
Inferring Client Response Time at the Web Server

David P. Olshefski
IBM T.J. Watson Research

19 Skyline Drive
Hawthorne, NY 10532

olshef@us.ibm.com

Jason Nieh
Dept. of Computer Science

Columbia University
1214 Amsterdam Avenue
New York, NY 10027-7003

nieh@cs.columbia.edu

Dakshi Agrawal
IBM T.J. Watson Research

19 Skyline Drive
Hawthorne, NY 10532

agrawal@us.ibm.com

ABSTRACT
As businesses continue to grow their World Wide Web pres-
ence, it is becoming increasingly vital for them to have quan-
titative measures of the client perceived response times of
their web services. We present Certes (CliEnt Response
Time Estimated by the Server), an online server-based mech-
anism for web servers to measure client perceived response
time, as if measured at the client. Certes is based on a model
of TCP that quantifies the effect that connection drops have
on perceived client response time, by using three simple
server-side measurements: connection drop rate, connection
accept rate and connection completion rate. The mechanism
does not require modifications to http servers or web pages,
does not rely on probing or third party sampling, and does
not require client-side modifications or scripting. Certes can
be used to measure response times for any web content, not
just HTML. We have implemented Certes and compared
its response time measurements with those obtained with
detailed client instrumentation. Our results demonstrate
that Certes provides accurate server-based measurements of
client response times in HTTP 1.0/1.1 [14] environments,
even with rapidly changing workloads. Certes runs online
in constant time with very low overhead. It can be used at
web sites and server farms to verify compliance with service
level objectives.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements,
Models, Operational analysis

General Terms
Algorithms, Management, Measurement, Performance, Ex-
perimentation.

Keywords
Web server, client perceived response time.

1. INTRODUCTION

The focus of web server performance is shifting from through-
put and utilization benchmarks [22, 4, 24] to guaranteeing
delay bounds for different classes of clients [20, 34, 17, 28,
12, 2, 27, 9, 5]. Providers of web services are faced with
the challenge of providing differentiated services that guar-
antee bounds on client perceived response times while at
the same time maximizing throughput. In order for a web
site to guarantee delay bounds for its clients, it should be
able to determine, in real-time, the client perceived response
time. This information can then be used to verify compli-
ance with service level objectives and to identify potential
problems that may exist on the server or in the network.
Unfortunately, the problem of obtaining an accurate mea-
sure of client response time remains a key factor preventing
delay bounded web services from being realized.

Several approaches have been proposed for determining the
response time that is experienced by a client. One approach
being taken by a number of companies [18, 21, 13, 33] is to
periodically measure response times obtained at a geograph-
ically distributed set of monitors. This approach can at best
provide an approximation of the response time perceived by
actual clients. The information gathered is generally not
available at the web server in real-time, limiting the ability of
a web server to respond to changes in response time to meet
delay bound guarantees. Service providers are also known
to place servers near the monitors used by these companies
to artificially improve these performance measurements [11].

A second approach is to instrument existing web pages with
client-side scripting in order to gather client response time
statistics [29]. A ’post-connection’ approach as this does
not account for time due to failed connection attempts or
waiting in kernel queues. It also does not work for non-
HTML files that cannot be instrumented, such as PDF and
Postscript files. It may also not work for older browsers or
browsers with scripting capabilities disabled. Instrumenting
the client web browser itself to gather response time statis-
tics could avoid some of these limitations, but would require
changing and upgrading all client browsers. Client browser
measurements cannot accurately decompose the response
time into server and network components and therefore pro-
vide no insight into whether server or network providers
would be responsible for problems.

A third approach is based on having the web server appli-
cation track when requests arrive and complete service [19,
20, 17, 2]. This approach has the desirable property that it

only requires information available at the web server. How-
ever, server latency measures at the application level do not
properly include network interactions and provide no infor-
mation on network problems that might occur and affect
client perceived response time. They also do not account
for overheads associated with the TCP protocol underly-
ing HTTP, including the time due to failed TCP connection
attempts or waiting in kernel queues. These times can be
significant, especially for servers which discard connection
attempts to avoid overloading the server [34] or limiting in-
put queue lengths of an application server [12] in order to
provide a bound on the time spent in the application layer.

A fourth approach reconstructs the client response time from
network packet traces. This can be done either offline, by
analyzing packet trace logs [31], or the analysis can be per-
formed online as the network packets are passively captured
from the communication line [23]. Scalability can be a draw-
back with the online approach since the packet capturing
and analysis may not be able to keep pace with the high
traffic rate entering and leaving a busy server farm, requir-
ing a number of monitoring machines. The cost of buying
and managing monitoring machines may be prohibitive.

We have created Certes (CliEnt Response Time Estimated
by the Server), an online mechanism that accurately esti-
mates client perceived response time using only information
available at the web server. Certes combines a model of TCP
retransmission and exponential back-off mechanisms with
three simple server-side measurements: connection drop rate,
connection accept rate, and connection completion rate. The
model and measurements are used to quantify the time due
to failed connection attempts and determine their effect on
perceived client response time. Certes then measures both
time spent waiting in kernel queues as well as time to re-
trieve requested web data. It achieves this by going beyond
application-level measurements to using a kernel-level mea-
sure of the time from the very beginning of a successful
connection until it is completed. Our approach does not
require probing or third party sampling, and does not re-
quire modification of web pages, http servers, or client-side
modifications. Certes uses a model that is inherently able
to decompose response time into various server and network
components to help determine whether server or network
providers are responsible for performance problems. Certes
can be used to measure response times for any web content,
not just HTML.

We have implemented Certes and verified its response time
measurements against those obtained via detailed client-side
instrumentation. Our results demonstrate that Certes pro-
vides accurate server-based measurements of client response
times in HTTP 1.0/1.1 environments, even with rapidly
changing workloads. Our results show that Certes is partic-
ularly useful under overloaded server conditions when web
server application-level and kernel-level measurements can
be grossly inaccurate. We further demonstrate the need for
Certes measurement accuracy in web server control mecha-
nisms that manipulate inbound kernel queue limits to achieve
response time goals.

This paper is outlined as follows. Section 2 provides some
necessary background on HTTP and TCP protocols and

DATA

Client
Perceived
Response

Time

ack M+1

FIN N

SYN K, ack J+1

Server

SYN-to-END
Server

Measured
Response

Time

TCP
termination

TCP
connection

SYN J

Client

ack K+1

ack N+1

FIN M

GET

bi-directional
data

transfer

Figure 1: Typical TCP Client-Server interaction.

presents an overview of the Certes model. A mathemat-
ical construction of the Certes model follows, focusing on
how it accounts for the time due to failed connection at-
tempts. Section 3 presents experimental results demonstrat-
ing the effectiveness of Certes in estimating client response
time at the server with various dynamic workloads for both
HTTP 1.0/1.1. Section 4 discusses related work. Finally,
we present some concluding remarks.

2. CLIENT RESPONSE TIME ESTIMATED
BY THE SERVER (CERTES)

2.1 Overview
We present an overview of the Certes model in the context
of the HTTP and TCP protocols used for web services. A
more detailed mathematical construction of the model is
presented in Section 2.2.

The focus of our work is quantifying the impact of failed con-
nection attempts on client perceived response time. Due to
space constraints, we limit our discussion to an estimate of
response time based on the duration of a TCP connection.
For HTTP 1.0 where each HTTP request uses a separate
TCP connection, this estimate corresponds to measuring
the response time of individual HTTP requests. However,
for HTTP 1.1 where multiple HTTP requests may be served
over a single connection, this estimate may include the time
for multiple requests. Since a given web page may require
multiple HTTP requests in order to be displayed, determin-
ing the response time for downloading a web page may re-
quire correlating the response times of multiple HTTP re-
quests. Although important, these issues are orthogonal to
the focus of this paper and beyond the scope of our discus-
sion. For further discussion of these issues see [15].

In the absence of packet loss, the typical client-server in-
teraction is shown in Figure 1. Before a client can send an
HTTP request to the web server, a TCP connection must
first be established, via the TCP three-way handshake mech-
anism [7, 2]. First, the client sends a SYN packet to the

server. Second, the server acknowledges the client request
for connection by sending a SYN-ACK back to the client.
Third, the client responds by sending an ACK to the server,
completing the process of establishing a connection. Once
the TCP connection is established, a series of HTTP re-
quests are sent to the web server to request data. During
the data transfer phase, one or more web pages can be trans-
ferred on the same TCP connection to the client, depending
on whether HTTP 1.0 or 1.1 is used. When the data transfer
is completed, the connection is terminated. To terminate the
connection, the server first sends a FIN packet to the client.
The client responds by sending an ACK and its own FIN
to the server. Finally, the server sends an ACK back to the
client and terminates the connection.

Figure 1, the common case, shows that the client perceived
response time is the time from when the initial SYN is sent
from the client until the time when the client receives the
last byte of data from the server. The SYN-to-END time,
which is the server’s perception of the response time, fails
to include one round trip time (RTT) which is composed of
the transit time for the initial SYN J, and the transit time
for the last data packet. In this case, the client perceived
response time is:

CLIENT RT = SYN-to-END+RTT

This also holds if the server terminates the connection before
sending any data by sending a FIN or RST. Likewise, if the
client sends a FIN or RST to the server, then the client
perceived response time is simply equal to the SYN-to-END
time.

The SYN-to-END time can be decomposed into two compo-
nents: the time taken to establish the TCP connection after
receiving the initial SYN, and the time taken to receive and
process the HTTP request(s) from the client. In certain
circumstances, for example when the web server is lightly
loaded and the data transfer is large, the first component
of the SYN-to-END time can be ignored, and the second
component can be used as an approximation to the process-
ing time spent in the application-level server. In such cases,
measuring the processing time in the application-level server
can provide a good estimate of the SYN-to-END time. In
general, the processing time in the application-level server
is not a good estimate of the SYN-to-END time. If the web
server is heavily loaded, it may delay sending the SYN-ACK
back to the client, or it may delay delivering the HTTP re-
quest from the client to the application-level server. In such
cases, the time to establish the TCP connection may con-
stitute a significant component of the SYN-to-END time.
Thus, to obtain an accurate measure of the SYN-to-END
time, measurements must be done at the kernel level. A
simple way to measurement the SYN-to-END time is to per-
form kernel-based timestamping of the arrival of the SYN
as well as the end of transaction. If the kernel does not al-
ready provide such a packet timestamp mechanism, it can
be added with minor modifications. As part of this work we
modified the Linux kernel to track this information for each
TCP connection.

A server-based method that can be used to determine RTT
is to use the time from when the SYN-ACK is sent from
the server to the time when the server receives the ACK

SYN accepted

x

SYN ‘s
dropped by

server
or

network

x

x

x

x

initial SYN to server

Client
Perceived
Response

Time

ack M+1

FIN N

SYN K, ack J+1

Server

SYN-to-END
Server

Measured
Response

Time

TCP
termination

TCP
connection

SYN J

Client

ack K+1

ack N+1

FIN M

GET

data
transfer

SYN J
wait 3 seconds

SYN J
wait 6 seconds

wait 12 seconds
SYN J

x

DATA

Figure 2: Effect of SYN drops on client response
time.

back from the client. The RTT time measured in this way
includes the time spent by the client in processing the SYN-
ACK and preparing its reply. Our experience indicates that
typically the time taken by clients to process a SYN-ACK
packet and send a reply is not significant, and this method
yields an accurate measure of RTT. This method requires
the kernel at the web server to timestamp the transmission
of the SYN-ACK and timestamp the arrival of the return
ACK from the client. Again, these timestamps can be added
to the kernel with minor modifications. Alternatively, any
other approach to estimate RTT can be used [1].

The previous discussion assumes there are no packet losses
during TCP connection establishment. Figure 2 shows a
client-server interaction in the presence of SYN drops either
at the server or in the network [32]. When the initial SYN is
dropped, the server does not send the corresponding ACK
packet. As a result, the client incurs a TCP timeout and re-
transmits the initial SYN to the server. Due to TCP timeout
and exponential back-off mechanisms, the client may have
to wait 3 seconds, 9 seconds, 21 seconds, etc., before its SYN
packet is accepted by the server[6]. This wait time to initi-
ate a TCP connection is often larger than the time required
to transfer the actual web data. Dropping a SYN does not
represent a denial of access in this case, but rather a delay
in establishing the connection.

We refer to the time taken by the failed connection attempts
as the CONN-FAIL time, which is now included in the client
perceived response time:

CLIENT RT = CONN-FAIL + SYN-to-END +RTT

Any failure to complete the 3-way handshake after the SYN
is accepted by the server is captured by the SYN-to-END
time. For example, delays caused by dropped SYN-ACKs
from the server to the client (the second part of the 3-way

SYN ‘s
dropped by

server
or

networkx

wait 3 seconds

xx

x
Client

Perceived
Response

Time

ServerClient

SYN J

SYN J
wait 6 seconds

waiting…

Client gives up and
either hits

the“reload” button
or goes to another

web site.

x

x
SYN J

initial SYN to server

Figure 3: Client gets frustrated waiting for connec-
tion.

handshake) are accounted for in the SYN-to-END time.

While determining SYN-to-END is relatively straight for-
ward, determining the CONN-FAIL time is a difficult prob-
lem and is a key focus of this work. The main problem is
that when a server accepts a SYN and processes the connec-
tion, the server is unaware of how many failed connection
attempts have been made by the client prior to this success-
ful attempt. The TCP header [16] and the data payload of a
SYN packet do not provide any indication of which attempt
the accepted SYN represents. As a result, the server can-
not examine the accepted SYN to determine whether it is
an initial attempt at connecting, or a first retry at connect-
ing, or an N th retry at connecting. Even in the cases where
the server is responsible for dropping the initial SYN and
causing a retry, it is difficult for the server to remember the
time the initial SYN was dropped and correlate it with the
eventually accepted SYN for a given connection. For such a
correlation, the server would be required to retain additional
state for each dropped SYN at precisely the time when the
server’s input network queues are probably near capacity,
which could result in performance scalability problems for
the server.

Our solution for determining the CONN-FAIL time is based
on a statistical model that estimates the number of first,
second, third, etc., retries during each time interval. We de-
termine the number of retries that occurred before a SYN is
accepted using three server-side measurements: the number
of SYNs dropped and accepted, and the number of connec-
tions completed. All three measurements can be obtained
using simple counters at the server. This information is com-
bined with an understanding of the TCP exponential back-
off mechanism to correlate accepted SYNs with the number
of SYN drops that occurred in previous time intervals. Sec-
tion 2.2 describes the approach in detail.

The Certes model also includes the impact of clients cancel-
ing the connection request due to frustration while waiting
to connect. This scenario is shown in Figure 3. To include
the impact of cancelled requests, the Certes model includes
a limit, referred to as the client frustration timeout (FTO),
which is the longest amount of time a client is willing to
wait for an indication of a successful connection. In other
words, the FTO is a measure of the upper bound on the
number of connection attempts that a client’s TCP imple-
mentation will make before the client hits ’reload’ on the
browser or goes to another website. It is possible to use a
distribution of the FTO derived from real world web brows-

ing traffic to include in the Certes model. For simplicity, we
used a constant default value of 21 seconds for the FTO in
our experiments in section 3.

2.2 Mathematical Construction of The Certes
Model

We present a step-by-step construction of the Certes model.
We begin by defining the necessary measurements and pa-
rameters, and then, by example, expose the relationships
that exist between them. We conclude this section with an
equation for calculating the mean client response time from
the measurements and parameters.

Certes divides time into discrete intervals for grouping con-
nections by their temporal relationship. For ease of expo-
sition, we will assume that time is divided into one second
intervals, but in general any interval size less than the initial
TCP retry timeout value of three seconds may be used. The
three basic server-side measurements that are taken for each
interval are:

DROPPEDi the total number of SYN packets that the
server dropped during the ith interval.

ACCEPTEDi the total number of SYN packets that the
server did not drop during the ith interval.

COMPLETEDi the total number of connections that com-
pleted during the ith interval.

The offered load, that is, the number of SYN packets arriv-
ing at the server, in the ith interval is given by,

OFFERED LOADi = ACCEPTEDi +DROPPEDi

It follows that the mean SYN drop rate at the server for the
ith interval can be calculated as:

DRi = DROPPEDi/OFFERED LOADi (1)

We decompose each of these quantities, DROPPEDi,
ACCEPTEDi, COMPLETEDi, andOFFERED LOADi,
as a sum of terms. Let Rj

i be the number of SYN’s that
arrived at the server as a jth retry during the ith interval,
starting with R0

i as the number of initial attempts to connect
to the server during interval i. Let k be the maximum num-
ber of retries attempted by any client (based on the FTO).
For each interval i we have the following decomposition:

OFFERED LOADi =
∑k

j=0 Rj
i

DROPPEDi =
∑k

j=0 Dj
i

ACCEPTEDi =
∑k

j=0 Aj
i

COMPLETEDi =
∑k

j=0 Cj
i

(2)

where Dj
i is the number of SYN’s that arrived at the server

as a jth retry during the ith interval but were dropped by the
server, Aj

i is the number of SYN’s that arrived at the server
as a jth retry during the ith interval and were accepted by
the server, and Cj

i is the number of connections completed
during the ith interval that were accepted by the server as a
jth retry. These equations express the key measured values
of the model as a sum of terms that have associations to
connection attempts.

Client’s TCP waits
3 sec

then tries to
connect again

t0 t1 t3 t4

seconds

0
1A

0
1D0

1R

1ACCEPTED

1
4R

0
1R

total
incoming

SYNs

t2

Figure 4: Initial connection attempts that get
dropped become retries three seconds later.

It turns out the values for Rj
i , Aj

i , Dj
i , Cj

i can be inferred
based on their interdependence and their relationship to
the total measured values for DROPPEDi, ACCEPTEDi,
COMPLETEDi, and OFFERED LOADi. As shown in
Figure 4, assume that the server is booted at time t0 (or
there is a period of inactivity prior to t0). During the
first interval [t0,t1] the server measures ACCEPTED1 and
DROPPED1. Note that A0

1 = ACCEPTED1,
D0

1 = DROPPED1, and R0
1 = OFFERED LOAD1 , i.e.

all SYN’s arriving, accepted or dropped during the first in-
terval are initial SYNs. The dropped SYN’s, D0

1 , will return
to the server as 1st retries three seconds later as R1

4 during
interval [t3,t4].

Moving ahead in time to interval [t3,t4], as shown in Figure
5, the server measures ACCEPTED4 and DROPPED4

and calculates the SYN drop rate for the 4th interval, DR4,
using Equation 1. The web server cannot distinguish be-
tween an initial SYN or a 1st retry, therefore, the drop rate
applies to both R0

4 and R1
4 equally, giving D1

4 = DR4 ·
R1

4, and then A1
4 = R1

4 − D1
4. From equations 2, A0

4 =
ACCEPTED4 − A1

4 and D0
4 = DROPPED4 − D1

4. Fi-
nally, the number of initial SYN’s arriving during the 4th

interval is R0
4 = A0

4 + D0
4. We have determined the values

for all terms in Figure 5.

Note that the D1
4 dropped SYN’s will return to the server as

2nd retries six seconds later during interval [t9,t10], as R2
10

, when those clients experience their second TCP timeout
and that the D0

4 dropped SYN’s will return to the server as
1st retries, as R1

7 , three seconds later during interval [t6,t7].
By continuing in this manner it is possible to recursively
compute all values of Rj

i , Aj
i and Dj

i for all intervals, for a
given k. Figure 6 depicts the 10th interval, including those
intervals that directly contribute to the values in the 10th

interval. Clients that give up after k connection attempts
are depicted as ending the transaction.

Figure 7 shows the final model defining the relationships be-
tween the incoming, accepted, dropped and completed con-
nections during the ith interval. Connections accepted dur-
ing the ith interval complete during the (i+SYN-to-END)th

interval. The client frustration timeout is specified in sec-
onds and the term Rj

i+[FTO−3×2k−1]
indicates that clients

t0 t1 t3 t4 t6 t7 t9 t10
seconds

0
1A

0
1D0

1R

4ACCEPTED
1ACCEPTED

1
4

0
4 AA +

0
4D 1

4D1
4R0

4R 1st retries 2nd retries

1
4

0
4 RR +
total

incoming
SYNs

0
1R

total
incoming

SYNs

2
10R1

7R

Figure 5: A second attempt at connection, that gets
dropped, becomes a retry six seconds later.

who do not get accepted during the ith interval on the
kth retry will cancel their attempt for service during the
i + [FTO − 3 × 2k−1] interval. The Certes online model in
Figure 7 can be implemented in a web server by using a
simple data structure with a sliding window.

Certes is resilient to minor inconsistencies in client TCP be-
havior. For example, due to inconsistencies in network de-
lays the 1st retry from a client may not arrive at the server
exactly three seconds later, rather it may arrive in the in-
terval prior to or after the interval it was expected to arrive.
Likewise, since the measurement for SYN-to-END is not
constant, there will be instances where Cj

i+SYN-to-END �= Aj
i ;

in otherwords, some of the j retries accepted in the ith in-
terval may complete prior to or after the i+SYN-to-ENDth

interval. These occurrences relate to the choice for interval
size. As the interval size grows smaller, the probability that
the 1st retry from a client will arrive in the interval which
is exactly three seconds later grows smaller. We addressed
these inconsistencies in our implementation by performing
online adjustments to ensure that relationships within and
between intervals remained consistent. More generally, one
could include distributions in the model. For example, the
server can calculate the distribution of the SYN-to-END, us-
ing it to determine Cj

i over a range of prior intervals. Alter-
natively, one can formulate a best-fit, optimization problem,
and then use linear least squares to determine the ’best-fit’
for all parameters, across a sliding window of intervals. As
shown in Section 3.2, the results obtained by using our online
adjustments were sufficiently accurate to limit the utility of
using a costlier linear least squares approach.

2.2.1 Packet Loss in the Network
Packet drops that occur in the network (and not explicitly
by the server) are included in the model to refine the client
response time estimate. Since the client-side TCP reacts to
network drops in the same manner as it does to server-side
drops, network drops are estimated and added to the drop
counts, Dj

i . As shown in Figure 7, SYNs dropped by the

network (NDSj
i) are combined with those dropped at the

server.

To estimate the SYN drop rate in the network, one can
use a general estimate of a 2-3% [36, 37] packet loss rate
in the Internet or, in the case of private networks, obtain

t0 t1 t3 t4 t6 t7 t9 t10
seconds

0
1D0

1R 1
4D1

4R

T
1

0
1 AR =
total

incoming
SYNs

0
10D0

10R 1
10D1

10R 2
10D2

10R

10ACCEPTED

2
10

1
10

0
10 AAA ++

0
7D0

7R

2
10

1
10

0
10 RRR ++

total
incoming

SYNs

clients get
frustrated

and
give up
before

next retry

Figure 6: After three connection attempts the client gives up.

packet loss probabilities from routers. Another approach is
to assume that the packet loss rate from the client to the
server is equal to the loss rate from the server to the client.
The server can estimate the packet loss rate to the client
from the number of TCP retransmissions.

2.3 Calculating Client Perceived Response Time
The online implementation of Certes estimates the mean
client response time for the current interval, i, using the
following equation:

CLIENT RTi =
∑
SYN-to-END +

∑
RTT +Rk+1

i · 3[2k+1 − 1]+
∑k

j=1 Cj
i · 3[2j − 1]

COMPLETEDi +Rk+1
i

(3)

Equation 3 essentially divides the sum of the response times
by the number of transactions to obtain mean response time.
In the denominator, Rk+1

i is the number of clients that gave-
up during the current interval, and is added to the number
of transactions that completed during the current interval.
In the numerator,

∑
SYN-to-END is the sum of the mea-

sured SYN-to-END times and
∑

RTT is the sum of one
round trip time (for all connections completed during the
current interval). The term Rk+1

i · 3[2k+1 − 1] represents
the amount of time that clients waited before giving-up.
The term

∑k
j=1[C

j
i · 3[2j − 1]] represents the amount of

time clients waited between SYN retries. A running total of
the SYN-to-END and RTT measures can be kept, allowing
Equation 3 to be calculated in constant time. For example,
if k = 2, then Equation 3 resolves to

CLIENT RTi =
∑
SYN-to-END+

∑
RTT + 21Rk+1

i + 9C2
i + 3C

1
i

COMPLETEDi +Rk+1
i

C1
i indicates the number of clients that waited an additional
3 seconds due to a SYN drop, C2

i is the number of clients
that waited an additional 9 seconds due to two SYN drops,
and Rk+1

i is the number of clients that gave-up after waiting
21 seconds.

2.4 Limitations of the Model
We identify two aspects of the model that we consider to
be potential sources of estimation error and give solutions.

If the client frustration timeout is:
then the number
of retries will be

less than 3 sec k=0
at least 3sec but less than 9sec k=1
at least 9sec but less than 21sec k=2
at least 21sec but less than 45sec k=3
at least 45sec but less than 1.55min k=4
at least 1.55min but less than 3.15min k=5

Table 1: Relationship between client frustration
timeout and number of connection attempts

They are a) incorrect FTO assumptions and b) SYN floods.
DNS lookup time is not included in our model nor are pages
obtained from content distribution networks or distributed
caches.

The first potential source of estimation error involves using
an inaccurate estimate of the client frustration timeout. Ta-
ble 1 specifies the relationship between FTO and the value
for k, the maximum number of retries a client is willing
to attempt before giving up. Fortunately, the value chosen
for k covers a range of client behavior - unfortunately, that
range will not cover all client behavior. For our experiments
we chose a default value of k = 2. If the distribution for
k was known (via historical measurements) the distribution
can easily be included into the model. Most operating sys-
tems set k to 4, 5 or 6 and Microsoft’s Internet Explorer web
browser has a default FTO of five minutes.

The second potential source of estimation error arises during
a SYN flood (denial of service) attack. During a SYN flood,
the attackers keep the server’s SYN queue full by continu-
ally sending large numbers of initial SYNs. This essentially
reduces the FTO to zero. The end result is that the server
stands idle, with a full SYN queue, while very few client con-
nections are established and serviced. A SYN flood attack
is very different from a period of heavy load. The perpetra-
tors of a SYN attack do not adhere to the TCP timeout and
exponential back-off mechanisms, never respond to a SYN-
ACK and never establish a connection with the server; no
transactions are serviced. On the other hand, in heavy load
conditions, clients adhere to the TCP protocol and large
numbers of transactions are serviced (excluding situations
where the server enters a thrashing state).

k
iNDS k

iNDS

ti-1 ti

seconds

0
iD0

iR 1
iD1

iR 2
iD2

iR

=iACCEPTED k
i

2
i

1
i

0
i AAAA +++ K

clients get
frustrated

and
give up.

k
iDk

iR

0
3-iD

0
6-iD

0

23-i 1-kD ×

[]
1k

3x2-FTOi 1-kR +
+

Transactions
accepted in the ith
interval complete

during the
i+SYN-to-END
interval, where

SYN-to-END is the
server measured
response time.

0
ENDtoSYNiC −−+

1
ENDtoSYNiC −−+

2
ENDtoSYNiC −−+

k
ENDtoSYNiC −−+

ti+SYN-to-ENDti+SYN-to-END-1

…

k
iNDSk

iNDS

Figure 7: Relationship between incoming, accepted, dropped, completed requests and network SYN drops.

Certes works well under heavy load conditions due to the ad-
herence of clients to the TCP protocol. During a SYN flood
attack, Certes faces the problem of identifying the distribu-
tion of the FTO. Our solution involves identifying when a
SYN attack is underway, allowing Certes to switch from the
FTO distribution currently in use to one that is represen-
tative of a SYN attack. While identifying a SYN attack is
relatively simple, it is not easy to construct a representative
FTO distribution for a SYN flood attack, which is beyond
the scope of this paper.

3. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of Certes, we implemented
Certes on Linux and evaluated its performance in HTTP
1.0/1.1 environments, under constant and changing work-
loads. The results presented here focus on evaluating the
accuracy of Certes for determining client perceived response
time in the presence of failed connection attempts. The ac-
curacy of Certes is quantified by comparing its estimate of
client perceived response time with client-side measurements
obtained through detailed client instrumentation. Section
3.1 describes the experimental design and the testbed used
for the experiments. Section 3.2 presents the client perceived
response time measurements obtained for various HTTP
1.0/1.1 web workloads. Section 3.3 demonstrates how a web
server control mechanism can use Certes to measure its own
ability to manage client response time.

3.1 Experimental Design
The testbed consisted of six machines: a web server, a WAN
emulator, and four client machines. Each machine was an
IBM Netfinity 4500R with dual 933 MHz CPUs, 100/10
Mbps Ethernet, 512 MB RAM, and 9.1 GB SCSI HD. Both
the server and clients ran RedHat Linux 7.1 while the WAN

emulator ran FreeBSD 4.4. The client machines were con-
nected to the web server via two 10/100 Mbps Ethernet
switches and a WAN emulator, used as a router between the
two switches. The client-side switch was a 3Com SuperStack
II 3900 and the server-side switch was a Netgear FS508. The
WAN emulator software used was DummyNet [30], a flexi-
ble and commonly used FreeBSD tool. The WAN emulator
simulated network environments with different network la-
tencies, ranging from .3 to 150 ms of round-trip time, as
would be experienced in LAN and cross-country WAN envi-
ronments, respectively. The WAN emulator simulated net-
works with no packet loss and 3% packet loss, which is not
uncommon over the Internet.

The web server machine ran the latest stable version of the
Apache http server, V1.3.20. Apache was configured to run
255 daemons and a variety of test web pages and CGI scripts
were stored on the web server. The number of test pages was
small and the page sizes were 1 KB, 5 KB, 10 KB, and 15
KB. The CGI scripts would dynamically generate a set of
pages of similar sizes.

Certes also executed on the server machine, independently
from Apache. The Certes implementation was designed
to periodically obtain counters and aggregate SYN-to-END
time from the kernel and perform modeling calculations in
user space. Periodically Certes would log the modelling re-
sults to disk. For our experiments, the Certes implemen-
tation was configured to use 250 ms second measurement
intervals and a default frustration timeout of 21 seconds
(except where noted).

Since RedHat 7.1 is not fully instrumented for Certes, mi-
nor modifications were made to the kernel. We calculated

Test
Total
Number
of Clients

Pages
Types

Pages per
Connection

Network
Drop
Rate

HTTP
ping RTT
(ms)

min/avg/max

Connections
per Second

SYN
Drop Rate

A 2000 static 1 0 1.0 1/8/21 1210-1670 11%-22%
B 2000 static+cgi 1 0 1.0 0.2/0.5/5 330-580 11%-33%
C 2000 static+cgi 1 0 1.0 141/152/165 320-675 0.5%-26%
D 2000 cgi 1 0 1.0 0.2/0.4/4 175-320 26%-44%
E 2000 static 15 0 1.1 4/11/17 80-150 45%-63%
F 1400 static 15 0 1.1 141/153/167 50-96 0.5%-36%
G 2000 static+cgi 5 0 1.1 0.2/0.7/6 97-173 42%-59%
H 1600 static+cgi 5 0 1.1 140/152/165 95-175 9%-37%
I+ 2000 static+cgi 5 0 1.1 120/133/147 30-185 0% - 54%
J+ 4800 static 1 0 1.0 142/151/165 55-470 0%-78%
K 2000 static+cgi 5 3% 1.1 0.2/0.6/6 103-177 35%-56%
L 2000 static 1 3% 1.0 0.2/0.9/8 340-1310 0%-30%
M 1600 static+cgi 5 3% 1.1 140/151/161 50-115 14%-54%
N 2000 static 1 3% 1.0 144/151/164 145-400 0.5%-34%
O* 1500 static+cgi 5 3% 1.1 140/150/161 57-147 8%- 53%
P* 1800 static+cgi 1 3% 1.0 140/151/161 180-400 5%-38%

Table 2: Test configurations included HTTP 1.0/1.1, with static and dynamic pages.

the SYN-to-END time for TCP connections by tracking the
timestamp of the SYN when the device driver posts the in-
coming packet to the kernel and by correlating that with
a timestamp at the end of the transaction. We also added
ACCEPTED and COMPLETED counters, but re-used the
existing SNMP/TCP counter for DROPPED. This totaled
less than 50 lines of code. All these values were exposed
to user space by a kernel module that extended the /proc
directory.

The client machines ran an improved version of the Web-
stone 2.5 web traffic generator [35]. Five improvements were
made to the traffic generator. First, we removed all inter-
process communication (IPC) and made each child process
autonomous to avoid any load associated with IPC. Second,
we modified the WebStone log files to be smaller yet contain
more information. Third, we extended the error handling
mechanisms and modified how and when timestamps were
taken to obtain more accurate client-side measurements.
Fourth, we implemented a client frustration timeout mech-
anism after discovering the one provided in WebStone was
only triggered during the select() function call and was not
a true wall clock frustration timeout mechanism. Fifth, we
added an option to the traffic generator that would produce
a variable load on the server by switching between ’on’ and
’sleep’ states.

The traffic generators were used on the four client machines
to impose a variety of workloads on the web server. The
results for sixteen different workloads are presented, half of
which were HTTP 1.0, the other half HTTP 1.1. While re-
cent studies indicate that HTTP 1.0 is still used far more
frequently than HTTP 1.1 in practice [31], HTTP 1.1 em-
ploys persistent connections, which increases the duration
of each connection and reduces the number of connections,
thereby reducing the effect that SYN drops have on client
response time. Measuring both HTTP 1.0/1.1 workloads
provides a way to quantify the benefits of using Certes for
different versions of HTTP versus only using simpler SYN-
to-END measurements. For the HTTP 1.1 workloads con-

sidered, the number of web objects per connection ranged
from 5 to 15, consistent with recent measurements of the
number of objects (i.e. banners, icons, etc) typically found
in a web page [31].

The characteristics of the sixteen workloads are summarized
in Table 2. The workloads accessed a varying mix of static
web pages and CGI-generated web pages. All of the sixteen
workloads imposed a constant load on the server except for
Test I+ and Test J+, which imposed a highly-varying load
on the server. Each experimental workload was run for 20
minutes. As shown in Table 2, for each workload, we mea-
sured at the server the steady-state number of connections
per second and mean SYN drop rate during successive one-
second time intervals. These measurements provide an in-
dication of the load imposed on the server.

3.2 Measurements and Results
Figure 8a shows the client-side, Certes, SYN-to-END and
Apache measured response times, measured in seconds, for
each experiment. Figure 8b shows the same results normal-
ized with respect to the client-side measurements.

The results show that the SYN-to-END measurement con-
sistently underestimated the client-side measured response
time, with the error ranging from 5% to more than 80%.
The Apache measurements for response time, which by def-
inition will always be less than the SYN-to-END time, were
extremely inaccurate, with an error of at least 80% in all
test cases. In contrast, the Certes estimate was consistently
very close to the client-side measured response time, with
the error being less than 2.5% in all cases except Tests L, N
and P*, which were less than 7.4%.

Figures 9a and 9b, show the response time distributions for
Test D using HTTP 1.0 and Test G using HTTP 1.1. These
results show that Certes not only provides an accurate ag-
gregate measure of client perceived response time, but that
Certes provides an accurate measure of the distribution of
client perceived response times. Figure 9 again shows how

�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������

(a)

0

2

4

6

8

10

12

14

16

18

A B C D E F G H I+ J+ K L M N O* P*

Experiments

R
es

p
o

n
se

T
im

e
(s

ec
o

n
d

s)
Client Apache

������
SYN-to-END Certes

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

A B C D E F G H I+ J+ K L M N O* P*

Experiments

N
o

rm
al

iz
ed

R
es

p
o

n
se

T
im

e

Apache
�������

SYN-to-END Certes

Figure 8: Certes accuracy and stability in various
environments.

erroneous the SYN-to-END time measurements are in esti-
mating client perceived response time.

Figures 10a and 10b show how the response time varies over
time for Test A using HTTP 1.0 and Test G using HTTP
1.1. The figures show the mean response time at one-second
time intervals as determined by each of the four measure-
ment methods. The client-side measured response time in-
creases at the beginning of each test run then reaches a
steady state during most of the test run while the traffic
generated is relatively constant. At the end of the experi-
ment the clients are terminated, the generated traffic drops
off, and the response time drops to zero.

Figure 10 shows that Certes can track in real-time the vari-
ations in client perceived response time for both HTTP
1.0/1.1 environments. The figure also indicates that Certes
is effective at tracking both smaller and larger scale response
times, and that Certes is able to track client perceived re-
sponse time over time in addition to providing the accurate
long term aggregate measures of mean response time shown
in Figure 8. Again, Certes provides a far more accurate real-
time measure of client perceived response time than SYN-
to-END times or Apache. The large amount of overlap in
the figures between the Certes response time measurements
and client-side response time measurements show that the
measurements are very close. In contrast, the SYN-to-END
and Apache meassurements have almost no overlap with the
client-side measurements and are substantially lower.

To gain insight on Certes’ sensitivity to the FTO, Test O*
and Test P* were executed using false assumptions for the
number of retries k. In these two cases the FTO was dis-
tributed across clients: 1/3 of the transactions were from
clients configured to have an FTO of 9 seconds (k = 1),
1/3 were from clients configured to have an FTO of 21 sec-
onds (k = 2), and 1/3 from clients configured to have a

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

co
un

t

mean response time

Client−Side
Certes
SYN−to−END
Apache

(a)

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

co
un

t

mean response time

Client−Side
Certes
SYN−to−END
Apache

(b)

Figure 9: Certes response time distribution approx-
imates that of the client for Tests D and G.

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

m
ea

n
re

sp
on

se
 ti

m
e

(s
ec

)

elapsed time (sec)

Client−Side
Certes
SYN−to−END
Apache

(a)

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

m
ea

n
re

sp
on

se
 ti

m
e

(s
ec

)

elapsed time (sec)

Client−Side
Certes
SYN−to−END
Apache

(b)

Figure 10: Certes online tracking of the client re-
sponse time in Test A and Test G.

700 800 900 1000 1100 1200 1300
0

2

4

6

8

10

12

14

16

18
m

ea
n

re
sp

on
se

 ti
m

e
(s

ec
)

elapsed time (sec)

Client−Side
Certes
SYN−to−END
Apache

Figure 11: Certes online tracking of the client re-
sponse time in Test J, in on-off mode.

client FTO of 45 seconds (k = 3); the online model used the
incorrect assumption that all clients had an FTO of 21 sec-
onds (k = 2). The results for Tests O* and P* show that the
Certes response time measurements were still within 2% and
7.4%, respectively, of the client-side response time measure-
ments. For Test O* the resulting Certes estimate was only
off by 108 ms and for Test P* the difference was 677 ms.
As mentioned earlier, if the distribution for k was known
(via historical measurements) the distribution can easily be
included into the model. Further study is needed to de-
termine if error bounds exist for Certes and under which
specific conditions Certes is least accurate and why.

One of the key requirements for an online algorithm such
as Certes is to be able to quickly observe rapid changes in
client response time. Figure 11 shows how Certes is able to
track the client response time as it rapidly changes over time.
There is no significant lag in Certes reaction time to these
changes. This is an important feature for any mechanism
to be used in real-time control. As expected, the SYN-to-
END measurement tracks the client perceived response time
during the time intervals in which SYN drops do not occur.
During the interval in which SYN drops occur, the SYN-to-
ENDmeasurement reaches a maximum (i.e. about 6 seconds
in Figure 11), which indicates the inaccuracy of the SYN-to-
END time for those connections that are accepted when the
listen queue is nearly full. We note for completeness that
Figure 11 is zoomed in to show detail and does not contain
information from the entire experiment. The ’chaos’ at the
end of the test run is indicative of the time-dependant nature
of SYN dropping. These relatively few clients experienced
SYN drops prior to these last few intervals, increasing the
overall mean client response time during a period when the
load on the system is actually very light. The mean client
response time during these intervals actually reflects heavy
load in the recent past.

An important consideration in using an online measurement
tool such as Certes is ensuring that the measurement over-
head does not adversely affect the performance of the web
server. To determine the overhead of Certes, we re- exe-
cuted Tests A, G and H on the server without the Certes
instrumentation and found the difference in throughput and
client response time to be insignificant. This suggests that

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

accept queue [0:1265.83]

co
un

t

elapsed time (sec)

length
limit

Figure 12: Web server control manipulating the
Apache listen queue limit.

Certes imposes little or no overhead on the server.

3.3 Listen Queue Management
In this section we demonstrate how Certes can be combined
with a web server control mechanism to better manage client
response time. Web server control mechanisms often ma-
nipulate inbound kernel queue limits as a way to achieve
response time goals [19, 20, 17, 28, 2, 9, 8]. Unfortunately,
there is a serious pitfall that can occur when post-TCP con-
nection measurements are used as an estimate of the client
response time. Using these types of measurements as the
response time goal can lead the control mechanism to take
actions that may result in having the exact opposite effect on
client perceived response time from that which is intended.
Without a model such as Certes, the control mechanism will
be unaware of this effect.

To emulate the effects of a control mechanism at the web
server, we modified the Linux kernel to dynamically change
the Apache listen queue limit over time. Figure 12 shows
the listen queue limit changing every 10 seconds between
the values of 25 and 211. Figure 13 shows the effect this has
on the client perceived response time. In this experiment,
1000 clients requested static pages using HTTP 1.0 while
DummyNet imposed a 152 ms ping delay. The SYN drop
rate varied from 0 to 81%, depending on the accept queue
limit; likewise the number of completed transactions varied
from 185 to 1020 per second.

When the queue limit is small, such as near the 200th in-
terval, the response time at the clients is high due to failed
connection attempts, but the SYN-to-END time is small due
to short queue lengths at the server. The pitfall occurs when
the control mechanism decides to shorten the listen queue
to reduce response time, causing SYN drops, which in turn
increases mean client response time. Certainly, the control
mechanism must be aware of the effect that SYN drops have
on the client perceived response time and include this as an
input when deciding on the proper queue limits.

4. RELATED WORK
Previous approaches in estimating client perceived response
time by third party sampling [18, 21, 13, 33], client-side
scripting [29], and web server application-level measurement

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

10
m

ea
n

re
sp

on
se

 tim
e

(s
ec

)

elapsed time (sec)

Client−Side
Certes
SYN−to−END
Apache

Figure 13: Client response time increases as listen
queue limit decreases.

[19, 20, 17, 2] were discussed earlier. In addition, a number
of analytical models have been proposed for modeling TCP
behavior [26, 25, 7]. The focus of this line of research is
on estimating TCP transfer throughput, and as a corollary,
on estimating the client perceived response time. For exam-
ple, Padhye et. al [25] derive steady state throughput of a
TCP bulk transfer for a given like loss rate and round trip
time. Their model is further extended by Cardwell, Savage,
and Anderson [7] to include the effects of TCP three-way
handshake and TCP slow start. Their extended model can
accurately estimate throughput for TCP transfers of any
length. Our work differs from these analytical models in sev-
eral ways: First, the focus of these models is on estimating
TCP transfer throughput for a given set of link conditions,
while our work focuses on estimating the client perceived re-
sponse times. Second, the analytical models assume a fixed
packet loss rate. If the server uses SYN drops to manipulate
its quality of service (QoS), then the loss rate for the three-
way handshake would be different than the loss rate during
the rest of the connection. Third, these models assume that
the packet loss rate remains constant over the time. This
paper is concerned with the case when the packet loss rate
for the SYN packets may be changing frequently. Finally,
these models require that the loss rate and round trip time
be known a priori in order to estimate the client perceived
response time, while our methods propose to estimate the
same in real time.

Our work is complementary to many recent proposals for
controlling QoS at web servers. One approach entails imple-
menting kernel mechanisms that differentiate among TCP
connections of different service classes during the TCP con-
nection establishment phase. For example, Voigt, Tewari,
and Mehra have proposed TCP SYN policing and prioritized
listen queue to support different service classes [34]. Another
approach is to dynamically manage a system resource by
using a control feedback that depends on the measurements
of client perceived response time [28, 8]. Such approaches
can result in a high probability of TCP SYN drops, increas-
ing the client perceived response time. Unless the effect
of TCP SYN drops on the client perceived response time
is measured accurately, these mechanisms would not work
as desired. Our work complements these efforts to control
the QoS at web servers by providing an accurate means of

measuring the client perceived response time.

5. CONCLUSIONS
This paper presented Certes, an online server-based mech-
anism that enables web servers to measure client perceived
response time. Certes is based on a model of TCP that
1) quantifies the effect that SYN drops have on client re-
sponse time, 2) requires three simple server-side measure-
ments, 3) does not require modifications to client browsers,
http servers, or web pages, and does not rely on probing
or third party sampling. Certes was shown to provide ac-
curate estimates in the HTTP 1.0/1.1 environments, with
both static and dynamically created pages, under constant
and variable loads of differing scale.

A key result of Certes is its robustness and accuracy. Certes
can be applied over long periods of time and does not drift
or diverge from the perceived client response time, that any
errors that may be introduced into the model do not accu-
mulate over time. Certes is able to accurately track, online,
the client perceived response time. This includes the subtle
changes that can occur under constant load as well as the
rapid changes that occur under bursty conditions. Certes
can determine the distribution of the client perceived re-
sponse time. This is extremely important, since service level
objectives may not only specify mean response time targets,
but also indicate variability measures such as mode, maxi-
mum, standard deviation and variance.

Certes can be readily applied in a number of contexts. Certes
is particularly useful to web servers that provide QoS by
controlling inbound kernel queue limits. Certes allows such
servers to avoid the pitfalls associated with using application
level or kernel level SYN-to-END measurements of response
time. Algorithms that manage resource allocation, reser-
vations or congestion [3] can benefit from the short-term
forecasting [10] of connection retries modelled by Certes.

6. ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER
Award, NSF grant ANI-0117738, and an IBM SUR Award.

7. REFERENCES
[1] M. Allman. A Web Server’s View of the Transport

Layer. ACM Computer Communication Review,
30(4):133–142, October 2000.

[2] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
Providing Differentiated Levels of Service in Web
Content Hosting. In Workshop on Internet Server
Performance Conference Proceedings, June 1998.

[3] H. Balakrishnan, H. S. Rahul, and S. Seshan. An
integrated congestion management architecture for
Internet hosts. ACM SIGCOMM Computer
Communication Review, 29(4):175–187, 1999.

[4] P. Barford and M. Crovella. A performance evaluation
of hyper text transfer protocols. ACM SIGMETRICS
Performance Evaluation Review, 27(1):188–197, 1999.

[5] N. Bhatti and R. Friedrich. Web Server Support for
Tiered Services. IEEE Network, 13(5):6764–71,
Sept.-Oct. 1999.

[6] R. Braden. Requirements for Internet Hosts -
communication layers. RFC 1122, October 1989.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP Latency. In IEEE INFOCOMM Conference
Proceedings, volume 3, pages 1742–1751, 2000.

[8] X. Chen and P. Mohapatra. Providing Differentiated
Service from an Internet Server. In 8th Int. Conf. On
Computer Communications and Networks Conference
Proceedings, pages 214–217, 1999.

[9] X. Chen, P. Mohapatra, and H. Chen. An Admission
Control Scheme for Predictable Server Response Time
for Web Accesses. In 10th International World Wide
Web Conference Proceedings, pages 545–554, 2001.

[10] E. Cohen, B. Krishnamurthy, and J. Rexford. Efficient
Algorithms for Predicting Requests to Web Servers. In
IEEE INFOCOM Conference Proceedings, pages
284–293, 1999.

[11] P. Danzig. Keynote talk presented at NOSSDAV.
http://www.nossdav.org/2001/keynote nossdav2001.ppt,
2001.

[12] L. Eggert and J. Heidemann. Application-Level
Differentiated Services for Web Servers. World Wide
Web Journal, 3(2):133–142, August 1999.

[13] Exodus. http://www.exodus.com/.

[14] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol- HTTP
1.1. RFC 2068, January 1997.

[15] Y. Fu, L. Cherkasova, W. Tang, and A. Vahdat. EtE:
Passive End-to-End Internet Service Performance
Monitoring. In USENIX Conference Proceedings, 2002.

[16] E. J. Postel. Transmission Control Protocol. RFC 793,
September 1981.

[17] V. Kanodia and E. Knightly. Multi-Class
Latency-Bounded Web Services. In IEEE/IFIP
IWQoS Conference Proceedings, June 2000.

[18] KeyNote. http://www.keynote.com/.

[19] K. Li and S. Jamin. A Measurement-Based
Admission-Controlled Web Server. In IEEE
INFOCOMM Conference Proceedings, pages 651–659,
2000.

[20] C. Lu, T. Abdelzaher, J. Stankovic, and S. H. Son. A
Feedback Control Approach for Guaranteeing Relative
Delays in Web Server. In IEEE Real-Time Technology
and Applications Symposium, pages 51–62, June 2001.

[21] MercuryInteractive.
http://www-heva.mercuryinteractive.com/.

[22] E. Nahum, T. Barzilai, and D. Kandlur. Performance
issues in WWW servers. ACM SIGMETRICS
Performance Evaluation Review, 27(1):216–217, 1999.

[23] NetQoS. http://www.netqos.com/.

[24] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. W. Lie, and C. Lilley. Network
performance effects of HTTP/1.1, CSS1, and PNG.
ACM SIGCOMM Computer Communication Review,
27(4):155–166, 1997.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP throughput: a simple model and its
empirical validation. ACM SIGCOMM Computer
Communication Review, 28(4):303–314, 1998.

[26] J. Pahdye and S. Floyd. On inferring TCP behavior.
In Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer
communications, pages 287–298. ACM Press, 2001.

[27] R. Pandey, J. F. Barnes, and R. Olsson. Supporting
quality of service in HTTP servers. In Proceedings of
the seventeenth annual ACM symposium on Principles
of distributed computing, pages 247–256. ACM Press,
1998.

[28] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,
T. Jayram, and J. Bigus. Using Control Theory to
Achieve Service Level Objectives In Performance
Management. In IFIP/IEEE International Symposium
on Integrated Network Management Conference
Proceedings, pages 841–854, 2001.

[29] R. Rajamony and M. Elnozahy. Measuring
Client-Perceived Response Times on the WWW. In
3rd USENIX Symposium on Internet Technologies and
Systems (USITS) Conference Proceedings, March
2001.

[30] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM SIGCOMM
Computer Communication Review, 27(1):31–41, 1997.

[31] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott.
What TCP/IP protocol headers can tell us about the
web. ACM SIGMETRICS Performance Evaluation
Review, 29(1):245–256, 2001.

[32] W. R. Stevens. TCP/IP Illustrated, Volume 1 The
Protocols. Addison-Wesley, Massachusetts, 1994.

[33] StreamCheck. http://www.streamcheck.com/.

[34] T. Voigt, R. Tewari, A. Mehra, and D. Freimuth.
Kernel Mechanisms for Service Differentiation in
Overloaded Web Servers. In USENIX Conference
Proceedings, 2001.

[35] WebStone. http://www.mindcraft.com/.

[36] M. Yajnik, S. Moon, J. Kurose, and D. Towsley.
Measurement and Modeling of the Temporal
Dependence in Packet Loss. In IEEE INFOCOM
Conference Proceedings, pages 345–352, 1999.

[37] Y. Zhang, V. Paxson, and S. Shenker. The
Stationarity of Internet Path Properties: Routing,
Loss and Throughput. In Technical Report, ACIRI,
May 2000.

