requires a fairly small
additional disk overhead in modern disk drives.

DFS is different from LFS in the following characteris-
tics: DFS overwrites relocating data to the starting location
of the target region involving the data, as shown in Figure
2. On the other hand, LFS always stores relocating data
to free segments; otherwise, the relocating data might be
overwritten to a disk region with valid data, which could be
lost by the overwriting. In DFS, however, relocating data
can be overwritten to the original locations without the loss
of data. This is possible because the relocating data (F3 –
F5) involve blocks (F3 and F4) on disk locations where the
relocating data will be stored. Hence, DFS does not need
the cleaning operation unlike LFS. If some of the blocks in
the target region are not cached in memory, they cannot be
contained in the relocating data; this will be described in
Section 3.4.

In order for related data cached in memory to be relo-
cated at contiguous disk locations, it is necessary to estab-

lish in-memory relations among related data at a directory
unit. DFS defines a De-fragmentation Domain (DD), which
presents a set of files that are contained not only in the same
directory name space locality, but also in the cache. Each
DD object is created in memory when any block of its direc-
tory is accessed for the first time. Whenever each data block
is loaded into memory, the information of the block is reg-
istered at its DD object. The information of each block in-
cludes its in-memory address, its logical and physical block
numbers, the in-memory inode pointer of the file involving
the block. When DFS relocates fragmented data, the infor-
mation is used to find which DD contains a data block with
a specified disk location. Besides, each DD object manages
a table called the de-fragmentation table, which contains
only fragmented files among files cached in memory.

The maximum number of blocks that a buffer can gather
for relocating is the same as that of a target region. How-
ever, if only some blocks in a target region that will be de-
fragmented are clustered, the buffer size required for the
clustering becomes less than the target region size. Though
the target region has fewer blocks than its size, DFS always
tries to gather and re-map as many blocks as a target re-
gion can maximally contain, writing the chunk to the disk.
For example, there are four allocated blocks in the target re-
gion (see Figure 2), which has seven blocks including free
space and data. To relocate as many blocks as possible dur-
ing a single disk I/O, DFS additionally gathers and re-maps
blocks of a fragmented file F5 outside the target region.

3.3 De-fragmentation Decision Methodology

Whenever each dirty block is stored to the disk, DFS de-
cides whether its target region should be de-fragmented or
not. If data in the target region have IEF and IAF problems,
DFS first considers it as a good candidate. For another can-
didate, DFS selects a target region with two or more free
blocks 2 regardless of whether the target region has IEF and
IAF. The free blocks are used to relocate and cluster blocks
of small files (e.g., see F5 in Figure 2) that not only exist
outside the target region, but also have IAF. At this time, if
the free blocks are fragmented, DFS makes them contiguous
with each other in order to cluster blocks of the fragmented
files at contiguous disk locations. For example, though the
target region in Figure 2(a) has three free blocks, DFS con-
tiguously compacts the fragmented free space through IED
to relocate the fragmented file into the free space.

To find the amount of free space and IEF contained in
each target region, DFS uses a block allocation bitmap,
which file systems [5][2] use to check whether blocks on
the disk are allocated. From the beginning of the location

2Only files with at least two blocks can have IAF problem. A target
region needs at least two free blocks so that one two block-sized file outside
a target region can be relocated into it.

indicated by a dirty block, DFS checks as many bits as the
number of blocks of the target region. Assume that bit value
‘1’ represents the allocated state. If there are two or more
‘0’s in the bits, DFS considers the target region as a can-
didate that should be de-fragmented because the situation
presents the following two possibilities: first, data in the tar-
get are not placed adjacently due to interference with frag-
mented free space. Second, the target region has at least two
free blocks that can be used to relocate any fragmented files
outside the target region.

DFS maintains a block fragmentation bitmap with one
bit per block to quickly find whether each target region has
files with IAF. The bitmap only presents fragmentation of
files cached in memory currently, not all files on the disk.
By using the bitmap, DFS checks whether a block cached
in memory is not physically contiguous with the next logical
block of the file including the former block. The bit setting
is performed whenever each block is loaded into memory
from the disk. Each bit in the bitmap is set to value ‘1’ if its
corresponding block is not physically contiguous with the
next logical block, which should be cached in memory. On
the other hand, the value ‘0’ indicates that either the block
is not cached in memory currently, or is contiguous with
its next logical block. If the bits corresponding to a target
region have one or more ‘1’s, DFS predicts that the target
region has at least one fragmented file and selects it as a
good candidate for de-fragmentation.

3.4 De-fragmentation Mechanisms

The de-fragmentation algorithm of DFS is invoked when
the target region starting from a dirty block seems to be less
than optimal according to the decision methodology in Sec-
tion 3.3. As the first step of the algorithm, blocks within
a target region are simply gathered in a buffer so as to be
stored to the disk with a single disk I/O. For the buffer gath-
ering, a buffer of the same size as that of the target region
is assigned by the file cache manager. Then, DFS first puts
the dirty block at the head of the buffer because lower-level
disk drivers store data to the location indicated by the head
block in a buffer. From the beginning of the next disk lo-
cation, DFS looks up each disk block of the target region
one by one to gather only blocks that are not only allocated
on the disk, but also included in the same DD as that of the
dirty block.

As seen in Figure 3(a), DFS gathers all data blocks of
a target region into a buffer because they are included in
the same DD object. IAD and IED are successively applied
to the blocks gathered in the buffer to eliminate fragmenta-
tion. IAD first re-maps the blocks to place logically sequen-
tial blocks of each fragmented file on physically contiguous
disk blocks. Additionally, since the file F4 are related to
the other files (F1 – F3), IED clusters it together with the

F1 F2 F4 F2

DiskTarget region

F1 F1 F2 F3 F4

F1 F3 F4

F2 F4

Buffer
(Buffer gathering)

De-fragmented buffer

Dirty block

F2 F4 F2F1 F3 F4F1

IAD IAD IAD

F1 F2

DiskTarget region

F1 F1

F1 F3 F4

F2

Buffer

De-fragmented buffer

uncached block

end of LF

Uncached block

F4

F1 F2 F1

IAD

F1 F3

DiskTarget region

F1 F2 F2

F2 F4

F2

Buffer

De-fragmented buffer

F5F2 F5 F5

F4F3

F1 F3F2 F4

F1 F3F2 F4 F2 F2 Additional gathering

F2

IAD

F1 F2

DiskTarget region

F1 F2 F3

F2 F3

F2

Buffer

De-fragmented buffer

F4 F4

F4F4

F4

F4

F1 F2F2 F3

IAD IAD

F1 F2F2 F3 F4 F4 F4 Additional gathering

(a) (b)

(c) (d)

Figure 3. De-fragmentation mechanisms of
DFS

related files. Then, the data in the buffer is written to the
starting location of the target region at a single disk I/O.

Figure 3(b) shows how blocks not cached in memory
have an impact on the buffer gathering. When one uncached
block F3 is encountered in process of the buffer gathering,
the process is terminated and, then, the buffer contains only
blocks that have been gathered currently, not including the
uncached block. In this case, the number of blocks in the
buffer is less than that of target region. DFS applies IAD
and IED to the blocks gathered in the buffer in a manner
similar to that shown in Figure 3(a). The reason that an
uncached block should incur the termination is noteworthy.
First, additional disk I/Os for fetching them into memory
are required to gather uncached blocks. Second, no consid-
eration of uncached blocks incurs their loss on the disk. For
example, we assume that DFS sequentially gathers and re-
maps only five blocks (i.e., blocks of file F1, F2 and F4) ex-
clusive of the uncached block, storing the relocating data to
the staring location of the target region. Unfortunately, one
block (i.e., the second block of F4) among the re-mapped
blocks can have the same disk location as that of the un-
cached block. This overwriting incurs the loss of the un-
cached block. To prevent uncached blocks from being lost,
the buffer gathering process is directly terminated when any
uncached block is encountered.

Figure 3(c) shows how DFS relocates a file F2 that has
its blocks in the inside and outside of a target region. First of
all, DFS gathers all blocks of a target region into a buffer in
the same way as that of Figure 3(a). After this buffer gath-
ering, DFS finds one file whose blocks exist in the inside
and outside of the target region. If the buffer has enough
free space to relocate the rest of the blocks outside the tar-
get region, they are gathered into the buffer additionally.
These procedures are performed repeatedly for other files
in the same DD as long as the buffer still has sufficient free

F1

DiskTarget region

F2 F3F3 F5 F5F5 F5F4 F4

(a)

(b)

F1 F3

DiskTarget region

F2 F3F2 F3 F3

Figure 4. Optimal file selection of DFS

space. After the additional buffer gathering, DFS re-maps
all blocks in the buffer, storing to disks at a single disk I/O.

If a buffer has available free space after the buffer gather-
ing, DFS additionally gathers small fragmented files outside
the target region, as illustrated in Figure 3(d). For the candi-
date files that can be gathered into the buffer, DFS preferen-
tially selects the smallest of the fragmented files (e.g., F4)
that exist outside the target region. These candidate files
can be found from the current DD object (this mechanism
will be explained in Section 4). After this additional buffer
gathering, IAD and IED are applied to all data that have
now been gathered in the buffer.

3.5 Methodology of Optimal File Selection

As shown in Figure 4, DFS should determine which files
with IAF are relocated into a target region involving limited
free space so as to increase the utilization of free space and
small file access performance. As the basic file selection
policy, DFS preferentially selects the smallest files because
the performance of small file reads is more dominantly af-
fected by separate disk I/Os. As shown in Figure 4(a), for
example, each of file F2 and F3 in the target region has its
blocks in the inside and outside of the target region, but all
outside blocks of the files cannot be moved into the target
region because the target region has fewer free blocks than
the total number of the blocks to be relocated. According
to the policy, DFS only relocates the second block of the
smaller file, F2, into the target region. However, the re-
maining blocks (the second and third blocks) of F 3 are not
relocated because the target region does not have enough
free space to include them after the relocation of F2. If
the two blocks of F3 were relocated, the file would suffer
from IAF again because the last block would be separated
from the others. Additionally, the selection policy is ap-
plied when DFS selects several files outside a target region
in Figure 4(b). Hence, only two block-sized files (F3 and
F4) are relocated into the target region.

4 Implementation Issues

DFS techniques are implemented as a module of FFS on
an OpenBSD operating system. This section describes the
various issues that should be considered.

DD functionality required for small fragmented files
When a fragmented file with a specific size is needed

to be relocated into a target region not including the file,
DFS uses the de-fragmentation table to find it in a DD
object. In FFS, a on-disk inode includes pointers to where
the actual data blocks are stored. The pointers are classified
into direct (12 entries) pointers for small files with 1 to 12
blocks and indirect pointers for files larger than 12 blocks.
When a file is accessed, its on-disk inode is fetched into
memory. This inode cached in memory is called in-core
inode. When a file being fetched from disks is small as
well as fragmented, its in-core inode is registered at the
de-fragmentation table in the DD including the file. Note
that the table has a hash chain of 11 entries indexed by file
sizes because DFS is interested in optimizing small files
of 2 to 12 blocks only. For example, when a fragmented
file with 4 blocks is fetched into memory, its in-core inode
is inserted into the hash entry indicated by its total num-
ber of blocks (e.g., 4) and linked with the others at the entry.

Clustering appropriate to a read-ahead algorithm
OpenBSD’s FFS implements a history-based read-ahead

(or prefetching) algorithm when reading files sequentially.
The system maintains a “sequential count” of the last run of
sequentially accessed blocks (if the last four accesses were
for blocks 0, 2, 3 and 4, the sequential count is 2). When
FFS concludes that the last accesses are sequential, it is-
sues a new read-ahead of length l beginning with the first
non-cached block, where l is the maximum of (a) powers of
sequential count, (b) the number of contiguously allocated
blocks remaining in the current clusters or (c) number ‘1’.
For example, assume that a 4 block-sized file whose blocks
are clustered altogether on the disk is accessed sequentially.
When the second block is accessed, FFS decides that the
sequential count is 1 and thus l is 2. Then FFS prefetches
the other two blocks in a single disk read. However, if the
file has 3 blocks, FFS only prefetches the last block though
it can read two blocks at one time. For this file, FFS will
perform as many disk accesses as the number of blocks of
the file. Hence, multiple block transfers can be exploited to
access only files larger than 3 blocks.

To increase efficiency of this prefetching, DFS selects
fragmented files with 4 blocks as the smallest files that
can be relocated inward into a target region (see Figure
3d). If a 4 block-sized file is available, DFS relocates it
into the target region. Otherwise, DFS checks whether the
hash of its DD object has the incremental block-sized files.
DFS proceeds with this operation until either the checking
arrives at the hash entry with 12 block-sized files or DFS
has completely filled the free space with fragmented files.
Still, if there is any free space in the target region, DFS
additionally fills the free space with 2 or 3 block-sized
files that are not only fragmented but also outside the

target region. This makes it possible for a file with 2 or 3
blocks to be accessed with small seek and rotational latency.

Target region sizes and their effects on write perfor-
mance

Target region sizes should be carefully determined so
that multiple block writes do not have a negative effect on
the overall performance of applications and flushing oper-
ations. DFS basically uses the target region size of 64 KB
(or 16 blocks if one block size is 4 KB) for the following
two reasons: first, a 64 KB access time is nearly the same
as that of 4 KB in our experimental disk drive which was re-
leased in 1997. Second, a single write has been limited up
to 64 KB in size because of limitations of computer hard-
ware components (e.g., I/O bus and disk drive). Based on
these facts, 64 KB is used as the target region size for DFS
techniques. Additionally, we adopt 96 KB (or 24 blocks) as
another target region size because writes of bulk data larger
than 64 KB are expected not to incur significant overhead
in modern disk drives such as the Quantum Atlas and the
Seagate Cheetah series larger than 10,000 RPM.

DFS’s techniques themselves amortize the disk overhead
incurred by the writes of multiple blocks. In traditional file
systems, dirty blocks in file caches are flushed to disks at
separate disk I/Os, which reduce write performance during
flushing operations. On the other hand, it is probable that
DFS will gather several dirty blocks into a buffer when
a target region is de-fragmented. Then the data in the
buffer are stored at a single disk I/O, not at separate disk
I/Os though the entire buffer contains several dirty blocks.
Hence, DFS can write all of the modified data with fewer
disk I/Os than that of traditional file systems, amortizing
disk access latency added by large data writes.

Updating inodes on disks
DFS’s techniques require modification of on-disk inodes

associated with relocating data, increasing separate disk
I/Os. As blocks of a small file are re-mapped, direct pointers
in its inode should be modified to indicate the new locations.
In OpenBSD’s FFS, a metadata block for inodes has a 4 KB
or an 8 KB size, containing 32 or 64 inodes of 128 Byte size
respectively. When an inode is modified by applications, the
whole of the block including the inode is stored to the disk
because FFS writes metadata as well as file data at a block
unit. In consideration of this feature, FFS locates inodes of
related files in the same directory close to each other on the
disk. This placement makes it possible for the related in-
odes to be contained in the same metadata block, reducing
separate disk writes required to update modified inodes at
the disk. In DFS based on FFS, inodes that include point-
ers changed under relocation can be contained in the same
metadata block as those updated by applications. Therefore,
updating the changed inodes on disks requires fairly small

Disk Parameters File System Parameters
Total Disk Space 6.4 GB Size 2 GB
Rotational Speed 5400RPM Block Size 4 KB
Sector Size 512 Bytes Rotational Gap 0
Cylinders 13328 Cylinder Groups 283
Heads 15 Sectors per Track 63
Average Seek 9.5ms

Table 1. Testing system configuration

0
10
20
30
40
50
60
70
80
90

100

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

52
42

88

10
48

57
6

File Size (in bytes)

C
u

m
u

la
ti

ve
 F

ra
ct

io
n

 o
f

F
ile

s

Figure 5. Distribution of file sizes

additional disk I/Os.

5 Performance Evaluation

This section reports measurements of our DFS imple-
mentation to show that it can dramatically improve small
file read performance.

5.1 Experimental Setup

All experiments were performed on a PC with a 700
MHz Pentium processor and 128 MB of main memory. The
disk on the system is a Quantum Fireball EX [4]. More pa-
rameters, along with our hardware and file system configu-
ration, are summarized in Table 1. We used the OpenBSD
operating system version 2.8 for all measurements in this
paper.

5.2 Benchmark

For experiments, we wanted to make the testing disk as
much fragmented as the file systems shown in the previ-
ous research [11]. To age the disk, we ran a file system
benchmark on an empty disk. The aging benchmark exe-
cutes sequences of file system operations, and, in particu-
lar, file creates and deletes are actively applied to our test-
ing file systems to simulate the effects of a long period of
use. Note that each create operation performs not only cre-
ation of a file, but also writing of data. A kind of issued re-
quests, one of creates, read/writes and deletes, is determined
by the probability distribution shown in Table 2, where the

File requests Before 75% utilization After 75% utilization
Create 10% 10%
Delete 5% 10%
Read 65% 60%
Write 20% 20%

Table 2. Ratio of file operations according to
the utilization of disk

ratio of file operations was modeled according to previous
study [1][13]. To determine file sizes of the issued requests,
we scan our laboratory’s file server. The scanned Linux file
server supplies 30 GB storage for file systems. At the time
of the examination, about 24 GB (80% of the total avail-
able) was being used for storage. Figure 5 shows that most
files are small and the distribution is similar to that found in
previous research [1][3]. To ensure that the benchmark has
data access patterns matching directory namespace locality,
the benchmark makes 50 sub-directories, each of which is
selected by a Poisson distribution. The benchmark selects
a random number within the range of 100 – 5000 to deter-
mine the number of file operations that will be performed
in each sub-directory. When the file activities of a directory
are completed, those of the next directory are started.

To age the testing disk in a manner similar to that which
occurs with real file system usages causing heavy fragmen-
tation of disks, the benchmark increases the number of file
deletes in progress of its execution as shown in Table 2.
In real file system usages, users fill up their empty disks
slowly, but usually do not clean files on the disks until the
disk space is full extremely. When the disks become ex-
tremely full, users remove many files to clean up disk space
and reserve free space at once. This cleaning causes the
disks to be significantly fragmented. After the first clean-
ing, users again create many files and delete just as many
files to reserve free space on occasion. These repeated cre-
ates/deletes make the disks more fragmented. To simulate
this fragmentation process, the benchmark issues a much
smaller number of delete requests than create requests to
an empty disk to incur fragmentation slowly. However,
we changed the ratio of file creates and deletes, making
the disk much more significantly fragmented when the disk
space became extremely full. We considered the disks to be
considered extremely full when the utilization of the disks
reaches 75%.

To simulate realistic access patterns and resource loads
on our file systems, the benchmark issues 200 requests per
second as in a previous study [13]. According to the study,
many applications macroscopically issue requests at a con-
stant interval of time. In real worlds, modified data during
the file operations are stored to the disk by a sync (or flush-
ing) daemon invoked every 30 seconds. However, if the
benchmark continuously issued requests of file operations
without the intervals of downtime, the testing file systems

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15
of File Operations (per 1000000)

A
g

g
re

g
at

e
L

ay
o

u
t

S
co

re FFS
DFS-16
DFS-24

���
���

Figure 6. Aggregate disk layout scores ac-
cording to the number of file operations

would be different from real file systems in loads on re-
sources, behaviors of the file cache (e.g., data replacement
and flushing operations), and the amount of data that will be
flushed in every period. To minimize these differences, our
benchmark issues the requests at a fixed interval of time.

5.3 Aggregate Disk Layout Scores

To verify improvement of DFS over FFS, we compared
the degree of file fragmentation of DFS with that of FFS.
As mentioned in Section 4, we implemented two DFSs each
of which uses 16 (DFS-16) and 24 (DFS-24) blocks for its
target region size, and then measured the effectiveness of
DFS’s IED and IAD according to the target region sizes. To
quantify the amount of fragmentation of each file, we ex-
ploit a layout score used in earlier research [12]. The layout
score for an individual file is the ratio of the block that is
physically contiguous with the previous block of the same
file. A file with a layout score of 1.00 is perfectly allocated;
all of its blocks are allocated contiguously. A file with a
layout score of 0.00 has no contiguously allocated blocks.
To evaluate the fragmentation of all files on a file system,
we compute the file system’s “aggregate layout” score.

Figure 6 shows the aggregate layout scores of DFS-16,
DFS-24 and FFS according to the number of file operations.
The x-axis is the number of file operations issued by the
benchmark. The aggregate layout scores are shown from
the moment when 75% disk utilization is achieved. With
a small number of file operations, the disks become slowly
fragmented. However, as file operations are executed for
a long period of time, the difference in disk layout score
among the three file systems increases. The amount of frag-
mentation of free space and files increases in proportion to
the number of file operations that have be executed. In such
disk layout, both DFS-16 and DFS-24 actively relocate and
cluster small files with IAF. This de-fragmentation makes
both DFS-16 and DFS-24 suffer from less fragmentation
than does FFS. Hence, each layout score of DFS-16 and
DFS-24 outperforms that of FFS by 13% and 29%. Mor-
ever, DFS-16 and DFS-24 focus both IAD and IED on small

files that are fragmented, but leave large files fragmented
on the disks. This unconcern toward large files causes the
layout scores of the disks to decrease in proportion to file
operations.

On the whole, DFS-24 outperforms DFS-16 in the layout
score because larger target regions can relocate and cluster
more files with IAF. On fragmented disks, the number of
fragmented files that can be contained in a target region in-
creases in proportion to the target region size. Also, the
target region of DFS-24 can have more free blocks than that
of DFS-16. With this larger free space, DFS-24 can relocate
more files outside the target region. Thus, the effect of large
target region makes it possible for DFS-24 to relocate more
files at a single write than DFS-16 can.

5.4 Read Performance

We examined how file fragmentation reduced by DFS’s
techniques, i.e., IAD and IED, has a positive affect on file
read performance. To examine this, we measured file read
performance and aggregate layout score for files of a variety
of sizes. These measurements were achieved at the points
indicated by (1) and (2) in Figure 6, where points (1) and (2)
present the disk layouts with small and large fragmentation,
respectively. When the number of file operations arrives
at each point, the benchmark unmounts each file system to
flush all blocks cached in memory in order to exactly mea-
sure the time spent in reading only the data on the disks,
not in the file cache. After the flushing, it mounts the file
system again and reads all files in each directory, which is
selected sequentially.

Figure 7(a) and 7(b) present read performance and lay-
out score at point (1) of Figure 6. Figure 7(a) shows that
DFS-16 and DFS-24 achieve slightly better performance of
small file read than FFS by 5% and 8% respectively. This
improvement results from the difference in the layout score
among the three file systems, as seen in Figure 7(b). DFS-
16 and DFS-24 have higher layout score than that of FFS by
23% and 30% respectively, and the improvement over FFS
is especially apparent in the range of 2 to 12 blocks. How-
ever, the improvement is relatively small because the three
file systems suffer from little fragmentation. Since a small
number of file operations have been performed, the disks do
not have many files with IAF. In such disk layouts, likewise,
target regions triggered by dirty blocks do not have enough
files with IAF so that DFS-16 and DFS-24 can relocate them
actively. Therefore, this inactive relocation causes the dif-
ference in the layout score to be slight.

Figure 7(c) and 7(d) show read performance and layout
score indicated by point (2) in Figure 6, where the disks be-
come significantly fragmented. Figure 7(c) shows that DFS-
16 and DFS-24 improve small file performance over FFS by
47% and 78%, respectively. These improvements stem from

0
500

1000
1500
2000
2500
3000
3500
4000
4500

2 4 8 16 32 64 128 256
File Size (in blocks)

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
) FFS

DFS-16
DFS-24

(a) Read throughput at point (1)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 8 16 32 68 128 256
File Size (in blocks)

L
ay

o
u

t
S

co
re

FFS
DFS-16
DFS-24

(b) Layout score at point (1)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2 4 8 16 32 64 128 256
File Size (in blocks)

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
)

FFS
DFS-16
DFS-24

(c) Read throughput at point (2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 8 16 32 68 128 256
File Size (in blocks)

L
ay

o
u

t
S

co
re

FFS
DFS-16
DFS-24

(d) Layout score at point (2)

Figure 7. Read throughput and layout score on disks

a main reason: DFS-16 and DFS-24 prevent small files from
being fragmented through active relocation of many such
files while FFS suffers from serious file fragmentation. For
the experimental evidence, Figure 7(d) shows that DFS-16
and DFS-24 reduce the amount of small file fragmentation
by up to 150% and 260% compared to FFS respectively.
Moreover, as expected, read performance of 4 to 12 block-
sized files has a significant advantage over that of 2 or 3
block-sized files because of the OpenBSD’s history-based
read-ahead algorithm. However, files larger than 12 blocks
still suffer from IAF problems because DFS-16 and DFS-24
do not attempt to relocate them on the disks contiguously.

As seen in Figure 7(d), both DFS-16 and DFS-24 have
higher aggregate layout score for 4 to 8 block-sized files
than 9 to 12 block-sized files. This is due to the file selection
policy of DFS. That is, DFS preferentially selects 4 block-
sized files as the smallest files that can be relocated into
a target region if it has enough free space to contain them.
Then DFS first uses up the free space with 4 to 8 block-sized
files. Therefore, this makes it impossible for files larger
than 8 blocks to be relocated into the target region. Besides,
4 to 8 block-sized files are created, read and written more
actively than those with 9 to 12 blocks, as shown in the
distribution of Figure 5. Due to this access pattern, the file
cache, as well as target regions, contain more of the former
than the latter. Thus, these behaviors cause DFS to relocate
4 to 8 block-sized files more actively.

An interesting result in Figure 7(c) and 7(d) is that DFS-
16 and DFS-24 achieve better relative performance of 2 or 3
block-sized files over FFS by nearly 14% and 25%, respec-
tively. As disks become fragmented, data become randomly
scattered across the disks. Hence, blocks of files including
small files as well as large ones can be placed across several
cylinder groups or far away from each other on the same
cylinder group. This makes it possible for file systems to
access blocks of each file with more disk seeks and larger
rotational delay. However, DFS-16 and DFS-24 relocate
and cluster blocks of small fragmented files on the cylinder
groups that each file was allocated. Moreover, they relocate
related small files into the same cylinder group; otherwise,
each of the files might be scattered across several cylinder

0

1000

2000

3000

4000

5000

2 4 8 16 32 64 128 256
File Sizes (in blocks)

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
)

FFS
DFS-16
DFS-24

Figure 8. Write throughput

groups. This relocation reduces the disk head movement re-
quired to successively read small files in the same directory.

5.5 Write Performance

Figure 8 shows write performance at point (2) in Figure
6. When the number of file operations arrives at the point,
the benchmark selects a directory randomly and, then, mea-
sures times spent in writing files in the directory. The writes
are classified into “overwrite” and ”read/write” according to
whether data being written are cached in memory. Data be-
ing written can be currently cached in memory due to early
accesses. Because our testing file systems use write back
caching, the writes only modify the data in memory and,
then, the modified data are delayed for some period of time.
This is called the “overwrite”, which spends much less time
in writing data. However, if the data are not cached in mem-
ory, the file systems fetch them from disks to write them.
Hence, this action is called the “read/writes”. Because the
data that will be written should be fetched, the writes addi-
tionally contains the time spent in reading the data.

DFS-16 and DFS-24 improve the write performance over
FFS by nearly 7% and 12% respectively. The improvement
is because files that are fetched during “read/write” opera-
tions suffer from less fragmentation in DFS-16 and DFS-
24 than FFS. However, the difference in the performance
among them is slight because the number of “read/write”
operations is smaller than that of “overwrite”. As seen in
Table 2, the probability of writes is 20%, but is relatively

0

0.5

1

1.5

2

2.5

3

3.5

FFS DFS-16 DFS-24

T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

Figure 9. Flushing throughput

of relocated blocks # of disk writes

DFS-16 9.2 1.3
DFS-24 15.4 2.4

Table 3. The average number of relocated
blocks and additional metadata writes in
flushing operations.

much smaller than the sum of create and read probabilities.
Owing to this, it is probable that the benchmark will write
files that have been cached in memory due to earlier reads
as well as creates.

5.6 Overheads

To examine disk overhead added by DFS’s techniques,
we measured flushing performance for modified data con-
tained in the file cache when the number of file operations
arrived at point (2) in Figure 6. Figure 9 shows that DFS-16
and DFS-24 degrade the flushing performance under FFS
by 11% and 17%, respectively. This is because DFS-16 and
DFS-24 additionally write multiple blocks together with a
dirty block at a single disk I/O. The second column of Table
3 presents how many blocks are stored along with each dirty
block in DFS-16 and DFS-24. However, though DFS-16
and DFS-24 store much more data than that of FFS, the disk
overhead does not look serious due to the following reasons:
first, accessing multiple blocks rather than just one requires
a small additional disk overhead in the testing disks. Sec-
ond, DFS’s mechanisms themselves amortize the incremen-
tal disk overhead.

Another part of the overhead is how many disk I/Os are
addtionally required to update metadata under relocation. In
Table 3, the third column shows the average number of disk
writes required to update inodes in flushing a dirty block.
However, relocated files have inter-file relationships due to
the directory locality, and the file system tries to place in-
odes of the files to the same metadata block as many as
possible. As seen in the table, the number of additional disk
I/Os required for the updates is small though the inodes of
several files are re-mapped. For this reason, the flushing
overhead of DFS is not large as expected.

6 Conclusions

DFS gradually alleviates file fragmentation and improve
performance for small file reads. It dynamically cluster not
only related files that are not placed on disks contiguously,
but also blocks of fragmented files. The measurements
show that the techniques reduce file fragmentation by an
order magnitude for a synthetic workload. Moreover, DFS
exceeds FFS in read performance of small files by 78%.
Despite this large improvement, penalties added by DFS’s
mechanisms are a fairly small.

References

[1] M. G. Baker, J. H. Hartmann, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterout. Measurement of a distributed file sys-
tem. In 13thACM Symposium on Operating Systems Princi-
ples, pages 198–212, Pacific Grove, CA, October 1991.

[2] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly & Associates, 2001.

[3] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping:exploiting disk bandwidth for small files.
In the 1997 USENIX Annual Technical Conference, pages
1–17, Anaheim, CA, January 1997.

[4] Maxtor Corporation. http://www.maxtor.com/Quantum/prod
ucts/archive/fireball-ex/fireball-ex-specs.htm, 1997.

[5] M. McKusick, W. Joy, and S. Leffler. A fast file system for
UNIX. ACM Transactions on Computer Systems, 2(3):181–
197, August 1984.

[6] L. McVoy and S. Kleiman. Extent-like performance from a
UNIX file system. In 13th ACM Symposium on Operating
Systems Principles, pages 137–144, October 1991.

[7] E. Riedel, C. van Ingen, and J. Gray. A performance study of
sequential I/O on Windows NT 4. In Proceedings of the sec-
ond USENIX Windows NT Symposium, Seattle, Washington,
August 1998.

[8] M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):285–298, February 1992.

[9] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An im-
plementation of a log-structured file system for UNIX. In the
Winter 1993 USENIX Conference, San Diego, CA, January
1993.

[10] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. Mc-
Mains, and V. Padmanabhan. File system logging versus
clustering: A performance comparison. In the 1995 USENIX
Technical Conference, New Orleans, LA, January 1995.

[11] K. Smith and M. Seltzer. File layout and file system per-
formance. Technical Report TR-35-94, Computer Science
Department, Harvard University, 1994.

[12] K. A. Smith and M. Seltzer. File system aging — increasing
the relevance of file system benchmarks. In Proceedings of
the 1997 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 203–213, Seattle,
WA, June 1997.

[13] W. Vogels. File system usage in Windows NT 4.0. In 17th
ACM Symposium on Operating Systems Principles, pages
93–109, Kiawah Island, SC, December 1999.

