
USENIX Association

Proceedings of the
FAST 2002 Conference on

File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



GPFS: A Shared-Disk File System for Large Computing Clusters 

Frank Schmuck and Roger Haskin 
IBM Almaden Research Center 

San Jose, CA 

Abstract 
GPFS is IBM’s parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel 
supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was 
built on many of the ideas that were developed in the academic community over the last several years, particularly 
distributed locking and recovery technology. To date it has been a matter of conjecture how well these ideas scale. 
We have had the opportunity to test those limits in the context of a product that runs on the largest systems in 
existence. While in many cases existing ideas scaled well, new approaches were necessary in many key areas. This 
paper describes GPFS, and discusses how distributed locking and recovery techniques were extended to scale to 
large clusters. 

 

1 Introduction 
Since the beginning of computing, there have always 
been problems too big for the largest machines of the 
day. This situation persists even with today’s powerful 
CPUs and shared-memory multiprocessors. Advances 
in communication technology have allowed numbers of 
machines to be aggregated into computing clusters of 
effectively unbounded processing power and storage 
capacity that can be used to solve much larger problems 
than could a single machine. Because clusters are 
composed of independent and effectively redundant 
computers, they have a potential for fault-tolerance. 
This makes them suitable for other classes of problems 
in which reliability is paramount. As a result, there has 
been great interest in clustering technology in the past 
several years. 

One fundamental drawback of clusters is that programs 
must be partitioned to run on multiple machines, and it 
is difficult for these partitioned programs to cooperate 
or share resources. Perhaps the most important such 
resource is the file system. In the absence of a cluster 
file system, individual components of a partitioned 
program must share cluster storage in an ad-hoc 
manner. This typically complicates programming, 
limits performance, and compromises reliability. 

GPFS is a parallel file system for cluster computers that 
provides, as closely as possible, the behavior of a 
general-purpose POSIX file system running on a single 
machine. GPFS evolved from the Tiger Shark multime-
dia file system [1]. GPFS scales to the largest clusters 
that have been built, and is used on six of the ten most 

powerful supercomputers in the world, including the 
largest, ASCI White at Lawrence Livermore National 
Laboratory. GPFS successfully satisfies the needs for 
throughput, storage capacity, and reliability of the 
largest and most demanding problems.  

Traditional supercomputing applications, when run on a 
cluster, require parallel access from multiple nodes 
within a file shared across the cluster. Other applica-
tions, including scalable file and Web servers and large 
digital libraries, are characterized by interfile parallel 
access. In the latter class of applications, data in 
individual files is not necessarily accessed in parallel, 
but since the files reside in common directories and 
allocate space on the same disks, file system data 
structures (metadata) are still accessed in parallel. 
GPFS supports fully parallel access both to file data and 
metadata. In truly large systems, even administrative 
actions such as adding or removing disks from a file 
system or rebalancing files across disks, involve a great 
amount of work. GPFS performs its administrative 
functions in parallel as well. 

GPFS achieves its extreme scalability through its 
shared-disk architecture (Figure 1) [2]. A GPFS system 
consists of the cluster nodes, on which the GPFS file 
system and the applications that use it run, connected to 
the disks or disk subsystems over a switching fabric. 
All nodes in the cluster have equal access to all disks. 
Files are striped across all disks in the file system – 
several thousand disks in the largest GPFS installations. 
In addition to balancing load on the disks, striping 
achieves the full throughput of which the disk subsys-
tem is capable. 



The switching fabric that connects file system nodes to 
disks may consist of a storage area network (SAN), e.g. 
fibre channel or iSCSI. Alternatively, individual disks 
may be attached to some number of I/O server nodes 
that allow access from file system nodes through a 
software layer running over a general-purpose commu-
nication network, such as IBM’s Virtual Shared Disk 
(VSD) running over the SP switch. Regardless of how 
shared disks are implemented, GPFS only assumes a 
conventional block I/O interface with no particular 
intelligence at the disks. 

Parallel read-write disk accesses from multiple nodes in 
the cluster must be properly synchronized, or both user 
data and file system metadata will become corrupted. 
GPFS uses distributed locking to synchronize access to 
shared disks. GPFS distributed locking protocols ensure 
file system consistency is maintained regardless of the 
number of nodes simultaneously reading from and 
writing to the file system, while at the same time 
allowing the parallelism necessary to achieve maximum 
throughput. 

This paper describes the overall architecture of GPFS, 
details some of the features that contribute to its 
performance and scalability, describes its approach to 
achieving parallelism and data consistency in a cluster 
environment, describes its design for fault-tolerance, 
and presents data on its performance. 

2 General Large File System Issues 
The GPFS disk data structures support file systems with 
up to 4096 disks of up to 1TB in size each, for a total of 
4 petabytes per file system. The largest single GPFS file 
system in production use to date is 75TB (ASCI 
White [3, 4, 5]). GPFS supports 64-bit file size 
interfaces, allowing a maximum file size of 263-1 bytes. 
While the desire to support large file systems is not 

unique to clusters, the data structures and algorithms 
that allow GPFS to do this are worth describing. 

2.1 Data Striping and Allocation, Prefetch 
and Write-behind 

Achieving high throughput to a single, large file 
requires striping the data across multiple disks and 
multiple disk controllers. Rather than relying on a 
separate logical volume manager (LVM) layer, GPFS 
implements striping in the file system. Managing its 
own striping affords GPFS the control it needs to 
achieve fault tolerance and to balance load across 
adapters, storage controllers, and disks. Although some 
LVMs provide similar function, they may not have 
adequate knowledge of topology to properly balance 
load. Furthermore, many LVMs expose logical volumes 
as logical unit numbers (LUNs), which impose size 
limits due to addressability limitations, e.g., 32-bit 
logical block addresses.  

Large files in GPFS are divided into equal sized blocks, 
and consecutive blocks are placed on different disks in 
a round-robin fashion. To minimize seek overhead, the 
block size is large (typically 256k, but can be config-
ured between 16k and 1M). Large blocks give the same 
advantage as extents in file systems such as Veritas 
[15]: they allow a large amount of data to be retrieved 
in a single I/O from each disk. GPFS stores small files 
(and the end of large files) in smaller units called sub-
blocks, which are as small as 1/32 of the size of a full 
block. 

To exploit disk parallelism when reading a large file 
from a single-threaded application GPFS prefetches 
data into its buffer pool, issuing I/O requests in parallel 
to as many disks as necessary to achieve the bandwidth 
of which the switching fabric is capable. Similarly, 
dirty data buffers that are no longer being accessed are 
written to disk in parallel. This approach allows reading 
or writing data from/to a single file at the aggregate 
data rate supported by the underlying disk subsystem 
and interconnection fabric. GPFS recognizes sequential, 
reverse sequential, as well as various forms of strided 
access patterns. For applications that do not fit one of 
these patterns, GPFS provides an interface that allows 
passing prefetch hints to the file system [13]. 

Striping works best when disks have equal size and 
performance. A non-uniform disk configuration 
requires a trade-off between throughput and space 
utilization: maximizing space utilization means placing 
more data on larger disks, but this reduces total 
throughput, because larger disks will then receive a 
proportionally larger fraction of I/O requests, leaving 



the smaller disks under-utilized. GPFS allows the 
administrator to make this trade-off by specifying 
whether to balance data placement for throughput or 
space utilization. 

2.2 Large Directory Support 
To support efficient file name lookup in very large 
directories (millions of files), GPFS uses extensible 
hashing [6] to organize directory entries within a 
directory. For directories that occupy more than one 
disk block, the block containing the directory entry for 
a particular name can be found by applying a hash 
function to the name and using the n low-order bits of 
the hash value as the block number, where n depends 
on the size of the directory.  

As a directory grows, extensible hashing adds new 
directory blocks one at a time. When a create operation 
finds no more room in the directory block designated 
by the hash value of the new name, it splits the block in 
two. The logical block number of the new directory 
block is derived from the old block number by adding a 
'1' in the n+1st bit position, and directory entries with a 
'1' in the n+1st bit of their hash value are moved to the 
new block. Other directory blocks remain unchanged. A 
large directory is therefore, in general, represented as a 
sparse file, with holes in the file representing directory 
blocks that have not yet been split. By checking for 
sparse regions in the directory file, GPFS can determine 
how often a directory block has been split, and thus 
how many bits of the hash value to use to locate the 
directory block containing a given name. Hence a 
lookup always requires only a single directory block 
access, regardless of the size and structure of the 
directory file [7]. 

2.3 Logging and Recovery 
In a large file system it is not feasible to run a file 
system check (fsck) to verify/restore file system 
consistency each time the file system is mounted or 
every time that one of the nodes in a cluster goes down. 
Instead, GPFS records all metadata updates that affect 
file system consistency in a journal or write-ahead log 
[8]. User data are not logged. 

Each node has a separate log for each file system it 
mounts, stored in that file system. Because this log can 
be read by all other nodes, any node can perform 
recovery on behalf of a failed node – it is not necessary 
to wait for the failed node to come back to life. After a 
failure, file system consistency is restored quickly by 
simply re-applying all updates recorded in the failed 
node’s log.  

For example, creating a new file requires updating a 
directory block as well as the inode of the new file. 
After acquiring locks on the directory block and the 
inode, both are updated in the buffer cache, and log 
records are spooled that describe both updates. Before 
the modified inode or directory block are allowed to be 
written back to disk, the corresponding log records 
must be forced to disk. Thus, for example, if the node 
fails after writing the directory block but before the 
inode is written to disk, the node’s log is guaranteed to 
contain the log record that is necessary to redo the 
missing inode update. 

Once the updates described by a log record have been 
written back to disk, the log record is no longer needed 
and can be discarded. Thus, logs can be fixed size, 
because space in the log can be freed up at any time by 
flushing dirty metadata back to disk in the background.  

3 Managing Parallelism and Consistency 
in a Cluster 

3.1 Distributed Locking vs. Centralized 
Management 

A cluster file system allows scaling I/O throughput 
beyond what a single node can achieve. To exploit this 
capability requires reading and writing in parallel from 
all nodes in the cluster. On the other hand, preserving 
file system consistency and POSIX semantics requires 
synchronizing access to data and metadata from 
multiple nodes, which potentially limits parallelism. 
GPFS guarantees single-node equivalent POSIX 
semantics for file system operations across the cluster. 
For example if two processes on different nodes access 
the same file, a read on one node will see either all or 
none of the data written by a concurrent write operation 
on the other node (read/write atomicity). The only 
exceptions are access time updates, which are not 
immediately visible on all nodes.1 

There are two approaches to achieving the necessary 
synchronization: 

1. Distributed Locking: every file system operation 
acquires an appropriate read or write lock to syn-
chronize with conflicting operations on other nodes 
before reading or updating any file system data or 
metadata. 

                                                 
1 Since read-read sharing is very common, synchronizing 
atime across multiple nodes would be prohibitively expensive. 
Since there are few, if any, applications that require accurate 
atime, we chose to propagate atime updates only periodically. 



2. Centralized Management: all conflicting operations 
are forwarded to a designated node, which per-
forms the requested read or update. 

The GPFS architecture is fundamentally based on 
distributed locking. Distributed locking allows greater 
parallelism than centralized management as long as 
different nodes operate on different pieces of 
data/metadata. On the other hand, data or metadata that 
is frequently accessed and updated from different nodes 
may be better managed by a more centralized approach: 
when lock conflicts are frequent, the overhead for 
distributed locking may exceed the cost of forwarding 
requests to a central node. Lock granularity also 
impacts performance: a smaller granularity means more 
overhead due to more frequent lock requests, whereas a 
larger granularity may cause more frequent lock 
conflicts. 

To efficiently support a wide range of applications no 
single approach is sufficient. Access characteristics 
vary with workload and are different for different types 
of data, such as user data vs. file metadata (e.g., 
modified time) vs. file system metadata (e.g., allocation 
maps). Consequently, GPFS employs a variety of 
techniques to manage different kinds of data: byte-
range locking for updates to user data, dynamically 
elected "metanodes" for centralized management of file 
metadata, distributed locking with centralized hints for 
disk space allocation, and a central coordinator for 
managing configuration changes.  

In the following sections we first describe the GPFS 
distributed lock manager and then discuss how each of 
the techniques listed above improve scalability by 
optimizing – or in some cases avoiding – the use of 
distributed locking. 

3.2 The GPFS Distributed Lock Manager 
The GPFS distributed lock manager, like many others 
[2, 9], uses a centralized global lock manager running 
on one of the nodes in the cluster, in conjunction with 
local lock managers in each file system node. The 
global lock manager coordinates locks between local 
lock managers by handing out lock tokens [9], which 
convey the right to grant distributed locks without the 
need for a separate message exchange each time a lock 
is acquired or released. Repeated accesses to the same 
disk object from the same node only require a single 
message to obtain the right to acquire a lock on the 
object (the lock token). Once a node has obtained the 
token from the global lock manager (also referred as the  
token manager or token server), subsequent operations 
issued on the same node can acquire a lock on the same 

object without requiring additional messages. Only 
when an operation on another node requires a conflict-
ing lock on the same object are additional messages 
necessary to revoke the lock token from the first node 
so it can be granted to the other node.  

Lock tokens also play a role in maintaining cache 
consistency between nodes. A token allows a node to 
cache data it has read from disk, because the data 
cannot be modified elsewhere without revoking the 
token first.  

3.3 Parallel Data Access 
Certain classes of supercomputer applications require 
writing to the same file from multiple nodes.  GPFS 
uses byte-range locking to synchronize reads and writes 
to file data. This approach allows parallel applications 
to write concurrently to different parts of the same file, 
while maintaining POSIX read/write atomicity 
semantics. However, were byte-range locks imple-
mented in a naive manner, acquiring a token for a byte 
range for the duration of the read/write call and 
releasing it afterwards, locking overhead would be 
unacceptable. Therefore, GPFS uses a more sophisti-
cated byte-range locking protocol that radically reduces 
lock traffic for many common access patterns. 

Byte-range tokens are negotiated as follows. The first 
node to write to a file will acquire a byte-range token 
for the whole file (zero to infinity). As long as no other 
nodes access the same file, all read and write operations 
are processed locally without further interactions 
between nodes. When a second node begins writing to 
the same file it will need to revoke at least part of the 
byte-range token held by the first node. When the first 
node receives the revoke request, it checks whether the 
file is still in use. If the file has since been closed, the 
first node will give up the whole token, and the second 
node will then be able to acquire a token covering the 
whole file. Thus, in the absence of concurrent write 
sharing, byte-range locking in GPFS behaves just like 
whole-file locking and is just as efficient, because a 
single token exchange is sufficient to access the whole 
file. 

On the other hand, if the second node starts writing to a 
file before the first node closes the file, the first node 
will relinquish only part of its byte-range token. If the 
first node is writing sequentially at offset o1 and the 
second node at offset o2, the first node will relinquish 
its token from o2 to infinity (if o2 > o1) or from zero to 
o1 (if o2 < o1). This will allow both nodes to continue 
writing forward from their current write offsets without 
further token conflicts. In general, when multiple nodes 



are writing sequentially to non-overlapping sections of 
the same file, each node will be able to acquire the 
necessary token with a single token exchange as part of 
its first write operation.  

Information about write offsets is communicated during 
this token negotiation by specifying a required range, 
which corresponds to the offset and length of the 
write() system call currently being processed, and a 
desired range, which includes likely future accesses. 
For sequential access, the desired range will be from the 
current write offset to infinity. The token protocol will 
revoke byte ranges only from nodes that conflict with 
the required range; the token server will then grant as 
large a sub-range of the desired range as is possible 
without conflicting with ranges still held by other 
nodes.  

The measurements shown in Figure 2 demonstrate how 
I/O throughput in GPFS scales when adding more file 
system nodes and more disks to the system. The 
measurements were obtained on a 32-node IBM 
RS/6000 SP system with 480 disks configured as 96 
4+P RAID-5 devices attached to the SP switch through 
two I/O server nodes. The figure compares reading and 
writing a single large file from multiple nodes in 
parallel against each node reading or writing a different 
file. In the single-file test, the file was partitioned into n 
large, contiguous sections, one per node, and each node 
was reading or writing sequentially to one of the 
sections. The writes were updates in place to an existing 

file. The graph starts with a single file system node 
using four RAIDs on the left, adding four more RAIDs 
for each node added to the test, ending with 24 file 
system nodes using all 96 RAIDs on the right. It shows 
nearly linear scaling in all tested configurations for 
reads. In the test system, the data throughput was not 
limited by the disks, but by the RAID controller. The 
read throughput achieved by GPFS matched the 
throughput of raw disk reads through the I/O subsys-
tem. The write throughput showed similar scalability. 
At 18 nodes the write throughput leveled off due to a 
problem in the switch adapter microcode.2 The other 
point to note in this figure is that writing to a single file 
from multiple nodes in GPFS was just as fast as each 
node writing to a different file, demonstrating the 
effectiveness of the byte-range token protocol described 
above. 

As long as the access pattern allows predicting the 
region of the file being accessed by a particular node in 
the near future, the token negotiation protocol will be 
able to minimize conflicts by carving up byte-range 
tokens among nodes accordingly.  This applies not only 
to simple sequential access, but also to reverse sequen-
tial and forward or backward strided access patterns, 
provided each node operates in different, relatively 
large regions of the file (coarse-grain sharing). 

As sharing becomes finer grain (each node writing to 
multiple, smaller regions), the token state and corre-
sponding message traffic will grow. Note that byte-
range tokens not only guarantee POSIX semantics but 
also synchronize I/O to the data blocks of the file. Since 
the smallest unit of I/O is one sector, the byte-range 
token granularity can be no smaller than one sector; 
otherwise, two nodes could write to the same sector at 
the same time, causing lost updates. In fact, GPFS uses 
byte-range tokens to synchronize data block allocation 
as well (see next section), and therefore rounds byte-
range tokens to block boundaries. Hence multiple nodes 
writing into the same data block will cause token 
conflicts even if individual write operations do not 
overlap (“false sharing”).  

To optimize fine-grain sharing for applications that do 
not require POSIX semantics, GPFS allows disabling 
normal byte-range locking by switching to data 
shipping mode. File access switches to a method best 

                                                 
2 The test machine had pre-release versions of the RS/6000 SP 
Switch2 adapters. In this early version of the adapter  
microcode, sending data from many nodes to a single I/O 
server node was not as efficient as sending from an I/O server 
node to many nodes. 

Figure 2: Read/Write Scaling

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Nodes

Th
ro

ug
hp

ut
 (M

B
/s

)

each node reading a different file
all nodes reading the same file
each node writing to a different file
all nodes writing to the same file



described as partitioned, centralized management. File 
blocks are assigned to nodes in a round-robin fashion, 
so that each data block will be read or written only by 
one particular node. GPFS forwards read and write 
operations originating from other nodes to the node 
responsible for a particular data block. For fine-grain 
sharing this is more efficient than distributed locking, 
because it requires fewer messages than a token 
exchange, and it avoids the overhead of flushing dirty 
data to disk when revoking a token. The eventual 
flushing of data blocks to disk is still done in parallel, 
since the data blocks of the file are partitioned among 
many nodes.  

Figure 3 shows the effect of sharing granularity on 
write throughput, using data shipping and using normal 
byte-range locking. These measurements were done on 
a smaller SP system with eight file system nodes and 
two I/O servers, each with eight disks. Total throughput 
to each I/O server was limited by the switch.3 We 
measured throughput with eight nodes updating fixed 
size records within the same file. The test used a strided 
access pattern, where the first node wrote records 0, 8, 
16, …, the second node wrote records 1, 9, 17, …, and 
so on. The larger record sizes (right half of the figure) 
were multiples of the file system block size. Figure 3 
shows that byte-range locking achieved nearly the full 

                                                 
3 Here, the older RS/6000 SP Switch, with nominal 150 
MB/sec throughput. Software overhead reduces this to 
approximately 125 MB/sec. 

I/O throughput for these sizes, because they matched 
the granularity of the byte-range tokens. Updates with a 
record size smaller than one block (left half of the 
figure) required twice as much I/O, because of the 
required read-modify-write. The throughput for byte-
range locking, however, dropped off far below the 
expected factor of one half due to token conflicts when 
multiple nodes wrote into the same data block. The 
resulting token revokes caused each data block to be 
read and written multiple times. The line labeled “BR 
token activity” plots token activity measured at the 
token server during the test of I/O throughput using 
byte-range locking. It shows that the drop in throughput 
was in fact due to the additional I/O activity and not an 
overload of the token server. The throughput curve for 
data shipping in Figure 3 shows that data shipping also 
incurred the read-modify-write penalty plus some 
additional overhead for sending data between nodes, 
but it dramatically outperformed byte-range locking for 
small record sizes that correspond to fine grain sharing. 
The data shipping implementation was intended to 
support fine-grain access, and as such does not try to 
avoid the read-modify-write for record sizes larger than 
a block. This fact explains why data shipping through-
put stayed flat for larger record sizes.  

Data shipping is primarily used by the MPI/IO library. 
MPI/IO does not require POSIX semantics, and 
provides a natural mechanism to define the collective 
that assigns blocks to nodes. The programming 
interfaces used by MPI/IO to control data shipping, 
however, are also available to other applications that 
desire this type of file access [13].  

3.4 Synchronizing Access to File Metadata 
Like other file systems, GPFS uses inodes and indirect 
blocks to store file attributes and data block addresses. 
Multiple nodes writing to the same file will result in 
concurrent updates to the inode and indirect blocks of 
the file to change file size and modification time 
(mtime) and to store the addresses of newly allocated 
data blocks. Synchronizing updates to the metadata on 
disk via exclusive write locks on the inode would result 
in a lock conflict on every write operation. 

Instead, write operations in GPFS use a shared write 
lock on the inode that allows concurrent writers on 
multiple nodes. This shared write lock only conflicts 
with operations that require exact file size and/or mtime 
(a stat() system call or a read operation that attempts to 
read past end-of-file). One of the nodes accessing the 
file is designated as the metanode for the file; only the 
metanode reads or writes the inode from or to disk. 
Each writer updates a locally cached copy of the inode 

0

50

100

150

200

250

0.01 0.1 1 10 100
Granularity in Blocks

0%

20%

40%

60%

80%

100%

throughput using BR locking
throughput using data shipping
BR token activity

To
ke

n 
A

ct
iv

ity
 (%

 to
ke

n 
se

rv
er

 b
us

y)

W
rit

e 
Th

ro
ug

hp
ut

 (M
B

/s
ec

)

Figure 3: Effect of Sharing Granularity on
 Write Throughput 



and forwards its inode updates to the metanode 
periodically or when the shared write token is revoked 
by a stat() or read() operation on another node. The 
metanode merges inode updates from multiple nodes by 
retaining the largest file size and latest mtime values it 
receives. Operations that update file size or mtime non-
monotonically (trunc() or utimes()) require an exclusive 
inode lock. 

Updates to indirect blocks are synchronized in a similar 
fashion. When writing a new file, each node independ-
ently allocates disk space for the data blocks it writes. 
The synchronization provided by byte-range tokens 
ensures that only one node will allocate storage for any 
particular data block. This is the reason that GPFS 
rounds byte-range tokens to block boundaries. Periodi-
cally or on revocation of a byte-range token, the new 
data block addresses are sent to the metanode, which 
then updates the cached indirect blocks accordingly.  

Thus, GPFS uses distributed locking to guarantee 
POSIX semantics (e.g., a stat() system call sees the file 
size and mtime of the most recently completed write 
operation), but I/O to the inode and indirect blocks on 
disk is synchronized using a centralized approach 
(forwarding inode updates to the metanode). This 
allows multiple nodes to write to the same file without 
lock conflicts on metadata updates and without 
requiring messages to the metanode on every write 
operation. 

The metanode for a particular file is elected dynami-
cally with the help of the token server. When a node 
first accesses a file, it tries to acquire the metanode 
token for the file. The token is granted to the first node 
to do so; other nodes instead learn the identity of the 
metanode. Thus, in traditional workloads without 
concurrent file sharing, each node becomes metanode 
for the files it uses and handles all metadata updates 
locally. 

When a file is no longer being accessed on the metan-
ode and ages out of the cache on that node, the node 
relinquishes its metanode token and stops acting as 
metanode.  When it subsequently receives a metadata 
request from another node, it sends a negative reply; the 
other node will then attempt to take over as metanode 
by acquiring the metanode token. Thus, the metanode 
for a file tends to stay within the set of nodes actively 
accessing that file. 

3.5 Allocation Maps 
The allocation map records the allocation status (free or 
in-use) of all disk blocks in the file system. Since each 
disk block can be divided into up to 32 subblocks to 

store data for small files, the allocation map contains 32 
bits per disk block as well as linked lists for finding a 
free disk block or a subblock of a particular size 
efficiently. 

Allocating disk space requires updates to the allocation 
map, which must be synchronized between nodes. For 
proper striping, a write operation must allocate space 
for a particular data block on a particular disk, but 
given the large block size used by GPFS, it is not as 
important where on that disk the data block is written. 
This fact allows organizing the allocation map in a way 
that minimizes conflicts between nodes by interleaving 
free space information about different disks in the 
allocation map as follows. The map is divided into a 
large, fixed number n of separately lockable regions, 
and each region contains the allocation status of 1/nth of 
the disk blocks on every disk in the file system. This 
map layout allows GPFS to allocate disk space properly 
striped across all disks by accessing only a single 
allocation region at a time. This approach minimizes 
lock conflicts, because different nodes can allocate 
space from different regions. The total number of 
regions is determined at file system creation time based 
on the expected number of nodes in the cluster.  

For each GPFS file system, one of the nodes in the 
cluster is responsible for maintaining free space 
statistics about all allocation regions. This allocation 
manager node initializes free space statistics by reading 
the allocation map when the file system is mounted. 
The statistics are kept loosely up-to-date via periodic 
messages in which each node reports the net amount of 
disk space allocated or freed during the last period. 
Instead of all nodes individually searching for regions 
that still contain free space, nodes ask the allocation 
manager for a region to try whenever a node runs out of 
disk space in the region it is currently using. To the 
extent possible, the allocation manager prevents lock 
conflicts between nodes by directing different nodes to 
different regions.  

Deleting a file also updates the allocation map. A file 
created by a parallel program running on several 
hundred nodes might have allocated blocks in several 
hundred regions. Deleting the file requires locking and 
updating each of these regions, perhaps stealing them 
from the nodes currently allocating out of them, which 
could have a disastrous impact on performance.  

Therefore, instead of processing all allocation map 
updates at the node on which the file was deleted, those 
that update regions known to be in use by other nodes 
are sent to those nodes for execution. The allocation 
manager periodically distributes hints about which 



regions are in use by which nodes to facilitate shipping 
deallocation requests.  

To demonstrate the effectiveness of the allocation 
manager hints as well as the metanode algorithms 
described in the previous section we measured write 
throughput for updates in place to an existing file 
against creation of a new file (Figure 4). As in Figure 2, 
we measured all nodes writing to a single file (using the 
same access pattern as in Figure 2), as well as each 
node writing to a different file. The measurements were 
done on the same hardware as Figure 2, and the data 
points for the write throughput are in fact the same 
points shown in the earlier figure. Due to the extra work 
required to allocate disk storage, throughput for file 
creation was slightly lower than for update in place. 
Figure 4 shows, however, that create throughput still 
scaled nearly linearly with the number of nodes, and 
that creating a single file from multiple nodes was just 
as fast as each node creating a different file.  

3.6 Other File System Metadata 
A GPFS file system contains other global metadata, 
including file system configuration data, space usage 
quotas, access control lists, and extended attributes. 
Space does not permit a detailed description of how 
each of these types of metadata is managed, but a brief 
mention is in order. As in the cases described in 
previous sections, GPFS uses distributed locking to 
protect the consistency of the metadata on disk, but in 

most cases uses more centralized management to 
coordinate or collect metadata updates from different 
nodes. For example, a quota manager hands out 
relatively large increments of disk space to the individ-
ual nodes writing a file, so quota checking is done 
locally, with only occasional interaction with the quota 
manager.  

3.7 Token Manager Scaling 
The token manager keeps track of all lock tokens 
granted to all nodes in the cluster. Acquiring, relin-
quishing, upgrading, or downgrading a token requires a 
message to the token manager. One might reasonably 
expect that the token manager could become a bottle-
neck in a large cluster, or that the size of the token state 
might exceed the token manager’s memory capacity.  

One way to address these issues would be to partition 
the token space and distribute the token state among 
several nodes in the cluster. We found, however, that 
this is not the best way — or at least not the most 
important way — to address token manager scaling 
issues, for the following reasons. 

A straightforward way to distribute token state among 
nodes might be to hash on the file inode number. 
Unfortunately, this does not address the scaling issues 
arising from parallel access to a single file. In the worst 
case, concurrent updates to a file from multiple nodes 
generate a byte-range token for each data block of a 
file. Because the size of a file is effectively unbounded, 
the size of the byte-range token state for a single file is 
also unbounded. One could conceivably partition byte-
range token management for a single file among 
multiple nodes, but this would make the frequent case 
of a single node acquiring a token for a whole file 
prohibitively expensive. Instead, the token manager 
prevents unbounded growth of its token state by 
monitoring its memory usage and, if necessary, 
revoking tokens to reduce the size of the token state4. 

The most likely reason for a high load on the token 
manager node is lock conflicts that cause token 
revocation. When a node downgrades or relinquishes a 
token, dirty data or metadata covered by that token 
must be flushed to disk and/or discarded from the 
cache. As explained earlier (see Figure 3), the cost of 
disk I/O caused by token conflicts dominates the cost of 
token manager messages. Therefore, a much more 

                                                 
4 Applications that do not require POSIX semantics can, of 
course, use data shipping to bypass byte-range locking and 
avoid token state issues. 

Figure 4: File Create Scaling

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Nodes

W
rit

e 
Th

ro
ug

hp
ut

 (M
B

/s
)

each node writing to a different file
all nodes writing to the same file
each node creating a different file
all nodes writing to the same, newly created file



effective way to reduce token manager load and 
improve overall performance is to avoid lock conflicts 
in the first place. The allocation manager hints de-
scribed in Section 3.5 are an example of avoiding lock 
conflicts. 

Finally, GPFS uses a number of optimizations in the 
token protocol that significantly reduce the cost of 
token management and improve response time as well. 
When it is necessary to revoke a token, it is the 
responsibility of the revoking node to send revoke 
messages to all nodes that are holding the token in a 
conflicting mode, to collect replies from these nodes, 
and to forward these as a single message to the token 
manager. Acquiring a token will never require more 
than two messages to the token manager, regardless of 
how many nodes may be holding the token in a 
conflicting mode.  

The protocol also supports token prefetch and token 
request batching, which allow acquiring multiple tokens 
in a single message to the token manager. For example, 
when a file is accessed for the first time, the necessary 
inode token, metanode token, and byte-range token to 
read or write the file are acquired with a single token 
manager request.  

When a file is deleted on a node, the node does not 
immediately relinquish the tokens associated with that 
file. The next file created by the node can then re-use 
the old inode and will not need to acquire any new 
tokens. A workload where users on different nodes 
create and delete files under their respective home 
directories will generate little or no token traffic.  

Figure 5 demonstrates the effectiveness of this optimi-
zation. It shows token activity while running a multi-
user file server workload on multiple nodes. The 
workload was generated by the dbench program [10], 
which simulates the file system activity of the 

NetBench [11] file server benchmark. It ran on eight 
file system nodes, with each node running a workload 
for 10 NetBench clients. Each client ran in a different 
subdirectory. The figure shows an initial spike of token 
activity as the benchmark started up on all of the nodes 
and each node acquired tokens for the files accessed by 
its clients. Even though the benchmark created and 
deleted many files throughout the run, each node reused 
a limited number of inodes. Once all nodes had 
obtained a sufficient number of inodes, token activity 
quickly dropped to near zero. Measurements of the 
CPU load on the token server indicated that it is capable 
of supporting between 4000 and 5000 token requests 
per second, so the peak request rate shown in Figure 5 
consumed only a small fraction of the token server 
capacity. Even the height of the peak was only an 
artifact of starting the benchmark at the same time on 
all of the nodes, which would not be likely to happen 
under a real multi-user workload. 

4 Fault Tolerance 
As a cluster is scaled up to large numbers of nodes and 
disks it becomes increasingly unlikely that all compo-
nents are working correctly at all times. This implies 
the need to handle component failures gracefully and 
continue operating in the presence of failures.  

4.1 Node Failures 
When a node fails, GPFS must restore metadata being 
updated by the failed node to a consistent state, must 
release resources held by the failed node (lock tokens), 
and it must appoint replacements for any special roles 
played by the failed node (e.g., metanode, allocation 
manager, or token manager). 

Since GPFS stores recovery logs on shared disks, 
metadata inconsistencies due to a node failure are 
quickly repaired by running log recovery from the 
failed node’s log on one of the surviving nodes. After 
log recovery is complete, the token manager releases 
tokens held by the failed node. The distributed locking 
protocol ensures that the failed node must have held 
tokens for all metadata it had updated in its cache but 
had not yet written back to disk at the time of the 
failure. Since these tokens are only released after log 
recovery is complete, metadata modified by the failed 
node will not be accessible to other nodes until it is 
known to be in a consistent state. This observation is 
true even in cases where GPFS uses a more centralized 
approach to synchronizing metadata updates, for 
example, the file size and mtime updates that are 
collected by the metanode. Even though the write 
operations causing such updates are not synchronized 

Figure 5: Token Activity During Dbench Run

0
50

100
150
200
250
300
350
400

0 100 200 300 400 500

Elapsed time (seconds)

To
ke

n 
ac

tiv
ity

 (r
eq

ue
st

s 
pe

r
se

co
nd

)



via distributed locking, the updates to the metadata on 
disk are still protected by the distributed locking 
protocol — in this case, through the metanode token. 

After log recovery completes, other nodes can acquire 
any metanode tokens that had been held by the failed 
node and thus take over the role of metanode. If another 
node had sent metadata updates to the old metanode 
but, at the time of the failure, had not yet received an 
acknowledgement that the updates were committed to 
disk, it re-sends the updates to the new metanode. 
These updates are idempotent, so the new metanode can 
simply re-apply them. 

Should the token manager fail, another node will take 
over this responsibility and reconstruct the token 
manager state by querying all surviving nodes about the 
tokens they currently hold. Since the new token 
manager does not know what tokens were held by 
failed nodes, it will not grant any new tokens until log 
recovery is complete. Tokens currently held by the 
surviving nodes are not affected by this. 

Similarly, other special functions carried out by a failed 
node (e.g., allocation manager) are assigned to another 
node, which rebuilds the necessary state by reading 
information from disk and/or querying other nodes. 

4.2 Communication Failures 
To detect node failures GPFS relies on a group services 
layer that monitors nodes and communication links via 
periodic heartbeat messages and implements a process 
group membership protocol [12]. When a node fails, the 
group services layer informs the remaining nodes of a 
group membership change. This triggers the recovery 
actions described in the previous section. 

A communication failure such as a bad network adapter 
or a loose cable may cause a node to become isolated 
from the others, or a failure in the switching fabric may 
cause a network partition. Such a partition is indistin-
guishable from a failure of the unreachable nodes. 
Nodes in different partitions may still have access to the 
shared disks and would corrupt the file system if they 
were allowed to continue operating independently of 
each other. For this reason, GPFS allows accessing a 
file system only by the group containing a majority of 
the nodes in the cluster; the nodes in the minority group 
will stop accessing any GPFS disk until they can re-join 
a majority group.  

Unfortunately, the membership protocol cannot 
guarantee how long it will take for each node to receive 
and process a failure notification. When a network 
partition occurs, it is not known when the nodes that are 

no longer members of the majority will be notified and 
stop accessing shared disks. Therefore, before starting 
log recovery in the majority group, GPFS fences nodes 
that are no longer members of the group from accessing 
the shared disks, i.e., it invokes primitives available in 
the disk subsystem to stop accepting I/O requests from 
the other nodes.  

To allow fault-tolerant two-node configurations, a 
communication partition in such a configuration is 
resolved exclusively through disk fencing instead of 
using a majority rule: upon notification of the failure of 
the other node, each node will attempt to fence all disks 
from the other node in a predetermined order. In case of 
a network partition, only one of the two nodes will be 
successful and can continue accessing GPFS file 
systems. 

4.3 Disk Failures 
Since GPFS stripes data and metadata across all disks 
that belong to a file system, the loss of a single disk will 
affect a disproportionately large fraction of the files. 
Therefore, typical GPFS configurations use dual-
attached RAID controllers, which are able to mask the 
failure of a physical disk or the loss of an access path to 
a disk. Large GPFS file systems are striped across 
multiple RAID devices. In such configurations, it is 
important to match the file system block size and 
alignment with RAID stripes so that data block writes 
do not incur a write penalty for the parity update. 

As an alternative or a supplement to RAID, GPFS 
supports replication, which is implemented in the file 
system. When enabled, GPFS allocates space for two 
copies of each data or metadata block on two different 
disks and writes them to both locations. When a disk 
becomes unavailable, GPFS keeps track of which files 
had updates to a block with a replica on the unavailable 
disk. If and when the disk becomes available again, 
GPFS brings stale data on the disk up-to-date by 
copying the data from another replica. If a disk fails 
permanently, GPFS can instead allocate a new replica 
for all affected blocks on other disks. 

Replication can be enabled separately for data and 
metadata. In cases where part of a disk becomes 
unreadable (bad blocks), metadata replication in the file 
system ensures that only a few data blocks will be 
affected, rather than rendering a whole set of files 
inaccessible. 

5 Scalable Online System Utilities 
Scalability is important not only for normal file system 
operations, but also for file system utilities. These 



utilities manipulate significant fractions of the data and 
metadata in the file system, and therefore benefit from 
parallelism as much as parallel applications. 

For example, GPFS allows growing, shrinking, or 
reorganizing a file system by adding, deleting, or 
replacing disks in an existing file system. After adding 
new disks, GPFS allows rebalancing the file system by 
moving some of the existing data to the new disks. To 
remove or replace one or more disks in a file system, 
GPFS must move all data and metadata off the affected 
disks. All of these operations require reading all inodes 
and indirect blocks to find the data that must be moved. 
Other utilities that need to read all inodes and indirect 
blocks include defragmentation, quota-check, and 
fsck5 [13]. Also, when replication is enabled and a 
group of disks that were down becomes available again, 
GPFS must perform a metadata scan to find files with 
missing updates that need to be applied to these disks. 

Finishing such operations in any reasonable amount of 
time requires exploiting the parallelism available in the 
system. To this end, GPFS appoints one of the nodes as 
a file system manager for each file system, which is 
responsible for coordinating such administrative 
activity. The file system manager hands out a small 
range of inode numbers to each node in the cluster. 
Each node processes the files in its assigned range and 
then sends a message to the file system manager 
requesting more work. Thus, all nodes work on 
different subsets of files in parallel, until all files have 
been processed. During this process, additional 
messages may be exchanged between nodes to compile 
global file system state. While running fsck, for 
example, each node collects block references for a 
different section of the allocation map. This allows 
detecting inter-file inconsistencies, such as a single 
block being assigned to two different files. 

Even with maximum parallelism, these operations can 
take a significant amount of time on a large file system. 
For example, a complete rebalancing of a multi-terabyte 
file system may take several hours. Since it is unaccept-
able for a file system to be unavailable for such a long 
time, GPFS allows all of its file system utilities to run 
on-line, i.e., while the file system is mounted and 
accessible to applications. The only exception is a full 
file system check for diagnostic purposes (fsck), which 
requires the file system to be unmounted.  File system 
utilities use normal distributed locking to synchronize 
with other file activity. Special synchronization is 

                                                 
5  For diagnostic purposes to verify file system consistency, 
not part of a normal mount. 

required only while reorganizing higher-level metadata 
(allocation maps and the inode file). For example, when 
it is necessary to move a block of inodes from one disk 
to another, the node doing so acquires a special range 
lock on the inode file, which is more efficient and less 
disruptive than acquiring individual locks on all inodes 
within the block. 

6 Experiences 
GPFS is installed at several hundred customer sites, on 
clusters ranging from a few nodes with less than a 
terabyte of disk, up to the 512-node ASCI White system 
with its 140 terabytes of disk space in two file systems. 
Much has been learned that has affected the design of 
GPFS as it has evolved. These lessons would make a 
paper in themselves, but a few are of sufficient interest 
to warrant relating here. 

Several of our experiences pointed out the importance 
of intra-node as well as inter-node parallelism and for 
properly balancing load across nodes in a cluster. In the 
initial design of the system management commands, we 
assumed that distributing work by starting a thread on 
each node in the cluster would be sufficient to exploit 
all available disk bandwidth. When rebalancing a file 
system, for example, the strategy of handing out ranges 
of inodes to one thread per node, as described in 
Section 5, was able to generate enough I/O requests to 
keep all disks busy. We found, however, that we had 
greatly underestimated the amount of skew this strategy 
would encounter. Frequently, a node would be handed 
an inode range containing significantly more files or 
larger files than other ranges. Long after other nodes 
had finished their work, this node was still at work, 
running single-threaded, issuing one I/O at a time. 

The obvious lesson is that the granules of work handed 
out must be sufficiently small and of approximately 
equal size (ranges of blocks in a file rather than entire 
files). The other lesson, less obvious, is that even on a 
large cluster, intra-node parallelism is often a more 
efficient road to performance than inter-node parallel-
ism. On modern systems, which are often high-degree 
SMPs with high I/O bandwidth, relatively few nodes 
can saturate the disk system6. Exploiting the available 
bandwidth by running multiple threads per node, for 
example, greatly reduces the effect of workload skew. 

Another important lesson is that even though the small 
amount of CPU consumed by GPFS centralized 

                                                 
6 Sixteen nodes drive the entire 12 GB/s I/O bandwidth of 
ASCI White. 



management functions (e.g., the token manager) 
normally does not affect application performance, it can 
have a significant impact on highly parallel applica-
tions. Such applications often run in phases with barrier 
synchronization points. As described in Section 5, 
centralized services are provided by the file system 
manager, which is dynamically chosen from the nodes 
in the cluster. If this node also runs part of the parallel 
application, the management overhead will cause it to 
take longer to reach its barrier, leaving the other nodes 
idle. If the overhead slows down the application by even 
one percent, the idle time incurred by other nodes will 
be equivalent to leaving five nodes unused on the 512-
node ASCI White system! To avoid this problem, 
GPFS allows restricting management functions to a 
designated set of administrative nodes. A large cluster 
can dedicate one or two administrative nodes, avoid 
running load sensitive, parallel applications on them, 
and actually increase the available computing resource. 

Early versions of GPFS had serious performance 
problems with programs like “ls –l” and incremental 
backup, which call stat() for each file in a directory. 
The stat() call reads the file’s inode, which requires a 
read token. If another node holds this token, releasing it 
may require dirty data to be written back on that node, 
so obtaining the token can be expensive. We solved this 
problem by exploiting parallelism. When GPFS detects 
multiple accesses to inodes in the same directory, it 
uses multiple threads to prefetch inodes for other files 
in the same directory. Inode prefetch speeds up 
directory scans by almost a factor of ten. 

Another lesson we learned on large systems is that even 
the rarest failures, such as data loss in a RAID, will 
occur. One particularly large GPFS system experienced 
a microcode failure in a RAID controller caused by an 
intermittent problem during replacement of a disk. The 
failure rendered three sectors of an allocation map 
unusable. Unfortunately, an attempt to allocate out of 
one of these sectors generated an I/O error, which 
caused the file system to take itself off line. Running 
log recovery repeated the attempt to write the sector 
and the I/O error. Luckily no user data was lost, and the 
customer had enough free space in other file systems to 
allow the broken 14 TB file system to be mounted read-
only and copied elsewhere. Nevertheless, many large 
file systems now use GPFS metadata replication in 
addition to RAID to provide an extra measure of 
security against dual failures. 

Even more insidious than rare, random failures are 
systematic ones. One customer was unfortunate enough 
to receive several hundred disk drives from a bad batch 
with an unexpectedly high failure rate. The customer 

wanted to replace the bad drives without taking the 
system down. One might think this could be done by 
successively replacing each drive and letting the RAID 
rebuild, but this would have greatly increased the 
possibility of a dual failure (i.e., a second drive failure 
in a rebuilding RAID parity group) and a consequent 
catastrophic loss of the file system. The customer chose 
as a solution to delete a small number of disks (here, 
RAID parity groups) from the file system, during which 
GPFS rebalances data from the deleted disks onto the 
remaining disks. Then new disks (parity groups) were 
created from the new drives and added back to the file 
system (again rebalancing). This tedious process was 
repeated until all disks were replaced, without taking 
the file system down and without compromising its 
reliability. Lessons include not assuming independent 
failures in a system design, and the importance of 
online system management and parallel rebalancing. 

7 Related Work 
One class of file systems extends the traditional file 
server architecture to a storage area network (SAN) 
environment by allowing the file server clients to access 
data directly from disk through the SAN. Examples of 
such SAN file systems are IBM/Tivoli SANergy [14], 
and Veritas SANPoint Direct [15]. These file systems 
can provide efficient data access for large files, but, 
unlike GPFS, all metadata updates are still handled by a 
centralized metadata server, which makes this type of 
architecture inherently less scalable. SAN file systems 
typically do not support concurrent write sharing, or 
sacrifice POSIX semantics to do so. For example, 
SANergy allows multiple clients to read and write to 
the same file through a SAN, but provides no consistent 
view of the data unless explicit fcntl locking calls are 
added to the application program.  

SGI’s XFS file system [16] is designed for similar, 
large-scale, high throughput applications that GPFS 
excels at. It stores file data in large, variable length 
extents and relies on an underlying logical volume 
manager to stripe the data across multiple disks. Unlike 
GPFS however, XFS is not a cluster file system; it runs 
on large SMPs. CXFS [17] is a cluster version of XFS 
that allows multiple nodes to access data on shared 
disks in an XFS file system. However, only one of the 
nodes handles all metadata updates, like other SAN file 
systems mentioned above. 

Frangipani [18] is a shared-disk cluster file system that 
is similar in principle to GPFS. It is based on the same, 
symmetric architecture, and uses similar logging, 
locking and recovery algorithms based on write-ahead 
logging with separate logs for each node stored on 



shared disk. Like GPFS, it uses a token-based distrib-
uted lock manager. A Frangipani file system resides on 
a single, large (264 byte) virtual disk provided by 
Petal [19], which redirects I/O requests to a set of Petal 
servers and handles physical storage allocation and 
striping. This layered architecture simplifies metadata 
management in the file system to some extent. The 
granularity of disk space allocation (64kB) in Petal, 
however, is too large and its virtual address space is too 
small to simply reserve a fixed, contiguous virtual disk 
area (e.g., 1TB) for each file in a Frangipani file 
system. Therefore, Frangipani still needs its own 
allocation maps to manage the virtual disk space 
provided by Petal. Unlike GPFS, Frangipani is mainly 
“targeted for environments with program development 
and engineering workloads”. It implements whole-file 
locking only and therefore does not allow concurrent 
writes to the same file from multiple nodes. 

Another example of a shared-disk cluster file system is 
the Global File System (GFS) [20], which originated as 
an open source file system for Linux. The newest 
version (GFS-4) implements journaling, and uses 
logging, locking, and recovery algorithms similar to 
those of GPFS and Frangipani. Locking in GFS is 
closely tied to physical storage. Earlier versions of GFS 
[21] required locking to be implemented at the disk 
device via extensions to the SCSI protocol. Newer 
versions allow the use of an external distributed lock 
manager, but still lock individual disk blocks of 4kB or 
8kB size. Therefore, accessing large files in GFS entails 
significantly more locking overhead than the byte-range 
locks used in GPFS. Similar to Frangipani/Petal, 
striping in GFS is handled in a “Network Storage Pool” 
layer; once created, however, the stripe width cannot be 
changed (it is possible to add a new “sub-pools”, but 
striping is confined to a sub-pool, i.e., GFS will not 
stripe across sub-pools). Like Frangipani, GFS is 
geared more towards applications with little or no intra-
file sharing. 

8 Summary and Conclusions 
GPFS was built on many of the ideas that were 
developed in the academic community over the last 
several years, particularly distributed locking and 
recovery technology. To date it has been a matter of 
conjecture how well these ideas scale. We have had the 
opportunity to test those limits in the context of a 
product that runs on the largest systems in existence. 

One might question whether distributed locking scales, 
in particular, whether lock contention for access to 
shared metadata might become a bottleneck that limits 
parallelism and scalability. Somewhat to our surprise, 

we found that distributed locking scales quite well. 
Nevertheless, several significant changes to conven-
tional file system data structures and locking algorithms 
yielded big gains in performance, both for parallel 
access to a single large file and for parallel access to 
large numbers of small files. We describe a number of 
techniques that make distributed locking work in a large 
cluster: byte-range token optimizations, dynamic 
selection of meta nodes for managing file metadata, 
segmented allocation maps, and allocation hints. 

One might similarly question whether conventional 
availability technology scales. Obviously there are 
more components to fail in a large system. Compound-
ing the problem, large clusters are so expensive that 
their owners demand high availability. Add to this the 
fact that file systems of tens of terabytes are simply too 
large to back up and restore. Again, we found the basic 
technology to be sound. The surprises came in the 
measures that were necessary to provide data integrity 
and availability. GPFS replication was implemented 
because at the time RAID was more expensive than 
replicated conventional disk. RAID has taken over as 
its price has come down, but even its high level of 
integrity is not sufficient to guard against the loss of a 
hundred terabyte file system.  

Existing GPFS installations show that our design is able 
to scale up to the largest super computers in the world 
and to provide the necessary fault tolerance and system 
management functions to manage such large systems. 
Nevertheless, we expect the continued evolution of 
technology to demand ever more scalability. The recent 
interest in Linux clusters with inexpensive PC nodes 
drives the number of components up still further. The 
price of storage has decreased to the point that custom-
ers are seriously interested in petabyte file systems. 
This trend makes file system scalability an area of 
interest for research that will continue for the foresee-
able future. 

9 Acknowledgements 
A large number of people at several IBM locations have 
contributed to the design and implementation of GPFS 
over the years. Although space does not allow naming 
all of them here, the following people have significantly 
contributed to the work reported here: Jim Wyllie, Dan 
McNabb, Tom Engelsiepen, Marc Eshel, Carol 
Hartman, Mike Roberts, Wayne Sawdon, Dave Craft, 
Brian Dixon, Eugene Johnson, Scott Porter, Bob 
Curran, Radha Kandadai, Lyle Gayne, Mike Schouten, 
Dave Shapiro, Kuei-Yu Wang Knop, Irit Loy, Benny 
Mandler, John Marberg, Itai Nahshon, Sybille Schaller, 
Boaz Shmueli, Roman Talyanski, and Zvi Yehudai. 



 
References 
[1]  Roger L. Haskin: Tiger Shark - a scalable file 

system for multimedia, IBM Journal of Research 
and Development, Volume 42, Number 2, March 
1998, pp. 185-197. 

[2]  C. Mohan, Inderpal Narang: Recovery and 
Coherency-Control Protocols for Fast Intersystem 
Page Transfer and Fine-Granularity Locking in a 
Shared Disks Transaction Environment. VLDB 
1991: 193-207. 

[3] IBM builds world's fastest supercomputer to 
simulate nuclear testing for U.S. Energy Depart-
ment. IBM Press Release, Poughkeepsie, N.Y., 
June 29, 2000. http://www.ibm.com/servers/ 
eserver/pseries/news/pressreleases/2000/jun/ 
asci_white.html 

[4] ASCI White.  http://www.rs6000.ibm.com/ 
hardware/largescale/supercomputers/asciwhite/ 

[5] ASCI White. http://www.llnl.gov/asci/platforms/ 
white/home/ 

[6] Ronald Fagin, Jürg Nievergelt, Nicholas Pip-
penger, H. Raymond Strong, Extendible hashing - 
a fast access method for dynamic files, ACM 
Transactions on Database Systems, New York, 
NY, Volume 4 Number 3, 1979, pages 315-344.  

[7] Frank B. Schmuck, James Christopher Wyllie, and 
Thomas E. Engelsiepen. Parallel file system and 
method with extensible hashing. US Patent No. 
05893086. 

[8] J. N. Gray, Notes on database operating systems, 
in Operating systems, an advanced course, edited 
by R. Bayer et. al., Springer-Verlag, Berlin, Ger-
many, 1979, pages 393-400.  

[9] Ajay Mohindra and Murthy Devarakonda, 
Distributed token management in the Calypso file 
system, Proceedings of the IEEE Symposium on 
Parallel and Distributed Processing, New York, 
1994.  

[10] Dbench benchmark. Available from 
ftp://samba.org/pub/tridge/dbench/ 

[11] NetBench benchmark. http://etestinglabs.com/ 
benchmarks/netbench/netbench.asp 

[12] Group Services Programming Guide and Refer-
ence, RS/6000 Cluster Technology, Document 
Number SA22-7355-01, Second Edition (April 
2000), International Business Machines Corpora-
tion,  2455 South Road, Poughkeepsie, NY 12601-
5400, USA. Also available from http:// 
www.rs6000.ibm.com/resource/aix_resource/ 
sp_books/pssp/index.html 

 

 
[13] IBM General Parallel File System for AIX: 

Administration and Programming Reference. 
Document Number SA22-7452-02, Second Edition 
(December 2000), International Business Machines 
Corporation, 2455 South Road, Poughkeepsie, NY 
12601-5400, USA. Also available from http:// 
www.rs6000.ibm.com/resource/aix_resource/ 
sp_books/gpfs/index.html 

[14] Charlotte Brooks, Ron Henkhaus, Udo Rauch, 
Daniel Thompson. A Practical Guide to Tivoli 
SANergy. IBM Redbook SG246146, June 2001, 
available from  http://www.redbooks.ibm.com/ 

[15] VERITAS SANPoint Direct File Access. White-
paper, August 2000. VERITAS Software Corpora-
tion, Corporate Headquarters, 1600 Plymouth 
Street, Mountain View, CA 94043. 

[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. 
Nishimoto, and G. Peck. Scalability in the XFS File 
System, Proceedings of the USENIX 1996 Techni-
cal Conference, pages 1-14, San Diego, CA, USA, 
1996. 

[17] SGI CXS Clustered File System, Datasheet, Silicon 
Graphics, Inc., 1600 Amphitheatre Pkwy. Moun-
tain View, CA 94043. 

[18] Chandramohan A. Thekkath, Timothy Mann, and 
Edward K. Lee. Frangipani: A Scalable Distrib-
uted File System. In Proceedings of the Symposium 
on Operating Systems Principles, 1997, pages 224-
237. 

[19] Edward K. Lee and Chandramohan A. Thekkath. 
Petal: Distributed Virtual Disks, In Proceedings of 
the Seventh International Conference on Architec-
tural Support for Programming Languages and 
Operating Systems, Cambridge, MA, 1996, pages 
84-92. 

[20] Kenneth W. Preslan, Andrew P. Barry, Jonathan 
Brassow, Russell Cattelan, Adam Manthei, Erling 
Nygaard, Seth Van Oort, David Teigland, Mike 
Tilstra, Matthew O'Keefe, Grant Erickson and 
Manish Agarwal. Implementing Journaling in a 
Linux Shared Disk File System. Seventeenth IEEE 
Symposium on Mass Storage Systems, March  
2000, pages 351-378. 

[21] Kenneth W. Preslan, Andrew P. Barry, Jonathan E. 
Brassow, Grant M. Erickson, Erling Nygaard, 
Christopher J. Sabol, Steven R. Soltis, David C. 
Teigland, and Matthew T. O'Keefe. A 64-bit,  
Shared Disk File System for Linux. Sixteenth IEEE 
Mass Storage Systems Symposium, March 15-18, 
1999, San Diego, California, pages 351-378. 


	Abstract
	I
	Introduction
	General Large File System Issues
	Data Striping and Allocation, Prefetch and Write-behind
	Large Directory Support
	Logging and Recovery

	Managing Parallelism and Consistency in a Cluster
	Distributed Locking vs. Centralized Management
	The GPFS Distributed Lock Manager
	Parallel Data Access
	Synchronizing Access to File Metadata
	Allocation Maps
	Other File System Metadata
	Token Manager Scaling

	Fault Tolerance
	Node Failures
	Communication Failures
	Disk Failures

	Scalable Online System Utilities
	Experiences
	Related Work
	Summary and Conclusions
	Acknowledgements

