
USENIX Association

Proceedings of
FAST ’03:

2nd USENIX Conference on
File and Storage Technologies

San Francisco, CA, USA
March 31–April 2, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 59

yFS: A Journaling File System Design for Handling Large Data Sets with
Reduced Seeking*

Zhihui Zhang and Kanad Ghose
Department of Computer Science,

State University of New York, Binghamton, NY 13902-6000
e-mail: {zzhang, ghose}@cs.binghamton.edu

Abstract
In recent years, disk seek times have not improved
commensurately with CPU performance, memory system
performance, and disk transfer rates. Furthermore, many
modern applications are making increasing use of large
files. Traditional file system designs are limited in how
they address these two trends. We present the design of a
file system called yFS that consciously reduces disk
seeking and handles large files efficiently. yFS does this
by using extent-based allocations in conjunction with
three different disk inode formats geared towards small,
medium, and large files. Directory traversals are made
efficient by using the B*-tree structure. yFS also uses
lightweight asynchronous journaling to handle metadata
changes. We have implemented yFS on FreeBSD and
evaluated it using a variety of benchmarks. Our
experimental evaluations show that yFS performs
considerably better than the Fast File System (FFS) with
Soft Updates on FreeBSD. The performance gains are in
the range from 20% to 82%.

1 Introduction
Recent years have seen impressive growth in CPU speeds
and hard drive technology. In particular, data transfer
rates of hard drives have improved quite dramatically
with an increase in the performance of the data transfer
paths and the rotational speeds [1]. However, processing
capabilities have improved even more than disk access
rates. At the same time, the demands for handling
intensive I/O and large data sets have also grown
noticeably [2]. These trends indicate that the I/O
bottleneck will continue to be an issue in the foreseeable
future.

This paper describes our effort in creating a new file
system, named yFS, to alleviate this I/O bottleneck. yFS
is a new file system design that brings together many of
the best-known techniques for improving file system
performance. By starting from scratch, we have been able
to integrate proven techniques and new ideas with greater
freedom and flexibility compared to either porting or
patching an existing file system.

*This work is supported in part by the NSF through award No.
EIA 0011099.

We have chosen FreeBSD as the host operating system of
yFS because FreeBSD is a mature and well-pedigreed
open source operating system [3]. Specifically, it has a
solid merged buffer cache design and a full-fledged
VFS/vnode architecture. Both features have directly
influenced the design of yFS.

The rest of this paper is organized as follows. Section 2
discusses our motivation for this research. Section 3
describes the organization of yFS. Section 4 outlines the
journaling model of yFS. Section 5 describes the
implementation of yFS. Section 6 presents our
experimental evaluation results. Section 7 discusses
related work. We conclude this paper in Section 8.

2 Motivation
File system designs have always been driven by changes
in two major arenas: hardware and workloads.
Traditional file systems such as the Fast File System
(FFS) [4] and similar file systems (e.g., Ext2 file system
[5]) were designed with different assumptions about the
underlying hardware and the workloads to which the file
systems would be subjected. Although still used widely,
there are a number of known techniques (e.g., journaling,
B*-tree indices, extent-based allocation) that are not used
in these systems and have been shown to perform better
[5,6,7,8]. Some limitations in these file system designs are
discussed below.

In classical file system designs, one block is usually
allocated at a time even for a multi-block I/O request.
Because traditional designs do not maintain sufficient
information about the availability of extents, the preferred
block is the one contiguous to a previously allocated
block, even if there may be a larger extent available
elsewhere. FFS tries to alleviate this problem by using a
separate cluster map and a reallocation step [9], but it
introduces the complexity of maintaining two bitmaps
and each reallocation step must involve all the buffers in
the cluster.

File systems that provide only a single allocation unit size
force one to make a trade-off between performance and
fragmentation. FFS divides a single file system block into
one or more fragments, so that it can avoid undue internal
fragmentation on small files and boost I/O throughput for
large ones. However, FFS requires that a block consist of
at most eight fragments and start at fixed fragment

2nd USENIX Conference on File and Storage Technologies USENIX Association60

addresses. This can lead to poor file data layout and
wasted disk space. As a pathological example, if most of
the files are a little more than 4096 bytes in an 8192/1024
file system, then almost half of the disk space will be
wasted.

Traditional file systems translate a logical block number
to its corresponding physical block numbers using
file-specific metadata in the form of a highly skewed tree
[4]. For large files, several indirections are needed before
a data block can be accessed; this is because only a few
direct pointers are stored inside the disk inode.
Furthermore, although one could represent a series of
contiguously allocated blocks efficiently with a single
disk address, conventional block-based systems do not do
so. The VIVA file system [10,11] reduces these
indirections by compressing disk block addresses with
partial bitmaps, but fails to address the problem of holes
efficiently.

Metadata integrity is crucial in a file system. Historically,
metadata was updated synchronously in a pre-determined
order to ease the job of fsck [12]. This not only severely
limits the performance of metadata updates, but also
entails scanning of the entire file system for crash
recovery. Log-structured File Systems (LFSs) solve both
problems with the technique of logging [13,14]. LFS
treats the disk as a segmented append-only log and writes
both the file data and the metadata into it. Crash recovery
can be performed efficiently by taking the most recent
checkpoint and proceeding to the tail of the log. However,
LFS introduces cleaning overhead, since the size of the
file system is of finite size and the log must eventually
wrap. Metadata journaling is a second technique that logs
only changes to the metadata [6,7,8]. It speeds up
metadata updates and crash recovery without incurring
any of the cleaning cost of LFSs. However, metadata
journaling introduces extra logging I/O because the
metadata has to be written twice—first in the log area and
then in place. Soft Updates is a third technique used to
tackle the metadata update problem [15,16,17]. It
maintains metadata dependency information at
per-pointer granularity in the memory so that delayed
writes can be used safely for metadata updates. To avoid
dependency cycles, any still-dependent updates in a
metadata block are rolled-back before I/O and
rolled-forward after I/O. After a system crash, fsck is still
needed to salvage any unused blocks and inodes.

Traditional file systems maintain a directory as an
unsorted linear list of file name to inode number mappings
called directory entries, which is painful to handle large
directories. In addition, some old file systems lack the
ability to create and deallocate new disk inodes on the fly.

To summarize, traditional file systems have various
weaknesses in some or all of these subjects: disk space
allocation, large directory handling, dynamic inode
allocation, metadata update performance, and fast crash
recovery. The goal of our work on yFS is to create a new
file system that handles these issues more efficiently.
Specifically, yFS has the following features:

� yFS uses extent-based allocation to maximize the
chances of contiguous allocation.

� yFS makes use of B*-trees for representing large files
and directories.

� yFS uses a variety of techniques to reduce the overhead
of metadata logging to achieve fast crash recovery and
boost metadata update performance.

� yFS allows dynamic allocation and deallocation of disk
inodes.

� yFS implements fragments and inline data storage to
improve the performance on small files.

Modern file systems like IBM JFS [6], SGI XFS [7,8],
and FFS with Soft Updates [15,16,17] technology have
also made improvements in solving design problems
found in traditional file systems. In Section 7, we will
compare yFS with these more modern file system designs.

3 The Organization of yFS
In this section, we discuss the major data structures of yFS
and the disk space allocation strategy of yFS.

3.1 Allocation Groups
yFS divides the file system disk space into equal-sized
units called allocation groups (AGs). The purpose of an
AG is similar to that of cylinder groups in the Fast File
System [4], that is, to cluster related data. In addition, we
use AGs to increase concurrency by allowing different
processes to work in different AGs. An AG consists of a
superblock copy, AG group block, AG inode block, AG
bitmap block, a set of preallocated inodes, and a large
number of available data blocks.

yFS makes use of a bitmap to keep track of disk space
usage within an AG. Like FFS, we use the idea of
“sub-blocking” to trade off between space efficiency and
I/O throughput. Each bit in the AG bitmap block
represents one fragment, which is the smallest allocation
unit. In addition, yFS also has a block size. A block is
composed of one or more fragments and can start at any
fragment address. In yFS, large files (with a size of more
than 12 blocks) are always allocated in full blocks, while
the last block of small files are allocated as many
fragments as needed. As in FFS, fragment reallocation is
needed if the last block of a small file cannot grow in
place.

The AG group block and the AG inode block contain disk
space and disk inode information respectively. To

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 61

allocate disk space or a disk inode from a particular AG,
we must first lock the buffer of its group block or its inode
block. As explained in Section 4, every atomic operation
performed in yFS is implemented as a transaction.
Because a transaction does not release locks on metadata
buffers before it commits, it should not allocate disk
blocks or disk inodes from two AGs at the same time to
avoid any potential deadlock. The separation of disk space
and disk inode information into two different AG blocks
(AG group block and AG inode block) is deliberate. It
allows allocation of disk space in one AG and a disk inode
in another AG within the same transaction.

3.2 Extent Summary Tree

To avoid a linear search on a bare-bones bitmap, we have
adapted the IBM JFS algorithm which uses a binary buddy
encoding of the bitmap and a free-extent summary tree
built on top of the encoding [6]. The binary buddy
representation of the bitmap and the summary tree are
stored in the AG group block, separate from the AG
bitmap block.

Initially, we divide the entire bitmap into 32-bit chunks
called bitmap groups. Each group is then encoded using
the binary buddy scheme (e.g., a value of 4 means that the
maximum buddy group size within this bitmap group is 4
and it contains a free extent of length 24). The encoded
value of a bitmap group can be stored in one byte because
its maximum value is 5. After encoding bitmap groups,
we merge buddies among groups if possible. During each
merge, the left buddy’s encoded value is incremented,
while its right buddy’s encoded value is negated. For
example, if two buddies with an encoded value of 5 are
merged, the left buddy will have an encoded value of 6 and
the right buddy will have an encoded value of –5. If a
bitmap group does not have any free fragments at all, it is
assigned a special value of NOFREE (–128).

The binary buddy representation of the bitmap can be used
to check the availability of free fragments without
examining the underlying bitmap itself. For example, if
we know the encoding value of a buddy group is 13, then
we immediately know that all 213 fragments starting from
the first fragment of this group are free.

The extent summary tree is used to find out if and where a
free extent of size 2n is available. It is simply a 4-ary tree
with each parent taking the maximum value of its four
children. Each leaf in the tree takes on the binary buddy
encoding of its corresponding bitmap group. This tree can
be constructed bottom-up easily. Because the size of the
bitmap is fixed (and hence the number of bitmap groups),
the size of the tree is also fixed and can be represented
using a flat array. Each node in the tree occupies one byte,
capable of representing a maximum free extent of 2127

fragments. When we search the extent summary tree, we

use the absolute values of its nodes to determine whether
there is free space covered by a node unless, of course, the
value is NOFREE.

The free-extent summary tree can locate the portion of the
bitmap with enough free space quickly. However, the
binary buddy encoding only records the availability of
free extents of size 2n, which must begin at a fragment
address that is a multiple of 2n. This could lead to
sub-optimal allocations if we used the summary tree
liberally. As a result, we consult the summary tree only
when it is advantageous to do so (Section 3.3). An
important note here is that we can always work on the
bitmap directly and then adjust the encoding information
accordingly. It is also important to know that we do not
have to allocate an extent at the beginning of a buddy
group. If the bitmap group from where we want to start an
allocation has a negative encoding value, we must first
reverse the effects of previous buddy merges (i.e.,
perform back split) until the bitmap group gets its free
fragments back from its left buddy (or buddies).

3.3 Disk Resource Allocation
Disk resource (including disk inodes and disk blocks)
allocation is the single most important issue in any file
system design. yFS uses a two-step approach to perform
this task. First, it chooses an AG. Second, it allocates
resources from the chosen AG. To improve performance,
yFS pursues two goals during disk resource allocation:
locality and contiguity.

Many file systems use concepts similar to AGs to localize
related data and spread data across the file system. For
example, the Solaris file system achieves good temporal
locality by forcing all allocations into one hot-spot
allocation group [18]. The original FFS algorithm places a
directory into a different cylinder group of its parent
directory to ensure logical locality [4]. Both of these
strategies have their weaknesses. Trying to cluster too
much file data in the same AG exhausts its space quickly.
This over-localization prevents future related files from
being stored locally. On the other hand, switching to a
new AG for each directory incurs disk seeks whenever we
need to move along the directory hierarchy.

yFS adopts an algorithm similar to that used in FFS of
FreeBSD 4.5 to choose an AG for non-directory files and
directory files [19]. A non-directory file is preferred to be
created in the same AG as its parent directory. A file
system-wide parameter maxblkpg (maximum blocks per
AG) is used to spread data blocks of a large file across
AGs. Directories are laid out in a different way using the
idea of “directory space reservation.” Basically, a system
administrator can provide two parameters when creating a
file system: the average file size and the average number
of files per directory. The disk space needed for each
directory is reserved whenever possible (i.e., the free

2nd USENIX Conference on File and Storage Technologies USENIX Association62

space in an AG should not drop well below the average
amount of free space among all the AGs) using the above
two parameters to avoid spreading out directories too
aggressively. As a result, more directories can be created
in the same AG with enough space for files to be created
within them. We thus are able to take care of both
temporal and logical locality in disk space allocation.

The behavior of the resource allocator can be modified by
its various internal callers using bit flags. For example, the
flag ALLOC_ANYWHERE is set when we want to
allocate disk blocks for a file. This flag allows the
allocator to search the entire file system for available disk
blocks. However, if a caller wants to create more disk
inodes in a particular AG, it will use the flag
ALLOC_GROUP to limit the allocation within that AG.

After a usable AG is chosen, the preferred location within
that AG (i.e., hint within the AG) can be determined if
previous allocation information is available to indicate
where contiguous allocation is possible. Allocation then
proceeds as follows:

(1) If we have a hint within the AG, we attempt to use it
before looking up the free-extent summary tree. This
guarantees that files are allocated contiguously
whenever possible. If there is a hole between two
successive writes, the hint is adjusted to reserve space
for the hole. This retains the possibility that when the
hole is filled later, the entire file remains contiguous.

(2) Otherwise, we try the location of the first free
fragment in the AG. If this fails, we then try the
location following that for the last successful
allocation, failing which we search the free-extent
summary tree as the last resort.

yFS uses extent-based allocation to allocate more than
one fragment per call whenever possible. The size of a
newly allocated extent depends on the current I/O size as
well as the availability of free space. It is thus possible for
a large allocation request to be satisfied by several disjoint
extents, possibly from different AGs. This is different
from file systems that use a pre-determined extent
size—VxFS is one example of such a file system [20]. As
the file system fills up, the availability of large free extents
decreases. Even so, yFS can locate free extents quickly
with the aid of the free-extent summary tree. Note that the
size of an extent is counted in fragments, not in blocks.

An extent allocated to a file is naturally described by an
extent descriptor that is shown in Figure 1(a). Note that
we may need more than one descriptor to describe one
physical extent if the extent is not contiguous in terms of
its logical block numbers. On the other hand, two extents
can be merged if the hole between them is filled later by
data from the same file.

3.4 Ubiquitous B*-tree
yFS uses B*-trees in three different contexts for: (a) disk
inode management for each AG; (b) extent descriptor
management for files with a large number of extents; (c)
directory block descriptor management for directories
with a large number of directory blocks.

The power of B*-trees lies in the fact that they are shallow
and well-balanced. B*-trees give the capability of
performing localized structural changes and guarantee at
least 50% storage utilization [21]. These B*-tree features
are indispensable in supporting any large and dynamic
data set on a secondary storage device. The algorithms
associated with B*-trees are complicated, so we use them
only when necessary. The size of B*-tree nodes in yFS is
the same as the full block size. However, the root node
embedded in a disk inode is much smaller.

Each disk inode in yFS can be in one of the following three
formats, as shown in Figures 1(b) through 1(d):

INLINE. For a small enough file, all its data can be stored
inside its disk inode. This format reduces the number of
seeks needed to access small files, because all metadata
and data are stored in one place, namely, within the inode.

EXTENT. Here the extent descriptors of a regular file or
directory block descriptors (Section 3.5) of a directory file
are stored as an array that can fit into the disk inode. Note
that even a large file can use this format if it has only a few
non-contiguous extents.

BTREE. For a file with more descriptors than can fit into
its disk inode, its descriptors are organized into a B*-tree.
We always store the root block of its B*-tree in the inode,
reducing the worse case search by one disk access as long
as the file remains open.

The formats for directory inodes are similar except that we
use directory block descriptors instead of extent
descriptors. In addition to B*-trees used by files, each AG
has its own disk inode B*-tree that is used to support
allocation and deallocation of disk inodes on the fly within
it. The root node of the disk inode B*-tree is always stored
in the AG inode block. Since it is not embedded in a disk
inode, its size is the block size.

In yFS, inodes are 512 bytes (one sector), which are four
times larger than those of FFS. We have done this for three
reasons: (1) It allows us to use sector addresses as inode
numbers directly; as a result, we do not have to look up the
disk inode B*-tree to find the disk address of a given
inode. (2) We have better support for small files with
inline format. In our prototype, at most 420 bytes of data
can be stored inline; as a result, many small script files and
small directories can be stored efficiently and accessed
cheaply. (3) Since an inode block contains more than one
disk inode, using a larger inode size reduces lock
competition of the same disk inode block.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 63

Extent Descriptor

Basic Fields
(timestamps,

size, owner, etc.)

Basic Fields
(timestamps,

size, owner, etc.)

......

Basic Fields
(timestamps,

size, owner, etc.)

B*tree blk header

Start blk/blk addr

B*tree blk header

......

Extent Descriptor

B*tree blk header

Extent Descriptor

(b) INLINE Format (c) EXTENT Format

(d) BTREE Format

Figure 1. Regular File Disk Inode Formats

Inline Data

Extent Descriptor

Extent Descriptor

Extent Descriptor

Start blk/blk addr

typedef yfs_bmapbt_rec {

 u_int32_t ext_flags;

 u_int32_t ext_length;

 u_int32_t ext_filebno;

 u_int32_t ext_diskbno;

} yfs_bmapbt_rec_t;

(a) Extent Descriptor Structure

Unused Space

In yFS, although more I/O operations will be performed to
bring in the same number of disk inodes, we feel that the
above advantages outweigh this disadvantage.

3.5 Large Directory Support
The directory design of yFS aims to provide efficient
support for both small and large directories. Unlike
classical file system designs that implement a directory as
an unsorted list of directory entries, all entries in yFS are
ordered by their hash values computed from their
corresponding file names using simple left rotation and
XOR operations. If a directory is small, all its entries can
be stored inside its disk inode (inline format). Otherwise,
directory entries will be stored in directory blocks, which
are described by directory block descriptors. The
descriptor records three kinds of information for a
directory block: address, smallest and the biggest hash
values of all its entries, and space usage. All the directory
block descriptors of a directory are stored in the disk inode
if the number is small enough to fit into it (extent format)
or organized into a B*-tree using smallest hash values as
keys (Btree format). For the Btree format, all the B*-tree
leaf blocks are linked together to support the getdents()
system call easily.

yFS uses fixed 32-bit hash values as the keys for a
directory B*-tree. Compared to using variable sized keys
involved in techniques such as suffix compression [6,22],
using fixed size keys greatly reduces complexity and
enables binary search of keys within a B*-tree block. To
cope with duplicate keys, any binary search result must be
adjusted so that the first of a sequence of duplicate keys is

always chosen at each level of a B*-tree. The rest of the
directory code must also be able to deal with this situation.

Traditional file systems always use simple offsets as the
directory cookies. In yFS, directory cookies are 64 bits,
whose contents depend on the format of the directory
inode. For a small inline directory, it is simply an offset to
the next directory entry. For an extent format directory,
the directory cookie consists of an index into the array of
directory block descriptors stored in the disk inode and an
offset into the directory block pointed to by the chosen
directory descriptor. For a B*-tree format directory, the
directory cookie consists of three components: the block
address of a leaf B*-tree block, an index into the leaf block
to select a directory block descriptor, and an offset into the
directory block pointed to by the selected directory block
descriptor.

The recently published design of Htree for Linux [23] also
proposes the use of hash-keyed B*-trees. yFS differs from
this effort in at least two aspects: (1) using a sorted linked
list of entries to improve logging performance (Section 5),
and (2) using physical addressing instead of logical
addressing in the B*-tree to reduce one level of
indirection.

4 Metadata Journaling
Like many other file systems [6,7,17], yFS uses metadata
journaling to improve metadata update performance and
provide fast recovery after a system failure. However,
metadata journaling can rapidly become the system’s
performance bottleneck [17], so we take great care to
make our logging system lightweight.

2nd USENIX Conference on File and Storage Technologies USENIX Association64

4.1 Transaction Considerations
A file system journaling design should be based on a good
understanding of file system semantics and requires
consideration of the following issues:

(1) Although a user activity (e.g., creating a file) is the
ultimate source for triggering a transaction, it is up to
the file system to determine when to start a transaction
and what specific actions make up the transaction.

(2) A transaction in a file system is typically small. For
example, a transaction used to change the owner of a
file need only modify one inode block. For some large
atomic operations, we can separate them into small
transactions with the help of extra mechanisms
(Section 4.4). As a result, all transactions run entirely
within memory using the no-steal policy [22], which
means that dirty buffers will not be reclaimed until the
corresponding transaction commits in-core.

(3) Although we log only metadata changes, it is
dangerous to sever the relationship between the file
data and its associated metadata. As an example, if a
metadata block is freed and then reused for file data
prematurely, an untimely crash can corrupt the file
system. Our solution to this problem (Section 4.4)
neither restricts the reuse of freed metadata blocks
[24] nor requires the use of any additional committed
bitmap to check if a block is allocatable [5].

(4) We cannot afford to abort a dirty transaction for the
sake of performance. In GFS [25], whenever a
transaction modifies a buffer, a copy is made to
preserve its old contents. If the transaction must be
aborted, GFS simply restores all affected buffers by
using their frozen copies. Such a scheme is expensive
in terms of its memory footprint and copying
overhead. As a result, we must make sure that once
started, a transaction will succeed. We achieve this
through the use of resource reservations.

(5) The whole purpose of using the transaction
mechanism is to guarantee the integrity of the file
system after a crash. In yFS, we do not attempt to
provide a history of updates that allows us to roll back
to some point in the past. This means that log space
can be reclaimed as soon as the metadata it protects
has been written in place.

The above considerations lead to a lightweight transaction
model for yFS. The implementation of this model has a
small impact on performance.

4.2 Transaction Model: Overview
yFS uses a variety of features to improve the efficiency of
its metadata transactions. These features include: (1)
fine-granularity logging, (2) dynamic incore log buffers,
(3) asynchronous group commit, (4) resource

reservations, (5) background daemons, and (6) a circular
log area.

We first define a transaction as a group of metadata
modifications that must be carried out atomically. A
transaction moves the file system from one consistent
state to another consistent state.

In yFS, all metadata changes are made by use of metadata
buffers. Whenever a transaction wants to access a
metadata buffer, a log item is created for the buffer if it
does not already have one. A log item records if and where
its associated metadata buffer is modified. Each
transaction keeps track of the buffers it has locked
indirectly by maintaining log item pointers.

When a transaction ends, all metadata changes made by it
are first copied to incore log buffers in the form of log
entries. yFS uses physical logging [22] because of its
simplicity and idempotence. Each log entry is created
from the information recorded in a log item and consists
of: a metadata block number; start and end offsets within
the block where the block was modified; new data for that
region of the block; and a transaction ID. A special
commit log entry is used to indicate if all log entries of a
transaction have been written. After this, the transaction
is said to have committed in core. Although we use the
two-phase locking protocol to achieve transaction
isolation, we never hold a buffer lock across an I/O
operation, as in XFS [7,8]. After a transaction is
committed in core, all its buffers will be unlocked
immediately. However, a modified buffer is pinned in
memory to enforce the Write-Ahead Logging (WAL)
protocol [22]. A hot metadata buffer (e.g., a bitmap block)
can be pinned by more than one transaction: a pin count is
used in this case to indicate the number of non-committed
transaction for this buffer. As a transaction commits
on-disk, the associated buffer’s pin count is decremented;
a buffer is reclaimed only when its pin count is zero.

4.3 Transaction Model: Details
Figure 2 depicts the key data structures related to
transaction handling in yFS. All log entries, usually from
different transactions, stored in an incore log buffer
constitute one log record. A log record is checksumed and
timestamped. The size of a log record is unknown until the
incore log buffer is full or flushed before it is full, and it is
always rounded up to a multiple of the sector size. A
64-bit Log Sequence Number (LSN) is assigned to an
incore log buffer (which contains one log record) when it
is written for the first time. The LSN consists of two parts:
a cycle number that is incremented each time the on-disk
log wraps around and a sector address where the log
record should be stored on disk. A transaction’s LSN is
the LSN of the incore log buffer that contains its commit
log entry (in Figure 2, transaction #123 will have LSN of
5678).

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 65

All incore log buffers are organized into two queues: the
idle queue and the active queue. Whenever a new incore
log buffer is used, it is moved from the idle queue to the
tail of the active queue. An incore log buffer is flushed by
a special log daemon, triggered by either a log buffer
becoming full, or a 30 second timer, or a synchronous
operation. After an incore log buffer is flushed to the disk,
transactions that have written a commit log entry into it
are group committed onto the disk and the incore log
buffer is moved back to the idle queue for reuse. If a
flushed incore log buffer is not at the head of the active
queue, these processing steps are deferred until its
preceding incore log buffers are flushed and processed.
This guarantees that transactions always commit on disk
in the same order that they commit in core. To
accommodate different rates of metadata updates, the
number of incore log buffers can be adjusted dynamically.

A transaction’s lifetime terminates when it is committed
onto the disk. In other words, the changes made by the
transaction are now made permanent. But before it dies,
all the buffers dirtied by it are unpinned and their
associated log items are tagged with the transaction’s LSN
indicating where the modified data is logged. However, if
a log item already has a smaller LSN, its LSN should not
be replaced with a bigger one because it must remember
the first log sector that has active log data for its associated
metadata buffer. Note that the pin count of a dirty
metadata buffer is stored in its associated log item.

All log items that have associated “dirty but logged”
metadata buffers are linked into a global sync list in
ascending LSN order. The LSN of the first log item on the
sync list indicates that the log space at and after the LSN
still contains active log data. The only way to reclaim log
space is to write the metadata buffers associated with the
log items in place. This can be done by the log daemon if
need be. After a metadata buffer is written in place, its log
item can be removed from the sync list and freed.

Because we do not need to record the whole history of
metadata updates, the on-disk log area can be used in a
circular fashion. The log area can be either internal (in this
case, we allocate log area from the middle AG to reduce
disk head motion) or external. At the beginning of the log
area there are two copies of log anchors. The log anchors
are checksumed, timestamped, and updated alternately.
They, in conjunction with the log area information stored
in the superblock, record the current tail of the active log
area.

To avoid starting a transaction needlessly, all sanity
checks must be done beforehand. Furthermore, we must
reserve three kinds of resources (disk space, locked
buffer, and log space) to make sure that a transaction runs
to completion safely. The disk space reservation is for the
maximum number of disk blocks that will be requested by
a transaction. The locked buffer reservation is for the
maximum number of metadata buffers that will be locked
by a transaction. This reservation guarantees that a
transaction can continue to grab new buffers within its
declared requirement. To prevent yFS from taking over
all the buffers in the system, the total number of buffers
locked and pinned by yFS cannot exceed a certain
threshold at any given time (Section 5). The log space
reservation avoids a deadlock situation that happens when
the log space is low but the first log item on the sync list is
locked by the committing transaction.

For example, the transaction CREATE_DINODE is used
to create a chunk of disk inodes in a given AG. Let us
suppose that a chunk of disk inodes contains 64 disk
inodes, each inode is 512 bytes, the block size is 16 KB,
and the maximum height of a B*-tree is 5. In this case, we
need to reserve 7 blocks of disk space (5 blocks for each
level of the B*-tree and two blocks for the inodes
themselves). In addition, the transaction will modify the
AG bitmap block and the AG inode block. The maximum
number of buffers that can be locked by this transaction is
9 (7, as indicated above plus two more blocks—one for the

Figure 2. Data Structures Involved in a Transaction

TID = 123

Meta
data

In-memory
buffers

Meta
data

1. begin transaction (TID = Transaction ID)

Log
Item

Log
Item

2. modify

3. modify

4. commit in-core

LR Header (LSN=5678)

......

Log Entry (TID=123)

Log Entry (TID=123)

Commit Entry (TID=123)

Active In-core Log Buffer
(LR = Log Record)

2nd USENIX Conference on File and Storage Technologies USENIX Association66

bitmap block and another for inode block containing the
root of the B*-tree and other status information). The log
space needed per block is estimated to be half the block
size, which is usually more than enough due to our use of
fine-granularity logging. So the log space to be reserved is
73,728 bytes plus a little overhead for log entries and log
record headers. Because reservations are made against
the maximum possible requirements, any unused resource
must be returned when the transaction commits in core.

4.4 Beyond Transactions

The transaction model described above provides us with a
foundation to move the file system from one consistent
state to another safely. However, we still need some extra
mechanisms to deal with three special cases described
below.

Inode Recovery List. POSIX semantics require that a file
whose link count drops to zero continues to exist until the
last reference to it is removed. This feature is often used
to create temporary files. However, it poses a serious
problem to journaling code because we do not know when
the file will be truncated. Therefore we cannot decrement
its link count and delete the file in one atomic transaction.
The solution is to put such an inode on an AG Inode
Recovery List (IRL) when its link count is decremented to
zero. When the reference count of that file becomes zero,
we truncate the file and remove the disk inode from the
IRL with one transaction. If there is a crash after a file’s
link count drops to zero but before it is truncated, the disk
inode will be found on an IRL during recovery and the
intended truncation can be performed.

Extent Log Item. Locking is an important requirement in
a journaling file system. To avoid deadlock, a transaction
can choose to allocate disk blocks from only one AG.
However, we cannot have this kind of control during
deallocation because blocks to be freed could have been
allocated from more than one AG. Our solution is to use
more than one transaction to accomplish the job. The first
transaction frees extents from the corresponding file’s
block map and logs the fact that these extents are to be
freed from the file system bitmap using a “marked free”
extent log item. After this transaction has committed on
the disk, a bitmap daemon will start transactions to free the
marked extents from the bitmap and write corresponding
“unmark free” extent log items. By doing this, we not only
avoid deadlocking, but also prevent any freed metadata
block from being reused prematurely. Note that if a freed
block was used for metadata, the first transaction has to
write a special log entry indicating that the metadata block
was deleted. These special log entries will be used in crash
recovery (Section 4.5).

Dependent Data Block List. This last mechanism is used
to make sure that a newly created file contains useful data

and no file data is lost due to reallocation, making use of
the concept of “dependent data blocks.” Every buffer that
contains newly allocated disk space is added to the
dependent data block list of the ongoing transaction.
These buffers are later moved over to the dependent data
block list of the incore log buffer that contains the commit
log entry of the transaction. Before an incore log buffer is
flushed, any data buffers on its dependent data block list
must be written first. This helps in enforcing the three
update dependencies proposed by McKusick and Ganger
in [16].

4.5 Log Recovery
Log recovery is relatively easy because of the use of
physical logging. First, we read the latest valid copy of the
log anchor to find the tail of the log. Then we scan forward
to find all the metadata blocks that were deleted. Note that
whenever we delete a metadata block, we have to write its
block number into the log. If this was not done, we could
end up overwriting valid user data by replaying obsolete
metadata updates. This analysis scan stops at the head of
the log, which is defined as the valid log record with the
highest LSN. During the second scan from tail to head, we
redo any changes to the metadata blocks, ignoring any
stale metadata blocks. If we encounter a “marked free”
extent log item that does not have a corresponding
“unmark free” extent log item, we free such extents in the
corresponding bitmap.

The recovery of inodes is done by the kernel after the file
system is mounted. At this point, the log area is
completely empty and we can use the normal transaction
mechanisms to truncate any inodes on an IRL.

5 Implementation
Our prototype has been implemented as a kernel loadable
module using the stackable vnode interface on the
FreeBSD 4.5-Release. Several user-level utilities have
also been developed to create a file system, debug a file
system, and collect run-time statistics. The total source
code consists of about 30,000 lines of C code. For brevity,
we discuss only the key implementation details.

Our first critical decision concerned the encapsulation of
metadata updates into transactions. If we follow the
transaction model closely, we have to lock all
metadata—including vnodes—needed to perform a
transaction within its context. However, after studying the
VFS layer carefully, we found out that vnode locking and
unlocking are normally done within the VFS layer.
Therefore, we decided to leave vnode locks outside a
transaction’s context. All changes to an inode are copied
to its corresponding inode block when a transaction
commits. This arrangement has two big benefits: (1) It
keeps all transaction code within yFS while leaving the
VFS layer intact; this is helpful in achieving our goal to be

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 67

as unobtrusive as possible. (2) Because vnodes are
managed by the VFS layer, leaving them out of the
transaction context makes it possible for the VFS layer to
reclaim vnodes freely.

Our second challenge was to find a way to represent
metadata blocks. Because we use B*-trees and implement
a directory directly on disk blocks instead of on the top of a
regular file, we can no longer identify individual metadata
blocks using negative block numbers as FFS does [4].
Therefore, all metadata blocks are attached to the device
vnode corresponding to the disk device of the file system.

Since buffers of the device vnode use VM pages (i.e., page
cache), metadata are cached longer than the lifetime of
buffers that were used to access them. However, using the
device vnode leads to the problem of identifying the
metadata buffers that belong to each individual file. This
information is needed for the fsync() operation. To solve
this problem, we record in the inode the LSN of the
transaction that made the latest changes to its file. To flush
the metadata of a file, we only have to the make sure that
the incore log buffer tagged with that LSN is flushed.

Our third challenge arose from the need to pin dirty
metadata buffers until corresponding transactions have
committed on disk. Fortunately, FreeBSD has a
B_LOCKED queue that locks a buffer in the memory. All
we have to do is to keep the buffer on this queue as long as
its pin count is non-zero. In addition, a few fields need to
be added to the buffer header to support transaction
semantics. The maximum number of buffers that can be
pinned down by yFS simultaneously is limited to be one
half of all the available buffers in the system by default.

Our last challenge was keeping logging overhead low.
Besides using fine-granularity logging, we take some
additional measures to reduce the logging overhead:

(1) Log changes are made when absolutely necessary.
For example, the bitmap encoding information and
the summary tree do not have to be logged because
these derived data can be reconstructed easily from
the underlying bitmaps.

(2) Optimized data structures are used to reduce the
logging I/O. An example of this is the maintenance of
the directory entries in a directory block as a linked list
ordered by hash values. As a result of this, the
creation of an entry requires only the new entry itself
and the modified pointer(s) to be logged. The deletion
of an old entry requires only one modified pointer to
be logged to remove the entry from the list.

Reducing logging information saves memory copies and
I/O involved in logging. It also allows dirty metadata
blocks to remain cached longer without being flushed
because log space is consumed more slowly.

6 Experimental Evaluation
In this section we evaluate the performance of yFS against
FFS enhanced with Soft Updates (FFS-SU). Our
experimental comparisons are restricted to FreeBSD file
systems for the following reasons. First, the effort needed
to port non-FreeBSD file systems to FreeBSD for the sake
of comparison against yFS is well beyond the scope of this
work. Second, the comparison would not be fair because
file system implementations are intimately tied to the
virtual memory, scheduling, and I/O subsystems.
Consequently, it would be difficult to identify what causes
the performance differences between yFS and these
ported file systems. Third, although the original FFS was
designed almost two decades ago, it has benefited from
two major improvements: clustered I/O [14] and Soft
Updates [15,16,17]. The FreeBSD implementation of
FFS further optimizes FFS with a variety of techniques
[19]. In a nutshell, FFS-SU is a formidable file system
against which to compare yFS.

The platform used in our measurements has an Intel Xeon
500 MHz. CPU, 128 Mbytes memory, an Adaptec
AIC-7890 SCSI Adapter, and two 9.1 GB 7,200-RPM
Seagate ST39140 SCSI disks. The first disk is used as the
operating system disk. The second disk is used as the file
system disk, where we created our test file systems.

All file systems are formatted with a block size of 16 KB
and a fragment size of 2 KB (both are defaults under
FreeBSD 4.5). The average file size parameter is 16 KB
and the average number of files per directory parameter is
64. The allocation group (called cylinder group in FFS)
size is 178 Mbytes for all file systems. For yFS, the log
area is 32MB, which can be either inline (yFS-inline) or
on a separate device (yFS-external). Because we have
only two disks, the external log is created on the operating
system disk in the case of yFS-external.

The four benchmarks used in this section are kernel build,
PostMark, archive extraction, and file system aging. We
start each benchmark run with a cold cache. All results are
averaged over at least five runs; the standard deviation is
usually less than 3% of the average, with a value as high as
6% in the aging benchmark.

We have also instrumented the kernel device driver to
collect two kinds of low-level I/O statistics on the file
system disk only: total number of I/O requests and average
I/O times in milliseconds. The total number of I/Os
reported (as X+Y) has two parts: the number of I/Os
performed during the lifetime of a benchmark plus the
number of I/Os performed after the benchmark terminates
(e.g. FFS-SU issues additional I/Os for background
deletion after PostMark finishes). The I/O times reported
(as W+Z) also have two components: the service time (W,
the time between the initiation of an I/O to the disk
controller and the receipt of the corresponding interrupt)

2nd USENIX Conference on File and Storage Technologies USENIX Association68

and the driver-level queuing time (Z). Note that the I/O
times reported are only for the lifetime of each
benchmark.

We ran all the benchmarks on FFS without Soft Updates as
well. However, this version of FFS supports different
semantics than both yFS and FFS-SU as all metadata
operations are performed synchronously, instead of being
performed asynchronously. These synchronous I/Os
completely dominate the performance and make the FFS
numbers uninteresting as points of comparison.

Copy
Phase

Time (s)

Compile
Phase

Time (s)

Total I/O
Requests

Avg I/O
Times
(ms)

yFS-inline 32 704 10505+131 5+58
yFS-external 32 703 10177+115 4+53
FFS-SU 40 701 14614+181 7+209

Table 1 Kernel build benchmark user-level and
low-level I/O results

6.1 Kernel Build Benchmark
This benchmark uses a small shell script to copy kernel
files from the operating system disk to the test file system
created on the file system disk. It then builds the FreeBSD
generic kernel and all kernel modules under the test file
system. The copy phase of this benchmark is I/O
intensive. During this phase, the benchmark copies files
from /usr/src/sys on the operating system disk to the test
file system. The compile phase is CPU bound.

As shown in Table 1, the two yFS configurations perform
20% better than FFS-SU in the copy phase (32 seconds vs.
40 seconds). In FFS-SU, successively created small files
may not be allocated contiguously to each other because a
partial block cannot span across a block boundary. In
addition, the last partial block of a file may not be
allocated close to its preceding block [28]. In contrast,
yFS is able to allocate small files adjacent to each other
because it does not enforce artificial block boundaries.
Since yFS does not divide disk space into blocks statically,
it cannot maintain a free block count. Therefore, the

directory layout algorithm described in Section 3.3 uses a
free fragment count as the metric of free space. This tends
to result in more locality in accessing, as compared to
FFS-SU, where free space provided by fragments is
ignored by the algorithm. These features certainly help
yFS in other benchmarks as well.

Both yFS configurations perform quite comparably to
FFS-SU in the compile phase even though yFS uses more
complicated algorithms than FFS-SU. FFS-SU generates
more I/Os than yFS. But this does not hurt the apparent
performance of FFS-SU due to the overlap between I/O
and CPU processing.

6.2 PostMark Benchmark
PostMark is a popular benchmark that simulates the
working environment of a Web/News server [26]. It
creates an initial pool of specified number of files. Then it
performs a mix of creation, deletion, read, and append
operations. Finally, all files are deleted. We use default
configurations of PostMark v1.5 (the size range is
between 500 bytes and 9.77 KB, both read and write block
sizes are 512 bytes, the read/append and create/delete
ratios are 5) except the base number of files. The results
are shown in Tables 2(a) and 2(b). There are two
interesting points to make at this point.

First, unlike other benchmarks used in this paper, FFS-SU
performs fewer I/Os than yFS (the numbers for
yFS-external do not include logging I/O). This is due to
the following two reasons: (1) yFS needs four times as
many I/Os as FFS-SU to write disk inodes because its
inodes are four times larger than those of FFS-SU. (2)
FreeBSD has a fast path deletion optimization [3], which
deletes newly created files immediately if the inodes have
not yet been written. yFS has to faithfully write log
information for every metadata update, even if the update
turns out to be cancelled before it reaches disk. Note that
the average service time per I/O for FFS-SU is longer than
that of yFS.

Second, the deletion rate (number of files deleted per
50,000 Files 100,000 Files 150,000 Files

Total Time (s) Deletion Rate Total Time (s) Deletion Rate Total Time (s) Deletion Rate
yFS-inline 102 1666 215 1552 320 1530
yFS-external 87 2772 177 2795 267 2560
FFS-SU 130 6962 281 5888 462 5357

Table 2(a) PostMark (v1.5) benchmark user-level results

 50,000 Files 100,000 Files 150,000 Files
Total I/O
Requests

Avg I/O Times
(ms)

Total I/O
Requests

Avg I/O Time
(ms)

Total I/O
Requests

Avg I/O Times
(ms)

yFS-inline 58084+373 2+39 117247+407 2+34 176159+358 2+33
yFS-external 56874+402 1+28 114698+462 1+24 172104+482 1+23
FFS-SU 57632+404 4+107 115603+575 4+100 173222+397 4+98

Table 2(b) PostMark (v1.5) benchmark low-level I/O results

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 69

seconds) of FFS-SU is much higher than those of the two
yFS configurations. This can be partly attributed to the
fast path deletion optimization and the background
deletion employed by FFS-SU. For example, the df –i
command shows 22,471 inodes still in use in the case of
100,000 base files for FFS-SU after the benchmark
finishes.

PostMark is the most metadata intensive test of the four
benchmarks used in this paper. Let us consider the
statistics for FFU-SU and yFS-internal for the 150,000
base file case. For Soft Updates, the benchmark process
has to push the work item list 1,209 times itself to help the
syncer daemon and sleep 7 times to slow it down. In the
meantime, 13,218 metadata buffers are re-dirtied due to
rollbacks. For yFS-internal, the small 32 MB log area
wraps around 10 times. The benchmark process waits 108
times for incore log buffers and 10 times for log space. In
comparison, yFS-inline fares better than FFS-SU by 31%
(320 seconds vs. 462 seconds). Because other features do
not help yFS here (e.g., yFS cannot inline files larger than
420 bytes), this benchmark clearly shows the efficiency of
our journaling scheme.

PostMark writes all test files in the same directory (i.e., the
root) by default, creating a large directory. The non-linear
directory organization used by yFS can efficiently deal
with this. FFS-SU also copes with the large directory by
using its directory hashing scheme [19].

6.3 Archive Extraction Benchmark
Archive extraction is a common pre-requisite of installing
a software package on a Unix-like system. This
benchmark extracts the file ports.tgz (15,165,655 bytes,
consisting of 6,470 FreeBSD 4.5 ports) with the tar
command and then deletes these files with the rm
command. We un-mount and re-mount the file system
between the two operations to remove any impact of
caching. The results of this benchmark are shown in Table
3. Both yFS configurations win in this benchmark. For
example, yFS-external beats FFS-SU by 82% (89 seconds
vs. 502 seconds) in the creation phase and 75% (37
seconds vs. 148 seconds) in the deletion phase.

This benchmark creates a total of 55,189 files. Out of
10,448 directory files (including the root), 10,257 are
stored in the inline format in yFS. Out of 44,742 regular
files, 24,368 are stored in the inline format in yFS. For all
of these inline files in yFS, FFS-SU has to allocate disk

space for them separately from their disk inodes. This is a
major reason for the noticeable performance gap between
yFS and FFS-SU. In addition, FFS-SU re-dirties 35,393
buffers due to its rollback operations, again handicapping
FFS-SU against yFS. Note that deleting an inline file does
not need to update disk space bitmap.

In the deletion phase, yFS even beats FFS-SU featuring
background deletion. In FFS-SU, freeing a disk inode
incurs an extra I/O to zero its mode field to help fsck
identify unused inodes [12]. yFS does not do this because
of its strong atomic guarantees. Furthermore, for all
55,189 files, yFS requires 1,725 I/Os to read their big
512-byte disk inodes compared to 432 I/Os needed by
FFS-SU to read the smaller 128-byte inodes. The benefit
is that yFS saves 10,257 I/Os that are required by FFS-SU
to read the small directories.

6.4 File System Aging Benchmark

File system aging has been used to demonstrate the
effectiveness of several layout optimizations in FFS
[9,28]. While it is important to understand the long-term
effects of the yFS allocation policy, that work is beyond
the scope of this paper. The results of this test are thus not
indicative of the long-term behavior of yFS.

Our file system aging benchmark performs a mix of file
system operations to fill an empty file system with
directories and regular files. The inclusion of directories
is essential because they play an important role in file
system layout. Each operation must have a working
directory. Initially, there is only one root directory so the
working directory is the root. As more directories are
created, a working directory is selected randomly among
them with a uniform distribution. Each file operation
could be either a creation or a deletion. The probability
that the next operation is a creation decreases gradually as
the file system fills up. If we choose to create, the
probability of creating a directory is 1/N (N defaults to
64), assuming that there are N files per directory on the
average. For the file sizes, 93% are determined by the
Lognormal distribution (�=9.357, �=1.318) and the rest
7% are decided by the Pareto distribution (�=133K,
�=1.1) [27]. If we choose to delete, we first order the files
in the directory alphabetically before picking a victim.
This guarantees that we delete the same file even if the
on-disk directory structures are different for different file
systems. All file names are created randomly from a set of

Creation Phase Deletion Phase
Elapsed Time
(seconds)

Total I/O
Requests

Avg I/O Times
(ms)

Elapsed Time
(seconds)

Total I/O
Requests

Avg I/O Times
(ms)

yFS-inline 97 26472+558 4+75 43 4683+141 12+111
yFS-external 89 25761+647 4+59 37 3929+238 11+107
FFS-SU 502 96614+201 10+645 148 22613+303 10+185

Table 3 Archive extraction benchmark user-level and low-level I/O results

2nd USENIX Conference on File and Storage Technologies USENIX Association70

characters. The results of this benchmark are shown in
Tables 4(a) and 4(b).

Both yFS configurations excel in this benchmark. Since
this benchmark performs a variety of operations, the
performance gains for yFS come from many of the
reasons mentioned for the other tests. In particular, the
rollback operations in FFS-SU take a toll on its
performance. Note that the performance gap grows wider
as the number of operations grows (yFS-external beats
FFS-SU by 30%, 40%, and 49% respectively). This
shows that the metadata handling capability of yFS scales
up better than that of FFS-SU. When the memory holds
too many dirty metadata buffers that are constrained (by
WAL or pending dependencies), large sequential I/Os, as
used in yFS, offer a better way than delayed individual
writes (as used in FFS-SU) to clear the backlog.

An unexpected phenomenon about this benchmark is that
sometimes yFS–inline outperforms yFS-external. A
closer look at the directory layout algorithm reveals that
the AG of a directory directly under the root is chosen
randomly. Because the working directory for each
operation is also chosen randomly in this benchmark, the
distances between these top-level directories can play a
prominent role in determining the overall performance.

6.5 Discussions of the Results
Generally, yFS-external has an advantage over
yFS-internal because it removes logging I/O from the
normal I/O path. However, if a benchmark is not metadata
intensive (Section 6.1) or has some other quirks (Section
6.4, for example), using a separate logging disk does not
guarantee an improvement in apparent performance.
Nonetheless, yFS outperforms FFS-SU on all our
benchmarks except the kernel compile phase.

One of the major reasons for the performance gains of yFS
is the use of a lightweight journaling scheme. Each
transactions writes less than 500 bytes of log data,
incurring a small overhead.

yFS uses extent-based allocation to allocate disk space for
files and B*-trees to represent the extents of a file.

Because we do not use large files (the largest file used in
our aging benchmark is 52,242,324 bytes) and we run all
benchmarks on an empty file system, the benefits gained
by these features are limited. Although extent-based
allocation and B*-tree algorithm should make yFS handle
large data sets efficiently as other file systems with similar
algorithms have claimed [6,7], it is difficult to
demonstrate this advantage without proper aging on an
empty file system. That work is in progress and beyond
the scope of this paper.

7 Related Work

The yFS disk space management algorithm is an
adaptation of the JFS scheme [6]. However, the original
JFS scheme uses one allocation tree for the entire file
system and two bitmaps (working and permanent) to track
disk usage. We do neither of these because of their
potential problem in terms of concurrency and space
overhead. JFS does not use the location information
inherent within the summary tree to search the tree. In
JFS, when a right buddy is merged with its left buddy, its
value is set to be NOFREE, disregarding the fact that the
portion of the bitmap covered by this node may actually
contain a free extent. As a result, JFS searches the
summary tree using only the first-fit algorithm.

XFS uses dual B*-trees to track free extents by block
number and by extent size respectively [7,8]. Each
allocation and deallocation of disk space must update both
trees. Since the two B*-trees grow and shrink on the fly,
their blocks are not guaranteed to be stored contiguously.
Although XFS only records free extent information, the
amount of disk space used by the space management
routine itself is not necessarily less than that for the bitmap
solution when free disk space becomes fragmented.

Unlike JFS and XFS, yFS inherits the tradition of FFS to
use fragments as the basic allocation unit. Large files
(defaulting to more than 12 blocks) are allocated in full
blocks. Although saving disk space is a consideration, the
main motivation in yFS is to have the ability to cluster
small files closer to gain better performance. Unlike FFS,

Elapsed Time 10,000 Operations (seconds) 20,000 Operations (seconds) 40,000 Operations (seconds)
yFS-inline 114 241 552
yFS-external 117 241 519
FFS-SU 168 400 1024

Table 4(a) File system aging benchmark user-level results

10,000 Operations 20,000 Operations 40,000 Operations
Total I/O
Requests

Average I/O
Times (ms)

Total I/O
Requests

Average I/O
Times (ms)

Total I/O
Requests

Average I/O
Times (ms)

yFS-inline 20961+325 10+144 40967+454 11+150 82860+610 12+165
yFS-external 20521+216 11+148 40714+414 11+147 80034+673 12+155
FFS-SU 21817+387 15+240 47791+365 16+281 121179+452 16+335

Table 4(b) File system aging benchmark low-level I/O results

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 71

we do not maintain a separate bitmap for cluster allocation
because the buddy encoding and summary tree do a good
job in speeding up the bitmap lookup. As a result, the
number of fragments per block is not limited to eight,
making the trade-off between disk space and throughput
less painful.

One important difference between FFS and yFS is that a
full or partial block can start at any fragment address in
yFS. Therefore, yFS uses a free fragment count instead of
a free block count to keep track of the amount of free
space. In FFS, the free space provided by fragmented
blocks is not considered by the directory layout algorithm,
resulting in lower locality. Because there are no hard
block boundaries in yFS, the external fragmentation
between files is also reduced.

The use of extent maps has been suggested recently as one
of the improvements planned for Ext2/3 by Ts’o and
Tweedie [29]. The preferred form of this improvement
avoids the use of B*-trees for storing extent maps and
stores extent information inline within an inode or into a
single block. Traditional indirect blocks are used when
the inline and the single block storage is not enough.
Fragmentation, which forces the system to revert to the
old scheme, is avoided using preallocation. Performance
considerations make preallocation almost mandatory in
the suggested improvement. yFS implements extent
maps in a different manner, allowing for three different
inode formats, including one that stores data inline. yFS
also implements a full-fledged B*-tree algorithm that is
invoked only when necessary instead of altogether
avoiding its use.

Our transaction model is similar to that of XFS [7,8] but
with some notable differences. First, we reserve locked
buffer resources before a transaction starts to avoid
deadlocks. Although this is an issue that must be
addressed, XFS does not appear to do so. To do this
correctly, the file system must be able to detect the
memory pressure. Second, each transaction in yFS only
logs metadata modified by itself. XFS uses accumulated
logging and a fixed 128 byte logging granularity allowing
for the reclamation of log space without writing metadata
in place. Our experiments show that the amount of
logging I/O increases greatly because modifications made
by previous transaction(s) to the same metadata are
relogged repeatedly. Third, we use two queues to
maintain incore log buffers instead of a closed circular
queue in XFS. This makes it easy to dynamically adjust
the number of incore log buffers to match the metadata
update rates. Lastly, we do not lock inodes in a
transaction’s context. Any changes to a disk inode are
copied to its corresponding inode block buffer when a
transaction commits in core.

Seltzer et al. compare the journaling and Soft Updates
techniques and conclude that they are largely comparable
[17]. However, Soft Updates requires a non-trivial
amount of memory to maintain metadata dependency at
fine granularity. Although it does not enforce an order on
buffer writes, it does introduce rollback and roll forward
operations that increase memory and I/O overhead. For
Soft Updates to work, it must have intimate knowledge of
the inter-relationship between metadata that could be
involved in a single operation. This dependency tracking
could become tricky, if not entirely impossible, to work on
complex data structures such as B*-trees, where the
pointers can move within a metadata block. While Soft
Updates has the ability to delay metadata updates, the
memory tends to fill up. When that happens, the only way
to get rid of the accumulated dependencies is to resort to
synchronous writes. In case of a crash, a background fsck
run is still needed to salvage any unused resources and
both old and new names can show up due to an interrupted
rename operation.

Instead of starting a transaction to accept metadata
changes made by each atomic operation, Ext3 simply
creates one compound transaction once in a while to
receive all the changes made after a previous transaction
closes [5]. This simple transaction design does not
support fine-granularity logging. As a result, a modified
metadata block is logged in its entirety no matter how
minute the modification is. If a new transaction wants to
modify a buffer that is being flushed by a committing
transaction, a memory copy must be performed.

LFS is a write-oriented file system that logs both file data
and metadata [13,14]. Its most glaring problem is its
cleaning overhead. Although some techniques have been
proposed to reduce cleaning overhead, their effectiveness
depend on factors like workload, idle time, and access
patterns [30,31,32]. Furthermore, LFS inherits some of
the old data structures used by FFS such as the highly
skewed addressing tree for each file. The maximum
extent length is also limited by the size of a segment,
which cannot be made large due to cleaning
considerations. yFS does not have any of these problems.

8 Conclusions

This paper describes the design and implementation of
yFS, a journaling file system for FreeBSD that represents
a synthesis of existing and new ideas for improving file
system performance. Our experimental results show that
yFS works better than Soft Updates even without a
dedicated logging device. For the benchmarks we have
investigated, yFS’s performance edge can be attributed to
the use of lightweight logging, inline data storage, and the
relaxation of the usual block boundary constraints.

2nd USENIX Conference on File and Storage Technologies USENIX Association72

9 Acknowledgements
We would like to thank our shepherd, Prof. Margo Seltzer,
and the anonymous reviewers for their comments, which
were useful in improving this paper.

10 References
[1] Edward Grochowski and Roger F. Hoyt. Future

Trends in Hard Disk Drives. IEEE Transactions on
Magnetics, pp. 1850-1854, Vol. 32, May 1996.

[2] Drew Roselli, Jacob R. Lorch, and Thomas E.
Anderson. A Comparison of File System Workloads.
USENIX Annual Technical Conference, pp. 41-54,
June 2000.

[3] The FreeBSD open source project.
http://www.freebsd.org.

[4] Marshall Kirk McKusick, et al. A Fast File System
for UNIX. ACM Transaction on Computer Systems,
Vol. 2, No. 3, pp. 181-197, August 1984.

[5] Stephen C. Tweedie. Journaling the Linux ext2fs
Filesystem. LinuxExpo’98, May 1998.

[6] The IBM JFS open source project.
http://oss.software.ibm.com/developerworks/opens
ource/jfs/.

[7] The SGI XFS open source project.
http://oss.sgi.com/projects/xfs/.

[8] Adam Sweeney, et al. Scalability in the XFS File
System. USENIX Annual Technical Conference,
pp. 1-14, January 1996.

[9] Keith A. Smith and Margo I. Seltzer. A Comparison
of FFS Disk Allocation Policies. In USENIX Annual
Technical Conference, pp. 15-26, January 1996.

[10] Eric H. Herrin II and Raphael A. Finkel. The Viva
File System. Technical Report No. 225-93.
University of Kentucky, Lexington, 1993.

[11] Shankar Pasupathy. Implementing Viva on Linux.
http://www.cs.wisc.edu/~shankar/Viva/viva.html,
July 1996.

[12] Marshall Kirk McKusick. Fsck—The Unix File
System Check Program. Computer Systems
Research Group, UC Berkeley, 1985.

[13] Mendel Rosenblum and John K. Ousterhout. The
Design and Implementation of a Log-Structured File
System. ACM Transactions on Computer Systems,
Vol. 10, No. 1, pp. 26-52, February 1992.

[14] Margo I. Seltzer, Keith Bostic, et al. An
Implementation of a Log-Structured File System for
UNIX. Proceedings of the 1993 Winter USENIX
Conference, pp. 307-326, January 1993.

[15] Gregory R. Ganger, Yale N. Patt. Metadata Update
Performance in File Systems. USENIX Symposium
on Operating Systems Design and Implementation,
pp. 49-60, November 1994.

[16] Marshall Kirk McKusick and Gregory R. Ganger.
Soft Updates: A Technique for Eliminating Most
Synchronous Writes in the Fast Filesystem,
USENIX Annual Technical Conference, FREENIX
Track, pp. 1-17, June 1999.

[17] Margo I. Seltzer, et al. Journaling versus Soft
Updates: Asynchronous Meta-data Protection in File
Systems. pp. 71-84, USENIX Annual Technical
Conference, June 2000.

[18] J. Kent Peacock, Ashvin Kamaraju, and Sanjay
Agrawal. Fast Consistency Checking for the Solaris
File System. USENIX Annual Technical
Conference, pp. 77-89, June 1998.

[19] Ian Dowse and David Malone. Recent Filesystem
Optimisations on FreeBSD. USENIX Annual
Technical Conference, FREENIX Track, pp.
245–258, June 2002.

[20] Veritas File System white papers. Available at:
http://www.intel–sol.com/products/veritas/.

[21] Michael J. Folk, Bill Zoellick, and Greg Riccardi.
File Structures: An Object-Oriented Approach with
C++, 3nd Edition. Addison-Wesley, 1998.

[22] Jim Gray and Andreas Reuter. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc., 1993.

[23] Daniel Phillips. A Directory Index for Ext2.
http://people.nl.linux.org/~phillips/htree/paper/htre
e.html, September 2001.

[24] Chandramohan A. Thekkath, Timothy Mann, and
Edward K. Lee. Frangipani: A Scalable Distributed
File System, 16th ACM Symposium on Operating
Systems Principles, pp. 224-237, October 1997.

[25] Kenneth W. Preslan, et al. A 64-bit Shared Disk File
System for Linux. Sixteenth IEEE Mass Storage
Systems Symposium, March 1999.

[26] Jeffrey Katcher. PostMark: A New File System
Benchmark. Technical Report TR3022. Network
Appliance Inc., October 1997.

[27] Paul Barford and Mark Crovella. Generating
Representative Web Workloads for Network and
Server Performance Evaluation. Proceedings of the
ACM SIGMETRICS, pp. 151-160, June 1998.

[28] Keith A. Smith and Margo I. Seltzer. File System
Aging—Increasing the Relevance of File System
Benchmarks. Proceedings of the ACM
SIGMETRICS, pp. 203-213, June 1997.

[29] Theodore Ts’o and Stephen Tweedie. Planned
Extensions to the Linux Ext2/Ext3 Filesystem.
USENIX Annual Technical Conference, FREENIX
track, pp. 235-244, June 2002.

[30] Trevor Blackwell, Jeffrey Harris, Margo I. Seltzer,
Heuristic Cleaning Algorithms in Log-Structured
File Systems, USENIX Technical Conference, pp.
277-288, January 1995.

[31] Jeanne Neefe Matthews, et al. Improving the
Performance of Log-Structured File Systems with
Adaptive Methods. Sixteenth ACM Symposium on
Operating System Principles, pp. 238-251, October
1997.

[32] Jun Wang and Yiming Hu, WOLF—A Novel
Reordering Write Buffer to Boost the Performance
of Log-Structured File Systems. 1st Conference on
File and Storage Technologies, pp. 47-60, January
2002.

