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ABSTRACT
We consider a web server that can provide di�erentiated ser-
vices to clients with di�erent QoS requirements. The web
server can provide N > 1 classes of service. Rather than us-
ing a strict priority policy, which may lead to request starva-
tion, the web server provides a proportional-delay di�erenti-
ated service (PDDS) to heterogeneous clients. An operator
for the web server can specify \�xed" performance spacings
between classes, namely, ri;i+1 > 1, for i = 1; : : : ; N � 1.
Requests in class i + 1 are guaranteed to have an average
waiting time which is 1=ri;i+1 of the average waiting time of
class i requests. With PDDS, we can provide consistent per-
formance spacings over a wide range of system loadings. In
addition, each client can specify a maximum average wait-
ing time requirement to be guaranteed by the web server.
We propose two eÆcient admission control algorithms so
that a web server can provide the QoS guarantees and, at
the same time, classify each client to its \lowest" admissi-
ble class, resulting in lowest usage cost for the client. We
also consider how to perform end-point dynamic adaptation
such that clients can submit requests at a lower class and
further reduce their usage cost, without violating their QoS
requirements. We propose two dynamic adaptation algo-
rithms: one is server-based and the other is client-based.
The client-based adaptation is based on a non-cooperative
game technique. We report diverse experimental results to
illustrate the e�ectiveness of these algorithms.

1. INTRODUCTION
�Research supported in part by the Mainline and RGC Re-
search Grant.
yResearch supported in part by the National Science Foun-
dation under grant numbers EIA-9806741 and CCR-9875742
(CAREER).

As the Internet becomes more commercially oriented and
di�erent businesses use web servers to disseminate informa-
tion, the e�ect of access latency to the web servers becomes
more important. Conventional web servers use a \single
class" approach to service client requests. This will not work
well for the scenario wherein di�erent clients have di�erent
QoS requirements and are willing to pay di�erent prices to
attain their desired QoS levels. Rather, a web server should
classify requests into multiple classes which can provide the
necessary service di�erentiation.

There are multiple ways for a web server to provide di�eren-
tiated services. For example, a strict priority policy can be
used, in which clients submit requests in di�erent priority
classes, and the web server always accepts the next request
from the highest priority class that is backlogged. The draw-
backs of this approach are (1) the possibility of starvation
for requests in the lower priority classes, and (2) the perfor-
mance spacings between di�erent classes are load dependent,
introducing pricing complication. For example, if a client X
is charged at a rate of R1 and another client Y is charged at
a rate of R2, where R2 > R1, then Y should expect its per-
formance to be proportionately better than that of X (e.g.,
the performance of Y is R2=R1 that of X), regardless of sys-
tem loading. This type of performance guarantees cannot
be easily achieved with strict priority scheduling.

We target a web server able to provide a di�erentiated ser-
vice that has the following properties:

� Consistency: service di�erentiation is consistent (i.e.,
higher classes receive better service) and the perfor-
mance di�erentiation is independent of variations in
class load.

� Controllability: the operator of the web server can
specify and control the performance spacings between
o�ered classes of service, according to the pricing struc-
ture.

In [4], the authors propose an Internet service model called
proportional di�erentiated services, which has the above
mentioned consistency and controllability properties. In the



service model, the performance spacing between class i + 1
and class i can be speci�ed as a �xed ratio ri;i+1. If this
ratio can be maintained over a wide range of system load-
ings, then a user of class i+1, who is paying at a rate ri;i+1
higher than a user of class i, will consistently have perfor-
mance that is ri;i+1 better than the class i user. To realize
proportional-delay di�erentiated services, the authors in [4]
propose to use the time-dependent priority (TDP) service
discipline in [7]. In [9, 10], the authors illustrate the neces-
sary and suÆcient conditions under which the controllability
and consistency properties can be maintained.

In this paper, we consider a proportional-delay Di�Serv-
enabled web server, say S. Speci�cally, S provides a wait-
ing time di�erentiated service for N > 1 classes of requests.
Let Wi be the expected waiting time of class i requests, for
i = 1; : : : ; N . The web server S speci�es a �xed performance
spacing ri;i+1 > 1 such that

Wi=Wi+1 = ri;i+1 for i = 1; 2; : : : ; N � 1.

For example, if ri;i+1 = 1:5, then the operator of the web
server can legitimately charge class i + 1 clients a usage
rate 50% higher than that of class i clients. In addition,
each client speci�es a maximum average waiting time for its
requests to be guaranteed by S. We consider the following
technical issues:

� EÆcient admission control so that S can provide the
requested performance di�erentiation and guarantees.

� EÆcient assignment of client requests into di�erent
service classes, so that an admitted client's perfor-
mance requirement can be satis�ed.

� Dynamic adaptation so that, depending on the server
workload, a client can assign requests to a lower ser-
vice class (than initially prescribed at admission con-
trol time) and can still receive service consistent with
its performance requirement. This way, a client can
pay a lower usage cost while still obtaining satisfac-
tory service.

The balance of the paper is organized as follows. In Sec-
tion 2, we provide the necessary background of proportional
delay di�erentiated services. We also formulate the prob-
lem of admission control, client classi�cation and dynamic
adaptation. In Section 3, we present two eÆcient admission
control algorithms and state their important properties. In
Section 4, we present two adaptation algorithms: One is
server-based (i.e., a centralized algorithm) while the other
is client-based (i.e., a distributed algorithm). The client-
based algorithm is based on a non-cooperative game ap-
proach and has low computational complexity. In Section
5, we present experimental results to illustrate the e�ective-
ness of the proposed algorithms. Section 6 discusses related
work, and Section 7 concludes.

2. BACKGROUND & PROBLEM FORMU-
LATION

We review proportional-delay di�erentiated services (PDDS)
[4, 9, 10]. Under PDDS, there are N > 1 service classes such
that class i requests will receive better performance com-
pared with class i � 1 requests, for i = 1; : : : ; N . We con-
sider performance as the average waiting time of a client's
requests. The waiting time of a request is the time the re-
quest spends in the server's queue before it receives service.
Let Wi be the achieved long-term average waiting time of
class i requests. A PDDS web server tries to guarantee that
the ratio of the achieved long-term average waiting time be-
tween classes i and i+ 1 is equal to a �xed and prespeci�ed
ratio, ri;i+1. Speci�cally,

Wi=Wi+1 = ri;i+1 for i = 1; : : : ; N � 1 (1)

The objective is to maintain ri;i+1 > 1 across a wide range
of system loadings. As mentioned, PDDS can be achieved
using the time-dependent priority (TDP) scheduler [4]. In
general, TDP is a non-preemptive priority scheduling algo-
rithm with a set of control variables bi; 1 � i � N , where
0 � b1 � b2 � � � � � bN . The control variable bi dictates
the instantaneous priority of a class i request. Speci�cally,
if the k-th request of class i arrives at the system at time

�k, then its priority at time t (for t � �k), denoted by qki (t),
is

qki (t) = (t� �k)bi : (2)

Let Ni(t) denotes the number of class i requests waiting in
the queue at time t and qi(t) the priority of the request at
the head of the class i queue. When S is ready to service a
request at time t, it chooses a request from class i� where

i�(t) = arg max
i=1::N;Ni(t)>0

fqi(t)g : (3)

Ties for the highest priority are broken by serving the re-
quest that has been waiting the longest in the system. If
there is no request in the system, the server is idle and will
be activated by any newly arriving request. Note that for
the TDP scheduler, a class i request increases in priority
at a faster rate than requests of any class j, where j < i.
In [9, 10], the authors derive the necessary and suÆcient
conditions for feasible delay ratios (Equation (1)). Speci�-
cally, for a two-class system, if the system loading � satis�es
1 � 1=r1;2 < � < 1, then by setting the control parameters

b1 = 1 and b2 = �=(� � 1 + 1
r1;2

), one can achieve the de-

sired waiting time spacing. For a system with more than
two classes of traÆc, the authors give the necessary con-
ditions for feasible spacings, and an eÆcient iterative algo-
rithm for determining the values of the control parameters
bi, i = 1; : : : ; N . For detailed derivation of these control
parameters values, please refer to [9, 10].

Consider a PDDS web server o�ering, say, video-on-demand.
In this case, a class i client who wants to access a video will
experience a smaller start-up latency than a client in class
i � 1. In exchange, the class i client will be charged at a
higher usage rate than the class i� 1 client. Our focus is on
providing fundamental understanding for the design of such
a PDDS-enabled web server.



We assume there are M > 0 potential clients requesting
service from a PDDS-enabled server S. Each of these clients
is an aggregation of many individual users, e.g., users from
the same company or the same network domain. A client,
say j, speci�es two parameters for its desired QoS:

� �max
j : j's maximum o�ered traÆc rate to the server.

� Wmax
j : the maximum average waiting time for client

j's requests before service is obtained.

If a client is admitted to the system and is assigned to class
i, the client is charged an admission cost of Ai, where A1 �
A2 � � � � � AN . S also charges a usage cost of �i for each
request in class i, where �1 � �2 � � � � � �N .

The problems we try to address are:

1. Admission control and class assignment:
Given the workload (�max

j ) and the QoS requirement

(Wmax
j ) of client j requesting service, should S admit

this client, such that the QoS requirements of all the
admitted clients will be satis�ed? Also, when a system
decides to admit j, what is the lowest possible class as-
signment for j, such that j will pay the lowest possible
usage cost?

2. Dynamic class adaptation:
For those admitted clients, their request arrival rates
may be less than their speci�ed maximum request ar-
rival rates. Therefore, rather than using the assigned
class obtained during the admission control process, a
client may choose to submit requests at a lower class.
This way, the client may enjoy its desired level of ser-
vice at a reduced usage cost. We consider the problem
of how each client can adapt to the traÆc condition at
S and adjust its service class dynamically. The main
challenge is to guarantee that we will not violate the
maximum average request waiting time required by the
client.

Before we proceed to the next section, let us de�ne the
following notation. Let M 0 be the number of admitted
clients to the PDDS server S. We have M 0 � M . The
admitted class vector, denoted by Ca = [Ca

1 ; C
a
2 ; : : : ; C

a
M0 ],

represents the class assignment of each admitted client af-
ter the admission control and class assignment process1.
The class assignment for client i is Ca

i 2 f1; 2; : : : ; Ng, for
i = 1; : : : ;M 0. An admitted client may dynamically adapt
to the loading at S and lower its assigned class. The class
vector at time t > 0 for all admitted clients is denoted by
C(t) = [C1; C2; : : : ; CM

0 ] where Ci 2 f1; : : : ; Ng is the class
chosen by client i. It is easy to observe that C(0) = Ca and
C(t) � C

a for t > 0. The total maximum arrival rate of

1The system will assign a class value of 0 to those clients
that the system cannot admit.
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Figure 1: General form of client's utility function
vs. inverse of the waiting time

class k, denoted as �max
ck

, is:

�max
ck

=
MX
j=1

�max
j 1fCj = kg k = 1; 2; : : : ; N .

Let Wck denote the average waiting time of class k requests.
Based on the conservation law [7], we have:

NX
k=1

�max
ck

Wck =

NX
k=1

�max
ck

W (�) (4)

where W (�) represents the average waiting time that would
result if the aggregate traÆc were serviced by a work-conserving
FCFS server of the same capacity as S. De�ne �1 = 1 and
�i = �i�1=ri�1;i for i = 2; : : : ; N . Based on Equation (1),
we have ri�1;i =Wci�1

=Wci . Therefore

�i =Wci=Wc1 i = 1; : : : ; N .

Based on the above equation, we can express Wci in terms
of Wck as:

Wci = �i
Wck

�k
i = 1; 2; : : : ; N: (5)

Substituting Equation (5) into Equation (4), we have

Wck

�k

NX
i=1

�max
ci

�i =
NX
i=1

�max
ci

W (�):

After rearranging terms, we can express Wck as

Wck =
�k
�PN

j=1 �
max
cj

�
W (�)

PN

j=1 �j�
max
cj

for k = 1; : : : ; N: (6)

Let the function Ui represents the utility of client i. Each
client can have a di�erent utility function. In this paper, the
utility function we consider has a form which is illustrated
in Figure 1. We de�ne the system eÆcacy V as the sum of
the utilities of all the admitted clients. Our objective is to

maxV =
M0X
i=1

Ui(Wck)

s. t. Wck � Wmax
i i = 1; : : : ;M 0 and k = Ca

i (7)

i.e., we seek to maximize the system eÆcacy V under the
constraint that the expected waiting time of an admitted



client i is less than or equal to its QoS requirementWmax
i . In

[11], authors show that for a special class of utility functions,
then one needs to apply admission control to maximize V .
If a request has an utility function with the form similar
to Figure 1, then one needs to apply admission control to
maximize the system eÆcacy V .

In general, the optimization problem in Equation (7) can
be computationally expensive. A straightforward approach
is to perform an exhaustive search. In this case, it has a

computational complexity of �((N +1)M) in evaluating the
expression of Equation (6) so as to choose the optimal con-
�guration. Since the number of clients M can be very large,
the computation cost is prohibitive even for a small num-
ber of classes N . We propose two eÆcient admission control
algorithms such that at the end of the admission control
process, we can determine (1) which are the clients that the
system can admit and, (2) the lowest possible admitted class
vector Ca = [Ca

1 ; � � � ; C
a
M0 ] for the admitted clients.

3. ADMISSION CONTROL AND RESOURCE
PROVISIONING

In this section, we explain how to perform admission control
and class assignment for a PDDS web server.

3.1 Admission Control & Class Assignment
To subscribe service from the server S, each client has to go
through the admission control procedure. Each client j will
provide the information, �max

j and Wmax
j , to the server S.

In return, the server S will indicate whether it can admit
client j or not. If the system can admit client j, it will also
notify client j of the assigned class index, Ca

j 2 f1; : : : ; Ng.
As long as client j marks all its requests to S in class Ca

j ,
the server S can guarantee that the long term average wait-
ing time for client j is less than or equal to the require-
ment Wmax

j . We propose the following two admission con-

trol/class assignment algorithms.

3.2 Maximum Profit Algorithm (MPA)
Under MPA, the objective is to admit a client who has a
more stringent maximum average waiting time requirement
�rst. The rationale is that if there are two clients i and j
with requirements of Wmax

i and Wmax
j , respectively, and

Wmax
i < Wmax

j , it is reasonable to assume client i is willing
to pay a higher usage cost than client j so as to receive
better service. By admitting client i, the service provider
may obtain a higher pro�t. The MPA algorithm is given as:

MPA Admission Control
1. Sort the maximum average waiting time requirement of
all clients from smallest to largest. After the sorting, let
us assume client 1 (respectively, client M) has the small-
est (respectively, largest) maximum average waiting time
requirement.

2. Let 
 be the set of all admitted clients. Initialize 
 = ;
and initialize the admitted class vector Ca = 0;

3. for (i = 1 to M) f/* test all M clients */

4. 

0

= 

S

client i; Ca
temp = C

a; satis�ed ag = false;

5. assign client i in class 1;
6. while (satis�ed ag == false) f

7. compute delay of all clients in 

0

based on Eq.(6);

8. if (waiting times of all clients in 

0

are satis�ed) f

9. 
 = 

0

; satis�ed ag=true; g
10. elsef/* perform class upgrade for unsatis-

fied clients*/
11. if (there is any unsatis�ed client with class equal N)

/*cannot admit client i, restore Ca*/
12. C

a = Ca
temp; satis�ed ag = true;

13. else /* upgrade unsatisfied clients */
14. increase the class of all unsatis�ed clients in 
0 by 1;
15. g
16. g /* termination of while loop */
17.g /* termination of for loop */
18.return (
 and Ca);

Under MPA admission control, we test whether we can ad-
mit a tagged client (line 3). For this tagged client i, we
�rst assign it to class one (line 5). By adding this client
i, we may change the waiting times of previously admitted
clients. We test whether this new additional client will vio-
late the QoS of other clients in 


0

(line 7). If the addition
does not violate the QoS of any client, we can admit this
tagged client i (line 9). On the other hand, if there is any
QoS violation and the unsatis�ed clients are already in class
N , this implies that we cannot admit the tagged client i
(line 11-12). If there is QoS violation and none of the unsat-
is�ed clients is in class N , we can upgrade all the unsatis�ed
clients by one class (line 14) and test whether we can admit
the tagged client i again. In the following, we present the
computational complexity and some important properties of
the MPA admission control algorithm.

Lemma 1. The MPA admission control has a computa-
tional complexity of O(NM2).

Proof: Please refer to [8].

Before we present the properties of MPA admission control,
let us de�ne the following notation and then state some pre-

liminary results. Let � = [�max
c1 ; � � � ;�max

cN
] be the arrival

rate vector of di�erent classes of requests. We de�ne ei as

a row vector of zero with the ith entry being one. If a client
m changes its requests from class i to class j, where j > i,

then the arrival rate vector is �
0

=���max
m ei+�max

m ej .

Let Wck (�) be the average waiting time of class k requests

under loading �.

Lemma 2. If a client m performs a class upgrade from

class i to j (j > i), then Wck(�
0

) � Wck(�) for k =
1; 2; : : : ; N .

Proof: Equation (6) expresses the average waiting time for
each class of traÆc under a PDDS system. Since �1 = 1



and �i = �i�1=ri�1;i, we have 1 = �1 > �2 > � � � > �N .
When a client m upgrades from class i to class j, we can
easily observe that the denominator of Equation (6) will de-
crease while the numerator will remain unchanged. There-

fore Wck(�
0

) �Wck(�).

Lemma 3. If a clientm performs a class downgrade from
class j to i (i < j), then the average waiting time for all
classes will also decrease.

Proof: The proof is similar to the previous lemma.

De�nition 1. Let C and C0 be two class vectors. We
say C > C0 i� Ci � C

0

i and 9 j where Cj > C
0

j.

De�nition 2. A class vector C is a feasible admitted
class vector if the class assignment in C can guarantee the
maximum average waiting time requirements for all admitted
clients.

De�nition 3. A minimum feasible admitted class vector
C

� is a class vector such that there is no other feasible ad-
mitted class vector C0 where C0 < C�.

Theorem 1. The MPA admission control guarantees that,
at the end of every stage of testing whether to admit a client,
the class vector is always a minimum feasible admitted class
vector.

Proof: Please refer to [8].
Remark: The implication of Lemma 1 and Theorem 1 is
that not only do we have an eÆcient admission control algo-
rithm, but the resulting admitted vector Ca is also a mini-
mum feasible vector. Therefore, we can ensure that we can
provide QoS guarantees to all admitted clients and, at the
same time, not overcharge these clients by assigning them
to higher classes than needed.

The MPA algorithm assumes that a client with a tighter QoS
requirement (i.e., smaller maximum average waiting time) is
more willing to pay a higher cost for the web service. On
the other hand, a web server operator may want to maximize
the number of admitted clients so as to popularize the web
service. In this case, we propose the following admission
control algorithm.

3.3 Maximum Admission Algorithm (MAA)
Under MAA, the objective is to admit as many clients as
possible into the web server. The rationale is that by ad-
mitting more clients, the web service will be more popular
and the content provider will be able to charge more and
generate more pro�t in the long run. Under MAA, we try
to admit those clients with a less stringent QoS requirement

(i.e., large maximum average waiting time) �rst. The MAA
algorithm is given as:

MAA Admission Control
1. Sort the maximum average waiting time requirement of
all clients from largest to smallest. If there is a tie, sort
clients based on the maximum arrival rate from smallest
to largest. Assume that client 1 (respectively, client M)
has the largest (respectively, smallest) maximum average
waiting time requirement.

2. Let 
 be the set of all admitted clients. Initialize 
 = ;
and the admitted class vector Ca = 0;

3. for (i = 1 to M) f/* test all M clients */

4. 

0

= 

S

client i; Ca
temp = C

a; satis�ed ag = false;
5. assign client i to class 1;
6. while (satis�ed ag == false) f

7. compute delay of all clients in 

0

based on Eq.(6);

8. if (waiting times of all clients in 

0

are satis�ed) f

9. 
 = 

0

; satis�ed ag=true; g
10. elsef/* perform class upgrade for unsatis-

fied clients*/
11. if (there is any unsatis�ed client with class equal N) f

/*can’t admit client i, restore Ca*/
12. C

a = Ca
temp; satis�ed ag = true;

min arrival rate=arrival rate of client i;
i� = i; i =M ;g

13. else /* upgrade unsatisfied clients */
14. increase the class of all unsatis�ed client in 
0 by 1;
15. g
16. g /* termination of while loop */
17.g /* termination of for loop */

/* test whether we can admit client i� + 1 to M */
18.for (i = i�+1 to M) f
19. if (arrival rate of client i < min arrival rate) f

20. 

0

= 

S

client i; Ca
temp = C

a; satis�ed ag = false;
21. assign client i to class 1;
22. while (satis�ed ag == false) f

23. compute delay of all clients in 

0

based on Eq.(6);

24. if (waiting times of all clients in 

0

are satis�ed) f

25. 
 = 

0

; satis�ed ag=true; g
26. elsef/* perform class upgrade for unsatis-

fied clients*/
27. if (there is any unsatis�ed client with class equal N) f

/*can’t admit client i, restore Ca*/
28. C

a = Ca
temp; satis�ed ag = true;

min arrival rate = arrival rate of client i;g
29. else /* upgrade unsatisfied clients */
30. increase the class of all unsatis�ed client in 
0 by 1;
31. g
32. g /* termination of while loop */
33. g /* termination for if loop */
34.g /* termination of for loop */
35.return (
 and Ca);

Under MAA admission control, we test whether we can ad-
mit a tagged client (line 3). For this tagged client i, we �rst
assign it to class one (line 5). By adding this tagged client
i, we may change the waiting times of previously admitted



clients. We test whether this new additional client will vio-
late the QoS of other clients in 


0

(line 7). If the addition
does not violate the QoS of any client, we can admit this
tagged client i (line 9). On the other hand, if there is any
QoS violation and the unsatis�ed clients are already in class
N , this implies that we cannot admit the tagged client i (line
11-12). If there is QoS violation and none of the unsatis�ed
clients is in class N , we can upgrade all these unsatis�ed
clients by one class (line 14) and test whether we can admit
the tagged client i again. Once we �nd the �rst client that
we cannot admit (we call this client i�), we go to the sec-
ond phase of the algorithm by testing whether we can admit
the remaining clients (clients i� + 1 to M). Because of the
initial sorting, the remaining clients will have a maximum
average waiting time requirement greater than or equal to
that of client i�. Therefore, we can do a lot of pruning by
skipping those clients whose arrival rates are larger than the
arrival rate of client i� because the server S cannot admit
this client for sure. In the following, we present the com-
putational complexity and properties of the MPA admission
control.

Lemma 4. MAA admission control has a computational
complexity of O(NM2).

Proof: Please refer to [8].

Theorem 2. MAA admission control guarantees that, at
the end of every stage of testing whether to admit a client,
the class vector is always a minimum feasible admitted class
vector.

Proof: Please refer to [8]

4. DYNAMIC CLASS ADAPTATION
Based on the admission control algorithms proposed in Sec-
tion 3, the web server S can provide QoS guarantees to all
the admitted clients. In other words, the expected waiting
time of each client is guaranteed to be upper bounded by its
speci�ed maximum average waiting time. One important
point to observe is that the admission control is carried out
based on the maximum arrival rate speci�ed by each client.
It is possible that the average arrival rate of the admitted
client is less than or equal to its speci�ed maximum arrival
rate. Let �j denote the average arrival rate of the admitted
client j. If

M0X
j=1

�j <
M0X
j=1

�max
j ;

it implies that there is an opportunity for an admitted client,
say j, to submit requests to the web server S with a class
value less than or equal to Ca

j and still attain its QoS require-

ment (i.e., the average waiting time is less than Wmax
j ). In

this section, we propose two dynamic adaptation algorithms

so that the admitted clients can dynamically adapt to the
system loading at S.

Before we present these two dynamic adaptation algorithms,
let us present the general framework wherein the web server
S can measure the necessary information and send feedback
control information back to all admitted clients. Assume
that the server S has completed the admission control pro-
cess (via either MPA or MAA) at time t = 0. Each admitted
client will submit requests to S based on its class assign-
ment in Ca. For every measurement window of length T ,
the server S measures the request arrival rates. At the end
of each period, the server S either sends back a new class
vectorC to all the admitted clients, or sends back the arrival
statistics to all the admitted clients, who can then perform
their own class adaptation.

4.1 Centralized Approach: Server-Based Dy-
namic Adaptation (SBDA)

Under server-based adaptation, the web server estimates the
arrival rate of each client within a measurement window, and
then computes a new class vector for each admitted client at
the end of the measurement period. The new class assign-
ment will be sent to each admitted client. Each admitted
client can then submit requests to the web server in a class
range that is between the new class value and the original
admitted class value.

Formally, let C(nT ) denotes the class vector at the end of

the nth measurement period. We have C(0) = Ca, the ini-
tial class vector after the admission control process. Within
a measurement window, the server S estimates the arrival
rate of client j. Let Nj(nT ) be the number of requests sub-

mitted by client j during the nth measurement period. The
estimated arrival rate of client j at the end of this measure-
ment period is:

�̂j =
Nj(nT )

T
j = 1; 2; : : : ;M 0: (8)

To generate a new class vector C(nT ), the server can use
either the MPA or the MAA algorithm described in the
previous section. Once the new class vector is computed,
the server S sends the new class value Cj(nT ) to client j,
j = 1; 2; : : : ;M 0.

Upon receiving the new class value, the client j can choose
to tag the request in class C�

j where Cj(nT ) � C�

j � Ca
j .

Here, we consider that a client j will initially tag its requests
as Cj(nT ). During the process of request submission, client
j also estimates its waiting time. If it is more than the
maximum average waiting time requirement Wmax

j , then
client j will upgrade its requests by one class. The maximum
class value that class j can tag its requests is Ca

j . Note that
if the estimated average waiting time is less than Wmax

j ,
then client j will not perform any class upgrade and will
continue to submit requests based on the current class value.
This way, client j can reduce its usage cost for S. Figure
2 illustrates an example in which client j performs a class
upgrade at instants �1; �2; �3 and �4.
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Figure 2: Class adaptation by client j within a mea-
surement period.

There are two important points:

� Cj(nT ) is guaranteed to be less than or equal to Ca
j .

The reason is that the original class vector C(0) (or
C

a) was computed based on the maximum arrival rate
of each admitted client. Since the arrival rates of all
admitted clients within the measurement period are
less than or equal to their maximum arrival rates, the
resulting class vector C(nT ) is less than or equal to
C

a.

� If client j tags its requests in class Ca
j , j is assured that

its requests will de�nitely satisfy its QoS requirement.

There are some major drawbacks about the server-based
dynamic adaptation approach. For example, it is computa-
tionally expensive to estimate the arrival rate of each ad-
mitted client in Equation (8). Another disadvantage is that
the server S needs to send the new class value C(nT ) to
each admitted client, which implies that the server needs to
perform many unicast operations to reach all the admitted
clients. On the other hand, the advantage of the SBDA ap-
proach is that the new class vector C(nT ) is very precise. If
there is no major change in the future workload, then each
admitted client will pay the lowest usage cost and still be
able to receive service within its QoS requirement.

4.2 Distributed & Game-Theoretic Approach:
Client-Based Dynamic Adaptation (CBDA)

The SBDA algorithm can be expensive, both in tracking
the arrival rates of all M 0 clients and in sending the new
class vector to all the clients. We propose an alternative
client-based dynamic adaptation algorithm (CBDA), which
is a distributed adaptation algorithm wherein each client can
choose the appropriate class in submitting its requests.

Unlike the SBDA algorithm, the web server S does not need
to track the arrival rate of each admitted client, but rather,
estimate the arrival rates of individual classes of requests.
Therefore, rather than tracking M 0 variables as in SBDA,
CBDA only tracks N variables. SinceN << M 0, this results
in a major saving for the computation overhead. Let �ck;n

be the interarrival time between the (n � 1)th and the nth

request in class k. We use an exponential weighted time

average method to estimate �̂ck (n), the arrival rate of class

k at the nth request arrival. The estimation is

�̂ck(n) = (1� �)�̂ck(n� 1) + �(�ck;n)
�1 k = 1; :::; N (9)

where 0 � � � 1. At the end of each measurement pe-

riod, the web server S multicasts this class vector �̂c =

[�̂c1 ; �̂c2 ; � � � ; �̂cN ] to all the M
0 admitted clients.

Each client, upon receiving the new class vector �̂c, can
determine the minimum class for its future requests. To

illustrate, consider that client j receives �̂c from the server
S. Let �̂j;ck be the class k traÆc rate submitted by client
j in the previous measurement period. Then, the traÆc
rate vector of client j in the previous measurement period

is �̂j = [�̂j;c1 ; �̂j;c2 ; � � � ; �̂j;cN ]. Upon receiving �̂c, client j
executes the following code:

Adaptation Algorithm for client j
/*compute rate from previous round*/
1. Let ~�j =

PN

k=1 �̂j;ck ;
2. for (k = 1 to Ca

j ) f

3. /*try new rate vector �
�

in class k */

4. �
�

= �̂c � �̂j + ~�jek;

5. Based on Eq.(6) and �
�

, compute delay for client j;
6. if (computed delay � Wmax

j )
7. selected class = k;
8. g /* terminate for loop */
9. return (selected class);

In other words, client j tries to maximize its utility by �nd-
ing the lowest class such that the average waiting time is
less than or equal to the maximum average waiting time re-
quirement,Wmax

j . In essence, this is a non-cooperative game
problem in which distributed optimization is performed by
each client. For an introduction to the basic concepts of
game theory, please refer to [5]. We assume that clients ig-
nore how they inuence the class adaptation of other clients
when optimizing their own utility. This simplifying assump-
tion corresponds to the standard competitive price taking
assumption of economic theory. Also, the above assumption
can be justi�ed when

1. The traÆc loading of an individual client is considered
to be small, as compared to the overall traÆc loading
at the web server, so that the class adaptation by the
client is considered to be negligible.

2. It is impractical or too expensive for a client to deter-
mine how to perform class adaptation based on all the
other clients' class adaptation decisions.

There are several important properties of the CBDA algo-
rithm, as follows:



# of clients MPA MAA

M = 1; 000 M 0 = 497 M 0 = 832
M = 2; 000 M 0 = 993 M 0 = 1,663
M = 5; 000 M 0 = 2,479 M 0 = 4,155

Table 1: MPA vs. MAA in number of admitted
clients M 0.

� Guaranteed termination: Each client j searches
for the lowest suitable class, from class 1 to Ca

j . In
the worst case, the algorithm will terminate when the
class is equal to Ca

j , which is the assigned class dur-
ing the admission control process. The reason is that
the admission control decision was made based on the
speci�ed maximum arrival rates for all clients. There-
fore, if client j is admitted, by selecting its class equal
to Ca

j , we can guarantee that the QoS requirement of
client j will be met.

� Low computational complexity: Unlike the SBDA
approach where the server has to track the arrival rates
of all M 0 clients and then recompute a new class vec-
tor (in essence, re-execute the admission control al-
gorithm), the workload under the CBDA approach is
distributed among all the clients. The server S only
needs to track the arrival rates for N classes and class
adaptation is carried out by the individual clients. If
some clients do not want to perform class adaptation,
they can simply ignore this optimization step.

Of course, one can argue that the adaptation based on the
SBDA algorithm is more precise than the CBDA algorithm
because it uses all available information (i.e., arrival rates of
all clients) in making an adaptation decision. We illustrate
the performance di�erence between the two algorithms in
the next section.

5. PERFORMANCE EVALUATION
In this section, we compare the performance of the MPA
and MAA admission control algorithms. We also present
performance results for the SBDA and CBDA adaptation
algorithms.

Experiment 1: (Comparison of MPA and MAA Ad-
mission Control) In this experiment, we compare the per-
formance of the MPA and MAA algorithms. In particular,
the performance metrics that we are interested are (1) the
number of admitted clients M 0, (2) the arrival rates of dif-
ferent classes, and (3) the achieved waiting time for di�erent
classes of requests. Unless otherwise state, we assume that
the service times of all the requests are exponentially dis-
tributed with mean equal to unity. The aggregate request
rate from all clients is modeled as a Poisson process with
rate �r. Note that �r is the workload before admission con-
trol. The web server supports N = 3 classes of requests and
their waiting time di�erentiations are r1;2 = 1:4; r2;3 = 1:4.

In Experiment 1.A, we vary the number of potential clients
that want to access the server S byM = f1000; 2000; 5000g.

The maximum average waiting time requirements of the
clients are drawn uniformly between [1:5; 5:5] seconds and
the aggregate request rate �r is set to one. Since this rate
can saturate the system (� = 1), it is necessary for us to per-
form admission control. Table 1 illustrates the total number
of admitted clients M 0 for the MPA and MAA algorithms
under di�erent values of M . We can see that MAA can ad-
mit more clients, because its tries to admit clients with less
stringent maximum average waiting time requirements �rst.
This also indicates that, if the admission cost is �xed on a
per class basis, it makes sense to use the MAA algorithm so
as to maximize the total admission revenue.

class # MPA MAA

class 3 |{ |{
�r = 0:5 class 2 |{ |{

class 1 0.500 0.500
class 3 0.048 0.048

�r = 0:75 class 2 0.129 0.129
class 1 0.573 0.573
class 3 0.137 0.173

�r = 1:0 class 2 0.176 0.245
class 1 0.455 0.406

Table 2: MPA vs. MAA: arrival rates of di�erent
classes.

class # MPA MAA

class 3 |{ |{

class 2 |{ |{

�r = class 1 0.993 (2.010,10.704) 0.993 (2.010,10.704)

0:5 r1;2 |{ |{

r2;3 |{ |{

class 3 1.649 (2.010,2.307) 1.649 (2.010,2.307)

class 2 2.309 (2.333,3.229) 2.309 (2.333,3.229)

�r = class 1 3.232 (3.243,10.704) 3.232 (3.243,10.704)

0:75 r1;2 r1;2 = 1:4 r1;2 = 1:4

r2;3 r2;3 = 1:4 r2;3 = 1:4

class 3 1.996 (2.010,2.783) 2.946 (3.010,4.118)

class 2 2.795 (2.797,3.910) 4.125 (4.126,5.739)

�r = class 1 3.913 (3.915,7.279) 5.775 (5.800,10.704)

1:0 r1;2 r1;2 = 1:4 r1;2 = 1:4

r2;3 r2;3 = 1:4 r2;3 = 1:4

Table 3: MPA vs. MAA: waiting time of di�erent
classes. The numbers in parenthesis indicate the two
extremes (i.e., the most stringent and the least strin-
gent) of the maximum waiting time requirements of
the admitted clients in that particular class.

In Experiment 1.B, we set the number of potential clientsM
to 1000. We vary the aggregate request arrival rate �r to be
0.5, 0.75 and 1.0. The maximum average waiting times of
all clients are drawn uniformly between [2; 11] seconds. Ta-
ble 2 and Table 3 illustrate that, after the admission control



and client classi�cation, the arrival rates and the achieved
waiting times of the 3 classes of requests. From Table 2, we
observe that at low and moderate workload (e.g., �r = 0:5 or
0:75), both the MPA and MAA can e�ectively assign clients
to the appropriate class so that these admitted clients will
pay the lowest possible usage cost. For example, at low
workload (�r = 0:5), both algorithms assign all clients to
class 1 (therefore, it becomes single queue scheduling). Un-
der single queue scheduling, the achieved waiting time will
be less than the maximum waiting time requirements of all
clients. When the system is under high workload (�r = 1),
MPA and MAA can �lter out those clients whose maximum
average waiting times are unrealizable and classify clients to
the lowest admissible class.

Table 3 depicts the achieved waiting time for di�erent classes
under the MPA and MAA algorithms. The numbers in
parenthesis indicate the two extremes (i.e., the most strin-
gent and the least stringent) of the maximum average wait-
ing time requirements of the admitted clients in that par-
ticular class. For example, under �r = 0:5 and MPA, the
most stringent (respectively, least stringent) maximum av-
erage waiting time is 2.010 (respectively, 10.704) seconds
and the achieved waiting time is 0.993 seconds. From Table
3, we observe that both the MPA and the MAA algorithms
can e�ectively classify clients to the lowest admissible classes
so that their QoS can be satis�ed. At the same time, the
achieved waiting time ratio is equal to the speci�ed ratio of
ri;i+1 = 1:4.

class # MPA MAA

class 3 1.485 (1.504,1.927) 2.054 (2.095,2.668)

class 2 1.931 (1.932,2.508) 2.670 (2.670,3.451)

ri;i+1 class 1 2.510 (2.512,3.262) 3.471 (3.479,5.308)

= 1:3 W1=W2 1:299 1:300

W2=W3 1:300 1:299

class 3 1.485 (1.504,2.073) 2.084 (2.095,2.915)

class 2 2.079 (2.080,2.908) 2.917 (2.919,4.078)

ri;i+1 class 1 2.911 (2.912,3.219) 4.084 (4.087,5.308)

= 1:4 W1=W2 1:400 1:400

W2=W3 1:400 1:399

class 3 1.118 (1.504,1.671) 1.616 (2.106,2.373)

class 2 1.676 (1.679,2.512) 2.424 (2.425,3.621)

ri;i+1 class 1 2.515 (2.515,3.213) 3.636 (3.643,5.308)

= 1:5 W1=W2 1:500 1:500

W2=W3 1:499 1:500

Table 4: MPA vs. MAA: waiting time of di�erent
classes under di�erent waiting time spacings ri;i+1.
The numbers in parenthesis indicate the two ex-
tremes (i.e., the most stringent and the least strin-
gent) of the maximum waiting time requirements of
the admitted clients in that particular class.

Lastly, Experiment 1.C illustrates the e�ectiveness of the
MPA and MAA algorithms under di�erent waiting time

spacings. We vary the waiting time spacing ri;i+1 to be 1.3,
1.4 and 1.5. The aggregate request arrival rate is �r = 1:0
and the maximum average waiting time requirements of the
clients are drawn uniformly from [1:5; 5:5] seconds. From
Table 4, we observe that both the MPA and the MAA algo-
rithms can e�ectively classify clients to the lowest admissible
classes so that their QoS requirements are satis�ed. At the
same time, the achieved waiting time ratio is very close to
the speci�ed waiting time ratio ri;i+1.
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(a) SBDA: Admission control using MPA
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(b) CBDA: Admission control using MPA

Figure 3: Waiting time for three di�erent clients
under MPA admission control.

Experiment 2: (Comparison of SBDA and CBDA
Adaptation Algorithms) In this experiment, we compare
the performance of the SBDA and the CBDA adaptation
algorithms. The waiting times of the clients are drawn uni-
formly from [6; 22] seconds. The aggregate request rate is
�r = 1:2. After admission control (by either MPA or MAA),
we classify clients into N = 3 classes. We simulate the sys-
tem for 50 � 106 seconds. During the simulation period,
admitted clients can change class by using either the SBDA
or CBDA algorithms described in the previous section. The
arrival rate of each client can change during the simulation.
Speci�cally, within a measurement period of length T , each
client can change its arrival rate �ve times { with probability
of 0.8 that the arrival rate is equal to the maximum arrival
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(b) CBDA: Admission control using MAA

Figure 4: Waiting time for three di�erent clients
under MAA admission control.

rate, with probability of 0.1 that the arrival rate is equal to
90% of the maximum arrival rate, and with probability of
0.1 that the arrival rate is equal to 80% of the maximum
arrival rate. We consider a \tagged" client from each of the
three classes and we plot their waiting times. Each point
of the plot is the average waiting time of the previous 200
requests by the tagged client.

Figure 3 and Figure 4 illustrate the waiting times of the
three tagged clients under the SBDA and CBDA adaptation
algorithms. The aggregate request rate �r (before admission
control) is generated by a Poisson process with rate �r =
1:2. For Figure 3, we use MPA as the admission control
algorithm at time t = 0. The three tagged clients have
maximum waiting time requirements of 12.957, 10.174, 7.44
seconds, respectively. For Figure 4, we use MAA as the
admission control algorithm at time t = 0. The three tagged
clients have maximum average waiting time requirements
of 15.824, 12.948, 8.781 seconds, respectively. From these
�gures, we observe that both SBDA and CBDA are very
e�ective in adapting to the workload of the server. All three
tagged clients achieve an average waiting time less than their
maximum average waiting time requirements. Note that,

since the CBDA algorithm has a much lower computational
complexity as compared to the SBDA algorithm, we should
use CBDA for performing the endpoint adaptation.
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Figure 5: Waiting time for three di�erent clients un-
der MAA admission control, MMPP arrival process.

Lastly, we consider the capability of the proposed adaptation
algorithms when the input traÆc is non-Poisson. In this
experiment, the aggregated request arrival rate has a mean
of �r = 1:2. However, the traÆc generation by each client is
modeled as a Markov-modulated Poisson process. Figure 5
illustrates the waiting time of SBDA and CBDA algorithms
under the MMPP arrival process. The admission control
was carried out using the MAA. The three tagged clients
have the maximum average waiting time requirements of
15.824, 12.948, 8.781 seconds respectively. From Figure 5,
we observe that both the SBDA and CBDA can adapt to the
workload and their waiting time is less than their maximum
average waiting time requirement. Once again, since CBDA
has a much lower computational complexity, we should use
CBDA to perform the end-points adaptation.

6. RELATED WORK
We briey summarize related research. Recently, various
authors have suggested that it is important to consider dif-
ferentiated services for web servers [1, 2, 12] in order to



complement the Internet di�erentiated services model. In
[1], the authors propose a centralized algorithm to perform
server partitioning so as to provide di�erentiated services. In
[2], the authors propose to use the shortest-connection-�rst
algorithm. Di�erentiation is made for short and long con-
nections. Using their algorithm, short connections have a
signi�cant performance gain while long connections pay rel-
atively little penalty. In [12], the authors consider a server
that provides prioritized service to di�erent classes of users.
In [6], the authors consider a web service which provides
bounded latency for di�erent classes of requests. In partic-
ular, the authors consider isolation among service classes as
well as session control to protect classes from performance
degradation due to overload. The latency requirements and
service model considered in [6] are not PDDS but it is in-
teresting to see how one can incorporate the proposed algo-
rithms into our work. Lastly, the authors in [3] propose a
method to select classes under PDDS so that requests can
achieve an absolute QoS measure. The major di�erences
between our work and [3] are: (1) we provide admission
control so that we can guarantee the QoS requirements of
all admitted clients, and (2) our class selection algorithms
(MPA and MAA) have lower (polynomial time) computa-
tional complexity.

7. CONCLUSION
In this paper, we consider a web server that can provide
proportional delay di�erentiated services. The advantage of
this type of service is that the operator of the web server
can provide a �xed and pre-speci�ed performance spacing
between di�erent classes of requests. Based on this perfor-
mance spacing, the operator can legitimately charge a higher
usage cost for clients in a higher service class. Each client
has a maximum average waiting time QoS requirement. We
present two eÆcient admission control algorithms that ei-
ther maximize the potential pro�t or maximize the number
of admitted clients into the system. We show that these ad-
mission control algorithms are computationally eÆcient and
at the same time, the resulting class vector is a minimum fea-
sible admitted class vector. To further reduce the usage cost,
we also present two end point adaptation algorithms. One is
server-based while the other is distributed. The distributed
approach is based on a non-cooperative game technique. We
show that the distributed approach has lower computational
cost and can dynamically adapt to the server's workload.
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