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ABSTRACT

Understandingisagepatternsn wirelesdocal-areanetworks(WLANS)
is critical for thosewho develop,deploy, andmanage/VNLAN tech-
nology, aswell asthosewho developsystemsandapplicationsoft-
warefor wirelessnetworks. This paperpresentgesultsfrom the
largestandmostcomprehensk traceof network actiity in alarge,
productionwirelessLAN. For elevenweekswe tracedthe activity
of nearlytwo thousandusersdravn from a generalcampuspopu-
lation, usinga campus-widenetwork of 476 accesgointsspread
over 161 buildings. Our studyexpandson thosedoneby Tangand
Baker, with a significantlylargerandbroaderpopulation.

We found thatresidentiakraffic dominatedall othertraffic, par
ticularly in residencepopulatedby newer students;studentsare
increasinglychoosinga wirelesslaptopastheir primary computer
Althoughweb protocolswerethe singlelargestcomponenbf traf-
fic volume, network backupand file sharirg contrituted an un-
expectedlylarge amountto the traffic. Although therewas some
roamingwithin a network sessionwe weresurprisedoy the num-
berof situationgn which cardsroamedexcessiely, unableto settle
ononeaccespoint. Cross-subnabamswereanespeciaproblem,
becauséhey broke IP connectionsindicatingtheneedfor solutions
thatavoid or accommodateuchroams.

Categoriesand Subject Descriptors

C.2.1[Computer-Communication Networks]: Network Archi-
tectureandDesign—Wrel ess communication

; C.2.2[Computer-Communication Networks]: Network Proto-
cols

; C.2.3[Computer-Communication Networks]: Network Opera-
tions—Network management, Network monitoring

; C.2.5[Computer-Communication Networks]: LocalandWide-
AreaNetworks
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1. INTRODUCTION

Wirelesslocal-areanetworks (WLANS) are increasinglycom-
mon, particularlyon universityandcorporatecampuseskor exam-
ple, a contemporansuney of 392 academidnstitutions[4] found
thatnearlyall planto install awirelessnetwork, abouthalf already
havealimited deployment,andafew (7%) have a“comprehensie”
deplgyment. AlthoughtechnologysuchaslEEE802.1Dis broadly
deployedandusagss increasingdramaticallylittle is known about
how thesenetworks areused.A clearunderstandingf usagepat-
ternsin real WLANS is critical informationfor thosewho develop,
deploy, and manageWLAN technology and thosewho develop
systemsandapplicationsoftwarefor wirelessnetworks.

Thispapermpresentsesultsfrom thelargestandmostcomprehen-
sive traceof network activity in alarge, productionwirelessLAN.
DartmouthCollege has11 Mbps 802.11bcoveragefor nearly ev-
erybuilding oncampusincludingall administratve,academicand
residentiabuildings,andmostathleticfacilities. We collectedex-
tensie traceinformation from the entire network throughoutthe
Fall termof 2001.

Our work significantly expandsupon the WaveLAN study by
Tangand Baker [13], which traced74 computerscienceusersin
onebuilding for 12 weeks. Our studytracesnearly two thousand
usersdravn from a generalcampus population,across161 build-
ings for oneacademiderm (11 weeks). It alsoexpandsuponthe
Metricomstudyby TangandBaker[14] whichtracedametropolitan-
areanetwork for seven weeks. Although thattracecoversa wide
geographicabreaandalmost25,000users,our traceincludesde-
tailedinformationabouttheamountandnatureof the network traf-
fic. Thesize,populationdiversity, anddetail of our datacollection
offersextensie insightinto wirelessnetwork usage Althoughev-
ery environment is different,our studyhascharacteristiceommon
to bothresidentiabndenterprisedeployments.

We next describethe environmentof our study the camps of
Dartmouth College, and then detail our tracing methodologyin
Section3. In Section4 we presentanddiscussthe mostinterest-
ing characteristicef thedata.Section5 compare®ur resultswith
thoseof earlierstudies andSection6 concludes.

2. THE TEST ENVIRONMENT

TheDartmouthCollegecampuss compactwith over 161build-
ingson 200 acres,including administratve, academicresidential,
andathleticbuildings. Every building is wired to thecampusback-
bonenetwork. Every office, dormroom, andlecturehall, andin
someplaceseveryseatin alecturehall, haswired Ethernet.In 2001
Dartmouthinstalled476 accespointsfrom CiscoSystemseachan
Aironetmodel350, to provide 11 Mbpscoverageto nearlytheen-
tire campus. Eachaccespoint (AP) hasarangeof about130-350

1 Specificationsat www.cisco.com



feetindoors,sothereareseveral APsin all but the smallestouild-
ings. Althoughtherewasno specificeffort to cover outdoorspaces,
thecampuss compactandtheinterior APstendto cover mostout-
doorspaces.

All APssharethesamenetwork name(SSID),allowing wireless
clientsto roamseamlesslyrom one AP to another On the other
hand,abuilding’s APsareconrectedthrougha switchor hubto the
building’s existing subnet.The 161 coveredbuildingsspan81 sub-
nets,soin mary caseswirelessclientroamingfrom onebuilding
to anotherwill be forcedto obtaina new IP address.(Dartmouth
chosenotto constructa separateampus-widesubnetfor thewire-
lessnetwork, unlike the WirelessAndrew project[3].)

DartmouthCollege hasabout5,500studentsand1,215full-time
professors.During Fall 2001 approximately3,330undegraduate
studentslived on campus. Eachis requiredto own a computer
Eachyear approximatelyl000undegraduatestudententerDart-
mouth College, and most purchasea computerthroughthe cam-
puscomputerstore. Of thosepurchaseslaptops have becomein-
creasinglydominantin recentyears: 27%in 1999,45% in 2000,
and 70% in 2001. Assuming that that studentsobtaining com-
puterselsewhere chooselaptopsin the samefraction, andthatin
1998 (for which no datais available) about15% purchasedap-
tops, about40% of currentundegradwatesown laptops. All lap-
topspurchasedéh 2001hadbuilt-in wirelesssupportandover 1000
802.11bcardshave beensold over the pastyearto otherusers.In
addition,all business-schoatudentsandmostengineering-school
graduatestudentspwn laptops.

3. TRACE COLLECTION

We began collecting datain April 2001, when the first access
pointswereinstalled. After preliminary study of the datain May
2001[12], we began full-scale datacollection when studentsre-
turnedto campusin Septembe2001. In this paperwe focuson
the datacollectedduringthe eleven-weekiall 2001term, Tuesday
SeptembeR5 throughMondayDecembel0, inclusive. Although
we have datafor abouta weekprior andabouta monthafter, there
wassignificantlylessusageduring vacationperiodsandsowe limit
our analysisto the active period.

At thebeginningof thetraceperiodtherewere465accespoints
(APs). Eleven more APswereinstalledin thefirst monthto bring
the total to 476 by October21. As we discussbelow, it appears
that someof the “installed” APswerenot completelyor correctly
configuredduring the tracing period, however, which resultedin
fewer APsrepresentedh our data.

We usedthreetechniquego collectdataaboutwireless-netvork
usage:syslogevents,SNMP polling, andtcpdumpsniffers.

3.1 Syslog

We configuredheaccespointsto transmita syslogmessagev-
erytimeaclientcardauthenticatedassociated.eassociatedlisas-
sociatedor deauthenticatedith the accesgoint (seedefinitions
belowv). The syslogmessagesirrived via UDP at a sener in our
lab, which recordedall 3,533,352f themfor lateranalysis.

Most APs contritutedto the syslogtraceas soonasthey were
configuredand installed. Of the 476 APs, only 430 were repre-
sentedn our trace.Althoughsomeappeaneverto have beenused,
mary were misconfigurecanddid not sendsyslogmessageskFur-
thermore we have incompletedatafor a few dateswhenthe cam-
pusexperienceda power failure, or whena centralsyslogdaemon
apparentliyhungup. Finally, sincesyslogusesUDP it is possible
thatsomemessagswerelost or misordered.As aresultof these
spatialandtemporalholesin the trace,someof our statisticswill
undercountctualactiity.

Our syslog-recordingener addeda timestampo eachmessage
asit arrives. Eachmessageontainedhe AP name,the MAC ad-
dressof the card,andthetype of message:

Authenticated. Beforea cardmayusethenetwork, it mustauthen
ticate. We ignorethis message.

Associated. After authenticationa card choosesone of the in-
rangeaccesointsandassociatesvith that AP; all traffic to and
from the cardgoesthroughthat AP.

Reassociated.The card monitorsperiodic beacondrom the APs
and(basedn signalstrengthor otherfactors)may chooseto reas-
sociatewith anotherAP. This featuresupportsroaming. Unfortu-
nately cardsfrom somevendorsappaently never usethe Reasso-
ciateprotocol,andalwaysuseAssociatg 5].

Roamed. Whena cardreassociatewith a nev AP, the new AP
broadcastthatfactonthe Ethernetuponreceipt,theold AP emits
a syslog“Roamed”message We ignorethis messagebecauset
depend®n aninter-AP protocolbelow the P layer it only occurs
whena cardroamsto anotherAP within the samesubnet.

Disassociated Whenthe cardno longerneedghe network, it dis-
associatesvith its currentAP. We found, however, thatthe syslog
containedalmostno suchmessages.

Deauthenticated.While it is possiblefor thecardto requestieau

thentication this almostnever happenedn our log. Normally, the
associated\P deauthenticatethe cardafter 30 minutesof inactiv-

ity. In ourlog it is commonto seeseveral deauthenticatiomes-
sagedfor a widely roamingcard, one messagdrom eachsubnet
visitedin the sessionwe ignoreall but the messagérom the most
recentAP.

Our network doesnot useMA C-layerauthenticationin the APs,
or IP-layer authenticationn the DHCPsener. Any cardmayasso-
ciatewith ary accesgoint, andobtaina dynamiclP addressWe
thusdo not know the identity of users,andthe IP addessgivento
auservariesfrom time to time andbuilding to building. We make
theapproximatingassumptiorio equatecardswith usersalthough
someusersmay have multiple cards,or somecardsmay be shared
by multiple users.

3.2 SNMP

We usedthe Simple Network ManagemenProtocol(SNMP)to
periodically poll the APs; 451 of the 476 APs respondedo our
polls. We choseto poll every 5 minutesto obtaininformationrea-
sonablyfrequently within the limits of the computatiorandband-
width available on our two polling workstations.Our traceperiod
includes193,111,73%f theseSNMP records. Unfortunately we
have incompletedatafor the following dates: October7, 9, and
12 (maintenancef our sener), November19 (unknovn causes),
andDecembel5 (a campus-widegower failure). We choseto en-
tirely excludethosedatesfrom our analysis,becauseanostof our
SNMP-baseglotsexaminetraffic perday, anumberthatwould be
pollutedby “short” days.

Eachpoll returnedthe MAC addresse®f recently associated
client stations,andthe currentvalue of two counters,onefor in-
boundbytesandonefor outboundbytes. The AP doesnot reset
the counterswhenpolled, so we computethe differencebetween
thevaluesretrievedby onepoll andthevaluesretrieved by the next
poll. The countersare32-bit unsignedntegers,andour computa-
tion properlyhandlescounterroll-over. We ignorethe result,how-
ever, in two instancesa) whenthetime betweersuccessfupollsis
morethan12 minutes(twice thepolling interval plusalittle slack);



b) whenthe resultingnumberof bytesis more thanthe wireless
interfacecould have sentor recevedin thetime sincethelastpoll.
In theformercasethe AP wasunreachabldor morethanonepoll,
andwe wereunsurehow mary timesthe countermay have rolled
duringthosemissedpolls. In the lattercase the AP (andits coun-
ters)werelikely resetdueto maintenancer a power failure.

AlthougheachSNMP recordcontainsa list of cards associated
with the AP, we choseto usethe syslogdatafor tracking cards
becausehe syslogdataprovidesthe exactseriesof eventsfor each
card,whereaghe SNMP polling datawaslessprecise. We do use
thelist to computepercardtraffic statistics.

3.3 Sniffers

ThesyslogandSNMP tracesallowedusto computebasicstatis-
tics abouttraffic, users,and mobility. To get a betterpicture of
whatthe userswere doing with the network, we usedtcpdumpto
captureall of the paclet headern a selectionof the APsaround
campus.Becausef the volumeof data,andprivacy concernsyve
recordedonly packet headers. Becauseof the numberand geo-
graphicdistribution of APs, the structureof our network (mary
subnetsandswitchedEthernet),andthe volume of traffic, it was
not possibleto captureall of the wirelesstraffic. In eachof four
locationswe attachedh computerandthe building’s APsto acom-
monhub,andattachedhehub’s uplink to aswitchportonthe cam-
pusnetwork. With this “sniffer” in promiscuousmode,we used
tcpdumpto recordthe headerof every paclet passingby; in our
lateranalysiswe focusonly onthewirelesspaclets.

We chosefour representatk locations:

Sudikoff: the Departmentf ComputerScienceg6 APS). There
werethreeholesamountingto 21 hours.

Brown: adormitorywith mary first-yearstudent$2 APs). There
werel5 holesamountingto 213hous.

Berry: themaincampudibrary. Dueto the sizeof the building
andthe switchednatureof its network, we wereonly ableto sniff
5 of the 13 APs. Therewereserenholesamountingto 139 hours.

Collis/Thayer: two buildings,thestudententeranddining hall,
containingfive cafes,severalloungeareasseveral meetingrooms,
andsomeoffices(total 9 APs). Therewereeightholesamounting
to 337hours.

Marny of the holeswerecausedy power outagesin which case
the sniffer lost power, but so did the the accesgoint and nearby
networking hardware. Thustherewasno traffic to sniff duringthe
power failure. Since,afterpower wasrestoredthe sniffer no doubt
tookmoretimeto boot thantheaccesgointandnetwork hardware,
we probablymissedasmallamountof data. Thusour statisticawill
slightly undercounthe traffic. The Collis sniffer, unfortunately
wasmoreseriouslyaffectedby onepower failureandrequiredses-
eral daysto repair Sincewe did not usethe sniffer datafor ary
daily analysesye did not discardary data.

3.4 Definitions

Onegoal of this studyis to understandiserbehaior. We imag-
ine user“sessions’in which a user(card)joins the network, uses
the network, possiblyroamsto otherAPs, andleavesthe network.
We needprecisedefinitions:

Card: awirelessnetwork interfacecard, identified by MAC ad-
dress.

Active Card: acardinvolvedin a sessior(seebelaw), duringthe
hour, duringthe day; or atthe place,in question.

Mobile Card: an actve card that visits more than one building
duringthehour, duringtheday; or attheplace,in questionWe aim

to understancphysical mobility, so we focus on buildings rather
thanaccespoints.

Roamer Card: an active cardthat roams(seebelov) during the
hour, duringthe day, or attheplace,in question.We aimto under
standnetwork mobility within a session.

Session: A sessionstartswhen a card associatesvith an access
point. Exceptionl: ary Associatemessagethat arrive lessthan
SessionThreshold afterthethe precedingAssociateor Reassociate
messagearetreatedasif they werea Reassociatenessageather
than startinga new session. Thusthey indicatea roam. Excep-
tion 2: for ary cardthat never usedReassociatéuring our trace,
we assumedhat cardis of the variety that usesAssociate(within
asession}o meanReassociatesowe countedasroamsary Asso-
ciatearriving within anexisting session.

A sessiorendsin oneof threeways:

1. If aDeassociater Deauthenticatenessagés receved from
the lastaccesgoint usedby the card (othersuchmessages
areignored),the sessionis clearlyover. If thereasons “In-
actiity,” andthis messagearrived morethan30 minutesaf-
ter the sessiorstarttime, we computethe sessionendtime
to be 30 minutesprior to this message'time. Othewise, the
sessiorendtime s thismessage'time.

2. As mentionedabore, we treatsomeAssociatemessagesar-
riving during an existing sessioras markinga new session.
The time of this Associatemessagelefinesthe end time of
thecurrentsessio andthestarttime of thenew sessionThis
rule was necessarypecauset appearedhat mary sessions
did not endwith a Disassociat@r Deauthenticatenessage,
eitherbecaus¢he AP did notsendthemessager we did not
receveit.

3. Theendof thetraceis reached Whenthis occurs,all ongo-
ing sessionendat the last AP beingusedby the client and
thesessions assumedo endatthetime of thelastlog in the
entiretrace.

Roam: a card switchesaccesgointswithin a sessionjdentified
by a Reassociatmessagéo anew AP, or by anAssociatanessage
thatis treatedasaroam(asdescribedabore).

Extra-subnetroam: aroamto anAP in anothersubnet.
Intra-subnet roam: aroamto anAP in the samesubnet.
Stationary session:a sessiorcontainingno roams.

Roaming session:a sessiorcontainingroams.

Extra-subnet session:a sessiorcontaininganextra-subnetoam.

Intra-subnet session:aroamingsessiorcontainingnoextra-subnet
roams.

Inbound: traffic sentby theaccesgointto thecard.

Outbound: traffic sentby the cardto theaccesgpoint.

Thesecard-centriadefinitionsof “in” and“out” arethe reverse
of thoseusedin our earlierdrafts[12, 8], but matchthoseusedby
TangandBaker[13].

If a sniffer sav a framewith a wirelesssourceand destination
(likelyrare),we countedt as“inbound; ratherthandouble-counting
it asinboundandoutbound.In the SNMP analysiswe believe the
AP countedsuchtraffic twice.

A noteaboutthe SessionThreshold mentionedabore. On occa-
sion, a card would Associateratherthan Reassociateapparently



because¢he statemachineon the cardwasout of syncwith thaton
the AP [5]. It is difficult to identify preciselywhich of theseAs-
sociatemessageshoulddefinea new “sessiorf, andwhich really
represeni roamwithin the currentsessionWe setSessionThresh-
old to 30 secondsunderthe assumptiorthat anything shorteris
certainlynotanew “session”in theeyesof theuser

A noteaboutthe timestanps in the syslog. Although the mes-
sagesnaybe delayedor reorderedisthey pasghroughthecampus
network to our sener, thedelaysaresmallrelative to ourtimestamp
granularity(one second)andary reorderingthat affects causality
shouldberare.

4. RESULTS

We collectedan emrmousamountof data,andcanpresenonly
a subsetof the interestingcharacteristicsn this paper First, the
basics.In the 77-day traceperiodwe sav 1706distinctcards. Of
the 476 installedaccesoints, we monitored430 by syslog,451
by SNMPR and 22 by tcpdump.The accesspointsweredistributed
amongl61buildings,whichwe divide into five cateyories:82 Res-
idence, 32 Academic,6 Library, 19 Social,and 22 Administratie.
Theresidentiabuildingsaremostlyundegraduatelormitoriesand
fraternities,but also include someDartmouth-evned housingfor
faculty andstaf, anda residentialfacility for the businessschool.
All business-schodtudentshave laptopsand (asthe datashows)
mary arebusywirelessusers.The socialbuildingsincludedining
facilities, theartscenterandathleticfacilities (includingalodgeat
the ski areaanda boathous@n theriver).

In therestof this sectionwe presenta seriesof questionsabout
the network’s usage andour analysisbasedon the data. For each
figureor table,we identify the datasourceas[syslog],[SNMP], or
[tcpdump].

4.1 Traffic

Perhapshe most fundamentalguestionsabouta new network
involve how muchit is used,andwhen:

e How muchtraffic doesthe network hardle?
o How muchtraffic percard?

e How doestraffic vary acrosshours,days, weekdays?

Over the courseof our studyperiodwe measured.3 terabytes
of total traffic, althoughmorethanhalf thattraffic wascausecby
only 5% of cards. The busiestcardtransferredl17 GB, while the
mediancardusedonly 350 MB.

Thedaily traffic alsovariedconsideably. Figurel is atime se-
ries,andFigure2 is a cumulative distribution function; we usethe
CDF formatin all of our distribution graphs. On the busiestday
the network moved over 240 GB, whereasthe mediandaily traffic
was53 MB. Thereis acleardip aroundthe Thanksgving holiday.
Therewasalwayslessoutboundraffic thaninboundtraffic, but the
proportionof outbounddatavarieddaily betweeril8 and89%.

In Figure 3 we normalizethe databy the numberof cardsactive
in thatday This presentatioflattensthecurve somevhat,although
thereis still awide variationin daily actiity.

Thesdiguresshowv areasonablgtrongweeklypatternwith some
surprisingpeakson Mondays. In Figure4 we seethe weekly pat-
ternsmoreclearly Friday and Saturdayarethe quietestdays,as
studentgelax, but Sundaypicks up asstudentsbegin their home-
work. Monday’s averageis skewed by actwvity in one building,
Whittemore,which includes study roomsandresidencedor stu-
dentsof the Tuck Schoolof Business.If Whittemoreis removed
from Figure4, Monday’s traffic matchesTuesdays (notshavn).

Figure1: [SNMP] Daily traffic (GB). A date'sbar appearsto the right
of its ticmark. Gapsin the plot representholesin our data. Note that
thereis typically moreinbound than outbound traffic.
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Figure5 displaysthevariationof traffic overthehoursof theday.
Thebarfor 10 AM is skewedabove 11 GB by thetraffic in Whit-
temore;without Whittemore,the 10 AM bar dropsslightly below
thatof the11l AM bar Whenwe examinedthe Whittemoretraffic,
we sav a dramaticburst of actiity, both inboundand outbound,
every Mondayduringthe 10 AM hour, often accountingor nearly
100%o0f campus-widéraffic duringthathour. We do nothave data
to determinethe applicationcausingthe traffic, but we speculate
thatit is a regularly scheduledactionsuchasbackupor software
update.

Thetraffic is steadythroughoutthe afternoonand eveningwith
a dip arounddinner tailing off throughthe night when students
finally go to sleep,andrising again asemployeesreturnto work.
Becauseur ervironmentis a mixture of residentialandacademic
uses.this plot shavs a mixture of the workday bell curve andthe
residentialeveningbell cune.

4.2 Usersand user mobility

We did not (and could not) track users, but sincefor the most
parteachcardis associateavith oneuser andmostusershave just
onecard,we examinedcardsasif they representusers.We ask:

e How mary cardsarethere?Fromwhich vendors?
e How mary daysis eachcardactive?

e How mary APsdoesa cardvisit?

e How mary buildingsdoesa cardvisit?

Therewerel706uniqueMAC addresseseerin oursyslogtrace,
mostfrom afew commonvendorgTablel). Dartmouths campus



Figure 3: [SNMP] Daily traffic per card (GB).
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computingstoreresellsexclusively Apple andDell computersand
asof 2001all laptgpssoldto first-yearstudenthave wirelesscards
built-in: Agere(partof Lucent)cardsin the Dell laptops,and Ap-

ple Airport cardsin the Apple laptops. The storealsosells Cisco
(Aironet) wirelessPCcards anoption for thosewith olderlaptops.

Usersvariedin the numberof daysthat they usedtheir cards,
from only onceto every dayin the 77-daytrace(Figure6). Many
usersarestudents|iving on campusandit is not surprisingto see
somewith wirelesslaptopson their dorm-roomdesk,always on-
line. Interestingly thedistribution is roughly uniform betweerone
and77 days,with amedianof 28 days.

Thegraphalsoshaws thatfew cardsmove aroundmuch,with a
medianof five buildings and nine APs, and no cardvisiting even
half of the entire network. Indeed,nearly 18% of the cardsspent
all theirtimein onebuilding. Clearly mostuserdimit theiractiity
to afew key sitesin their daily routine. We expectto seethis pat-
ternchangeasmoresmalldevices,suchasPDAs with an802.11b
CompactFlaslcard,easemobility.

4.3 Card activity
Now thatwe have seenthe network from the card’s perspectie,

we examinethe cardsfrom the network’s perspectie:

e How mary cardsareactive?

e Whenarecardsactive?

e How long aresessions?

e How mary sessiongrestartedeachday?

e How aresessionglistributedamongbuildings?

e How mary sessiongsreroaming?extra-sibnet?

e How oftendo cardsroampersession?

Figure 5: [SNMP] Averagehourly traffic (GB), by hour (truncated).
The 10ampeakreachesl1.4GB (60% inbound).

4 T r -

Il Inbound

[_] Outbound
3 L 4
2 L 4
1 L .

0 6 12 18 24

Table 1: [syslog]Common card vendors.
Number Vendor
624 Lucent/Agere
536 Apple Computer
489 Ciscol/Aironet
57 Other (15 brands)
1706 Total

Althoughtherewere 1706 cardsseenin our tracesnotall were
active every day Figure 7 shavs the numberof cardsactive in
eachday of our traceperiod. Clearly visible arethe Thanksgving
holiday, weekly cycles,anda tail-off atthe endof theterm Also
visible is a slow trendtoward more active cardsper day, asmore
usersobtain wirelesscapability and chooseto useit more often.
Herewe define“active” to meanary cardthat is associatedvith
anaccesgoint, regardlesf whethertheuseris actuallyusingthe
computeror network. The plot alsoshowns “mobile” cards,which
visited more than one building on that day, ard “roamer” cards,
which visitedmorethanone AP duringary sessiorthatday

In anotherview, Figure8 shavs the distribution of the number
of active, roamer andmobile cardsin ary givenday Almost half
of our cardpopulationwasactive on atypical day andover athird
of thoseweremobile.

The visible weekly cycle of Figure7 is reinforcedin Figure9,
which we believe reflectsa typical studentpatternof activity, hus-
tling to comdete their work earlyin the week,relaxingon Friday
andSaturdayandpicking up again on Sunday

Figure10 shavs diurnal patterns.As in the hourly traffic graph,
this patten matchesa mixture of workplaceand residentialpat-
terns. Thebulk of the actiity wasduringthe afternoonwith sub-
stantial activity during the evening and a slow declinein acti-
ity throughthe wee hours of the morning. Curiously although
on weekdayg therewerefewer active cardsin the eveningthanin
theafternoonthetraffic remainsrelatively flat (Figure5); perhaps
eveningusersarebusier

With mostoffice workersaway on weelends the weelendmid-
dayactiity is lower, but dueto theresidentiapopulatiortheevening
andovernighthoursremainaboutthesameonweelendsandweek-
days.Wereachsimilarconclusion@boutroamerandmobilecards,
notshown.

Figure 11 demonstrateshe different patterns,and relative ac-
tivity, of differentcategories of buildings on camps. Residential
actity dominates.Residencesind social spacedend to be used
morein the evening hours,whereasacademicand administratve
buildings are active during the work day, andlibrariesare some-



Figure 6: [syslog]Activity per card, distrib ution acrosscards. Maxi-
mums: 77 days, 64 buildings, and 161 APs. Medians: 28 days, 5 build-
ings,and 9 APs.

Buildings -~

0 I I I I I I I
0 20 40 60 80 100 120 140 160 180

Active days, APs, or Buildings per card

Figure 7: [syslog] Number of active, mobile, and roamer cards per
day. A date’s data appearsto the right of its tick-mark.
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Figure 8: [syslog]Number of active, mobile, or roamer cards per day;
distrib ution acrossdays. Medians are 780(all), 304 (roamer),and 301
(mobile).
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Figure 9: [syslog] Number of active, mobile, or roamer cards per
weekday The curve shows the mean, while the bars showv standard
deviation. The threecurvesare slightly offset sothe bars are distin-
guishable.
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whatin-between. We sav similar patternsfor mobile androamer
cards(notshawn), althoughwith asharpeovernightdip whenpeo-
ple moveless.

Sessions. We are interestedin when, and for how long, users
chooseto usethe wirelessnetwork. In the precedingsectionwe
definea “session; intuitively, to bethe periodof actiity with the
network, althoughit is difficult to accuratelydetectthe beginning
andendof all sessias giventhe syslogdata. We believe that our
resultsarea reasonablapproximationof the notion of a userses-
sion.

Our data (Figure 12) shavs that mostsessionsare short. The
mediansessiodengthwas16.6minutes and71%of sessionginish
in lessthanonehour  Giventhat studentamove frequentlyfrom
classto classto diningto dorm,and lik e to checkemailin between,
thesenumbersarereasonable.

On the other hand, there were a few sessionghat were very
long (69 daysin one case). Theseextremely long sessionsare
likely artifactsof holesin the syslogdata,in which we lost the
session-endingnessage.Thereare mary shortsessias: 27% of
sessiondast lessthana minute. Despiteour 30-secondSession-
Thresholdour session-bgin definitionwasappaently too liberal.
Nonethelessthis databegs the questionaboutwhy the cardsas-
sociatesoquickly andfrequently Examinationof samplesessions
shov mary instance$n whichacardAssociatesvith anAP despite
(from our reading)beingassociatelready anindicationthatthe
statemachinein the cardandin the AP are out of sync[5]. Al-
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Roamer cards -+

Mobile cards

800 1

600 q
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thoughfurtherstudyis necessaryt appearshatthereis substantial
room for improvementin the card firmware and possiblyin the
802.11protocols.

Although most (82%) sessionsare non-roaming,roaming ses-
sionsdo include one or more roams. Figure 13 shaws the dis-
tribution of the numberof roamsduring roamingsessions.Most
roamingsessios wereshortandroamedinfrequently(the median
is two roams) Somesessionsoamedextremely frequently: one
sessiorroamednearly20,000times! Nearly 60% of roamingses-
sionsroamedonly within one subnet. Unfortunatelythat means
thatover 40%roamedacrossa subnetoundarywhich breakscon-
nectionsandforcesthe userto obtainanew IP address.

So, why do cardsreassociatso frequently? The cardsaggres-
sively searchor a strongsignal,andin anenvironmentwith mary
APsandoverlappingcells,cardswill roamfrequently[5]. (In some
caseswherethe APswerefrom multiple subnetsit is doubtfulthe
userhadmuchluck usingthenetwork!) Eithercardfirmwareneeds
to belessaggressie, or our ervironmentneeddo reducecell over
lap, to reducethe roaming, reducethe resultirg load on the net-
work, and give betterserviceto the user Furthemore, sinceit is
expensve to deploy a singlecampus-widesubnetfor the wireless
network [6, 7], Mobile IP [11] or similar servicesarerequiredto
supportseamlessoaming.

Whenwe ignoreary roamsthatoccurwithin thirty secondsf a
precedingoam,themaximumnumberof roamspersessiordropped



Figure 10: [syslog] Number of active cards per hour. The number
of active cards for eachhour of the day, separatelyfor weekdaysand
weekends. The curve shows the mean, while the bars show standard
deviation. The two curvesaresslightly offsetsothe bars are distinguish-
able.
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Figure 11: [syslog] Mean active cards per hour, by category A card
visiting multiple building categorieswithin an hour was counted once
for eachcategoryit visits.
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to 1574,but noneof our graphsor conclusionshange.

This aggressie roamingis the likely reasonthatthe numberof
“mobile” cardsis similar to the numberof “roaming” cards.There
aremary locationswhereacardmayassociatvith APsin multiple
buildings, despitebeing physically stationary Thusthe “mobile”
cardcountis anoverestimatef large-scalemobility.

Figurel4is anothewiew of daily network activity, in whichwe
countthe numberof sessionstartedin eachday, andherepresent
the countasa distribution acrossdays. The large numberof ses-
sionsseenhereis consistentwith the shortnesof sessias noted
earlier Although most sessionstartsare in the dominantcate-
gory (residence)we found (not shavn) that sessionsstartedin
academicor administraive buildings tendto be more stationary
andthatthosein librariestendto have slightly more extra-subnet
roams. The latter may have more to do with the configurationof
thelibrariesandsubnetghanary realphysicalmobility.

4.4 AP activity
We now examinenetwork activity in termsof the APs:
e How mary APsarethere?
e WhenareAPsactive?

e How doesactvity vary acrossAPs, andwhich aremostac-
tive?

Figure 12: [syslog] CDF of sessiorduration (truncated to 1 day). The
longestsessionmeasured 69 days, although that is probably an error
dueto holesin our data. The medianis 16.6minutes.
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Figure 13: [syslog] Roams per roaming sessiondistrib ution across
sessions. This graph is truncated. The maximum is 19,902roams.
About 18% of sessionsvere roaming.

1

09 -
0.8 -
0.7 -
0.6 [--- 1
05 -

04 -

> Total
Intra-subnet --------
0.2 - Extra-subnet -~ 4

0.1 r 1

0 . . . .
0 5 10 15 20 25

Roams per roaming session (truncated)

e How doestraffic vary acrossAPs,andwhich have mosttraf-
fic?

Therewere476 APsinstalledby the endof the study Thedata
in this sed¢ion arebasednthe 430APsin the syslogtraceandthe
451respondingo our SNMP polls.

A detailedidentificationof the busiestAPs is perhapsonly of
internalinterestat DartmouthCollege,andin ary casewe examine
therelatedquestionaboutthe busiestbuildingsin the next subsec-
tion. The APswith the mostactive cardsin their busiesthourwere
thoselocatednearlargelecturehalls;in its busiesthour, thebusiest
AP had 71 active cards. The traffic was elsevhere,however: the
APswith thelargestmaximumandaveragedaily traffic werefrom
residences.

Figure 15 shows the variationin the numberof APsactive each
day Clearly visible arethe weekly cycle, the Thanksgving holi-
day anda generaltrendto usemore APs, asthe numberof cards
increasedndaspeopleusel the network more. Eachday sav be-
tweenl7land352accespointsin usewith amedianof 292. Oth-
erwise,we found (not shavn) that the temporalpatternsof active
APsfollows a patternsimilar to the numberof active cardsshovn
in Figuresl0and11.

Overthelife of thetrace the APsvariedwidely in theamountof
traffic they handled(Figure 16), with the medianAP handlingan
averageof only 39 MB perday while the busiestAP handledan
averageof over 2 GB perday.



Figure 14: [syslog]Number of sessiorstarts per day, distrib ution over
days. Median is 3582sessionspr 664roaming sessions.
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Figure 15: [syslog] Number of active APs per day. A date’s data ap-
pearsjust to the right of its tick-mark.
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4.5 Building activity

An examinationof buildingsallows usto classifythemostactive
locationson campus.

e How mary buildingsarethere?
e Whenarebuildingsactive?

e How doesactivity vary acrossbuildings,andwhich aremost
actve?

e How doestraffic vary acrossbuildings,andwhich have most
traffic?

e How doesactiity vary acrossbuilding cateories?
e How doestraffic vary acrossbuilding cateyories?

Therewere 161 buildings with installed APs, rarging widely
from hugecentrallibrariesto tiny housesandeven a shedat the
tenniscourts.AlthoughFigure 17 shaws thatthe bulk of thetraffic
was seenin the residentialbuildings (averaging48 GB per day),
whennormalizedby populationsize (active cards,in Figure18) or
by building size (numberof APs not shavn) we seesomevhat
morebalancedraffic. Residentialusersspendmore hoursin res-
idenceshanmostpeoplespendin otherbuildings, accountingfor
someof this difference.

The building with the largestaveragedaily traffic (Figure 19)
wasWhittenore. Recallthat Whittemores traffic is skewed by the
Monday10 AM peakmentionedearlier; on the otherhand,about
a third of Tuck Schoolstudentsdo have a wirelesslaptop. Cum-
mingsis the engineeringsctool and Murdoughis the library be-
tweenCummingsand Whittemore. Beny is the mainlibrary, and

Figure 16: [SNMP] Average daily traffic (GB), distribution across
APs. Median is 39 MB, maximum is 2.0 GB.
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the otherbuildings are dormitorieswith large populationsof first-
yearundegraduates.

Figure 20 normalizesby the numberof APs, to reducethe im-
portanceof larger buildings, but Whittemorestill dominates The
othersare all undeigraduatedormitories,particularlythosefull of
first-yearstudents.On the otherhand,whenwe normalizetraffic
by the numberof active cards(not shavn), the graphwas skewed
towardbuildingsvisited by afew busyuses.

Examiningthebusiestdayfor eachbuilding (Figure21), we first
notice that maximumtraffic is nearlya hundredtimeslarger than
the averagesn Figure20. Also, otherthanWhittemoreandGile,
this charthasa differentset of buildings: someacadent buildings
(Gilman,Rockefeller, andSilsby),anadministratve building (Sls),
anddorms. Averagebehaior is not a goodpredictorof bursty be-
havior.

In Figure22, the buildingswith the busiesthour, in termsof the
numberof active cardsaremostlybuildingswith largelecturehalls
(Moore, Murdough,Tuck, Byrne,and Cummings) the main cam-
pus library (Berry), and someresidencegWhittemore, Hinman,
McLane,andBuchanan).Clearly network designersieedto plan
carefullyfor suchlarge concentrations.

Finally, in Figure23, we seethe buildingswith thelargestnum-
berof cardsvisiting over theentiretrace. Theseareall large build-
ingswhereyou expectadiversepopulation:libraries(Baker, Berry,
Murdough,and Sanborn),social and dining spacegHop, Collis,
and Thayer),an academidouilding with large lecturehalls (Dart-
mouth)frequentedy studentsn introductay coursesandthecam-
puscomputerstoreandrepairshop(betweenGerry and Bradley),
wherewirelesscardsareoftenfirst installedandtested. Figure24
shaws, though thatthesebuildingswereunusual Half of all build-



Figure 18: [SNMP] Averagedaily traffic per card (GB), by category.
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Figure 19: [SNMP] Averagedaily traffic (GB), for the busiestbuild-
ings. Ranked by daily traffic.
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ings saw fewer than 65 usersover the life of the trace,lessthan
Mooresaw in asinglehour.

The numberof active buildings (not shawvn) followed a pattern
similar to the numberof active APs(not shavn) andnumberof ac-
tive cards(showvn in Figure 11), althoughthe variation wasdamp-
enedaswe consolidateheactiity into buildings.

4.6 Protocols

Althoughthesniffer datacoversonly four buildingsand22 APs,
it coversavarietyof populationglibrary, dormitory, studentcenter
and academiccomputerscience). Above, we examine questions
aboutwhere when,andhow muchpeopleusethewirelessnetwork;
now, we askabouthow they usedthe network:

¢ Which protocolsarethe mostcommonlyused?
e Which protocolsconsumehe mosttraffic?

e For eachprotocol, how mary bytes(or paclets) flow each
way?

We capturedL.2billion frames of whichweidentifiedabout357
million (28%) as explicitly wireless. Of all frames,about2.6%
were sentto the broadcasMAC, and thus would be transmitted
to all wirelessclients, but for our purposegheseframeswerenot
“wireless” unlessthe saurce was a wirelessclient. Of the wire-
lessframes,99.7%containedP paclets,evenly split betweerout-
boundandinbound.Dueto a glitch in the tracedata,we werenot
alwaysableto identify wirelessnon-IPpaclets,but the 1.2 million
we could identify wereall ARP (66%), Appletalk (31%), or IPX
(3%).

Figure 20: [SNMP] Averagedaily traffic per AP (GB), for the busiest
buildings. Ranked by daily traffic, per AP.
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Figure 21: [SNMP] Maximum daily traffic (GB), for the busiestbuild-
ings. Ranked by their busiestday.
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We sniffed nearly228 GB of wirelessIP data,countingonly IP
databytes(notheaders)Thedormitoryaccountedor 135GB and
the restwas roughly evenly distributed. Although we saw a tiny
amountof ICMP, IGMP, PIM, RSVP andNARP, morethan99%
of thelP traffic wasUDP (2.5%of bytes,5.0%of paclets)or TCP
(97.5%0f bytes,94.3%of paclets).

More than half (956) of all wirelesscardswere caughtat least
onceby our sniffers. Although Brown dormitory saw 142 cards,
andSudikoff (ComputerScienceav 134 cardstheCollis student
centersaw 476 and Berry Library 729, asthey arelarger, public
spacesvith adiversepopulation.

We wereableto identify mary application-layeproto®lsin the
TCP and UDP paclets we sniffed, by recognizing“well-known”
port numbers. We usedthe official IANA list? associating3801
protocolnameswith TCPandUDP portnumbergorin many cases,
both) andaddeda list of 116 Dartmouth-specifiprotocolassign-
ments(whichoverrided50 of thel AN A definitionswith localmean-
ings). We examinedthe eachpacletindividually (later, we hopeto
analyzeflows). If the pacletwasa TCP SYN paclet, we associ-
atedthe paclet with thedestination(sener) port; if the pacletwas
aTCPSYN/ACK paclet, we associatedhe pacletwith thesource
(sener) port; for otherpacletswe examinedbothsourceanddesti-
nationports. If neitherwerewell-known, we associatethatpaclet
with the “unknown” protocol. If eitherport waswell-knowvn, we
associatedhat paclet with that protocol. If both portswerewell-

Zwww.iana.og/assignments/port-numbers (July 19,2002)



Figure 22: [syslog] Maximum cards per hour, for the busiestbuild-
ings. Ranked by their busiesthour (in number of active cards).
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Figure 23: [syslog] Number of active cards per building, for the ten
mostpopular buildings. Ranked by the number of unique cardsvisiting
that building, over the wholetrace.
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known, we associatedhat paclet with the protocolcorresponding
to thelower portnumber:in mary suchcasesarandomlyassigned
client’s port happenedo matchone of the well-known port num-
bers,but in mostsuchcasesthe sener is using a low-numbered
port (suchas80 for http) and thetraffic will beassociatedvith the
sener’sport.

Thistechniquéds anapproximationpf coursesinceit is possible
thatsomeapplicationausea “well-known” port for otherpurposes,
but it providesa goodoverall estimate.

After strippingtheirheaderswe measure@18.7GB of TCPand
UDP data.Nine protocols,andthe pool of unknavn protocols,ac-
countfor 85.4%(186.8GB), asshavn in Figure25. Thesymmetry
of thistraffic is exploredin Figure26. Althoughmostwereasym-
metric by bytes,they wereall nearly symmetricby paclet count
(not shawn), presumablybecauseven one-vay file trarsfer typi-
cally requiresone acknavledgemenfipaclet for eachdatapaclet.
We now look ateachin detail.

http (116GB, 53%), includingbothhttp andhttps,andsomeother
commonhttp ports(suchas8000). Cleaty, webbrowsingis a sig-
nificant fraction of ary network traffic today. It is not dominant
everywhere however: in Collis and Sudiloff, therewaslesshttp
traffic than“dantz” Althoughmosthttp traffic is inbound,thereis
substantiabutboundraffic in Brown; mostlikely thistraffic repre-
sentdfile-sharingprogramsoperatingover http.

dantz (33 GB, 15%), a protocolfor the Retrospecbackupproduct
from Dantzcorporation,in useherefor office Macintoshcomput-

Figure 24: [syslog]Number of active cards per building, distrib ution
over buildings.
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Figure 25: [tcpdump] Total traffic (GB), by TCP or UDP protocol.
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ers. Collis andSudiloff have sereral suchoffices,andthe “dantz”
protocoldominateghetraffic seenby thosesniffers. Thetraffic is
mostly outbound of course as wirelessclientsarebacled-upto a
wired sener. While it wasan unexpectedfrontrunner a few peri-
odic backupsaccountedor thevolume.

unknown (8.6 GB, 3.9%): We were surprisedby the volume of
traffic in which neithersourcenor destinatiorport numberwason
IANA's or Dartmouth’slist. Othertraffic matchedbscuregports on
thelist, but we doubtthey actuallyusethe associateghrotocds, so
the “unknown” cateyory shouldactually be larger We speculate
thattheseconnectionsnay berelatedto file-sharirg or gamingap-
plicationsin whichacoordinatorarrangepeerto-peerconnections
througharbitraryports.

netbios(6.9GB, 3.2%), asetof Windows protocols(dgm,ns,ssn)
thatsupportWindows print andfile sharing includingSamba.

kazaa(5.7 GB, 2.6%) and gnutella (3.9 GB, 1.8%), two popular
Internetpeerto-peerfile-sharingapplications.Seenmostly in the
dormandthelibrary.

ftp (3.6 GB, 1.6%), including all variarts of the commonfile-
transferprotocol, including ftp, ftp-data, ftplog, bftp, tftp, ftps,
andsftp. Curiously therewas nearly an even split betweenout-
boundandinbounddata,althoughin eachsniffer (not shavn) it is
moreskewedtowardeitheroutboundCollis andBerry) or inbound
(Brown andSudiloff).

AOL (3.4GB, 1.5%): Instantmessagings gainingin popularity



Figure 26: [tcpdump] Total traffic (GB), by TCP or UDP protocol,
normalized.
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Figure 27: [tcpdump] Total connectionsby TCP protocol.
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blitzmail (2.9GB, 1.3%): BlitzMail is alocally developedemail
client, with a customprotocol,in ubiquitoususeoutsideSudiloff.
Thehighvolumeis no doubttheresultof largeenclosures.

microsoft-ds(2.0GB, 0.9%): In October2001therewerereports
of anew form of denialof-serviceattack,aimedat Windows 2000,
usingthis port. Our snifferssav it mostlyin the computerscience
building.

Most of the above protocolsare commonlyusedfor file trans-
fer, which accountdfor their dominancen this ranking basedon
volume. Nearly the sameprotocolsdominatewhenranked by the
numberof TCPconnetions,asshovn in Figure27. Thesymmetry
of thistraffic is exploredin Figure28. A new protocol,ssh,appears
here(with 1.2 GB it wasranked 11th by bytes). A secure-shell
protocolthat supportsinteractve logins, secureremotefile copy,
secureX-windows sessios, and other securetunnels,it occurred
mostlyin the computersciencebuilding.

While the details of our protocol distribution may be specific
to Dartmouth we expectthatothersin academicervironmentswill
seeapproximatelfthesamesetof actiitiesdominating: web,email,
backup file transfer andfile sharing.

5. RELATED WORK

Ourstudyis thelargestandmostcomprehensie characterization
of wirelessLAN uses to date. In threeearlier studies,Tangand
Bakercharacterizewireless-netwrk usageln 1998they usedcp-
dumpin alimited studyof eightlaptagpsovereightdays[10], focus-
ing onthenumberof timesthelaptopsswitchedbetwee wiredand

Figure 28: [tcpdump] Total connections,by TCP protocol, normal-
ized.
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wirelessandonthelatengy encounteretty paclets. They notethat
usergdid tendto behae differentlyonthewirelessnetwork thanon
the wired network, dueto extremely high latencies.In 1999they

characterizedhe usersof the Metricom Ricochetnetwork, a wire-

lessmetropolitan-areaetwork service [14]. This studyis notable
for its size(24,773clientsand 14,053accesgoints)andduration
(aboutseven weeks). Given the natureof the dataavailable, their
analysisfocuseson network actvity and client mobility. Finally,

in 2000they usetcpdumpand SNMP recordsto characterize¢he
actiity of 74 Wi-Fi usersin the StanfordComputerScienceDe-
partment,over a 12-weekperiod[13]. While this studyis similar
to our own, our populationis much larger and more diverse, and
our roamingpatternsare more complex thana single subnetin a
singlebuilding. We have syslogdatathatallows moreprecisemea-
surement®f roaming but we do not have authenticatiordatathat
allow usto associatd/AC addressewith users.Althoughwe do

not have sniffer datafor the entire population,we do have it for

four diversebuildings. Their top five protocols(http, netbios,ftp,

unknowvn, and ssh+telnetyepresenthe CS workload; ours (http,

dantz,unknavn, netbios,andkazaa)include CS aswell asamore
diverseworkload.

During our study Balachandraetal. [2] traced195Wi-Fi users
at one locationduring the active hoursof the 2.5 day SIGCOMM
conference. Their resultsare necessarilylimited by the homo-
geneousactiity, asall attendeegollow the conferenceschedule.
They found that most sessionsvere short, lessthan 10 minutes;
that longer sessiongendedto be idle mostof the time; that the
cardswere evenly distributedacrossthe four APs, but the offered
load was highly unbalancedacrossusersand henceacrossAPs.
The peakbandwidthrequirementsverewell within the capability
of four accesgoints. Of their TCP traffic, 46% was http (ours
was53%)and18% ssh(ourswas0.8%),reflectingtheir computer
scientistaudience.

TheWirelessAndrew projectatCarngjie-MellonUniversitycre-
atedthefirst large WaveLAN installation,andtheir papersdiscuss
thedesignanddeploymentof thatnetwork [3, 6, 7]. Althoughthey
hint of plansfor a usagestudy[3], thereare asyet no published
results.

Kunzetal. studiedcustomersisingWAP web browserson their
cell phores[9]. For seven monthsthey usedtcpdumpto capture
pacletsat the WAP gatevay. Unfortunately they were unableto
identify unique usersor phones,but the numberof IP addresses
assignedn ary givendayincreasedo about400 by theendof the
trace. The PCSnetwork reassignedin IP addresswheneer the



browserwasidle for 90 secondssothe sessiorlengthswerequite
short (average3.38 minutes). Otherwise,the usagefollowed the
expectedweeklyanddaily patterns.

A morerecentstudy[1] characterizeshe behaior of cellular
wirelessusersof a specificcommercialservice, an information
browsing and naotification service. Due to the natureof the ser
vice, the natureof the mobile clients(mostly cellularphones)and
the natue of the dataavailable(URLS), their studyfocuseson dif-
ferentquestionghanours. They focuson content;we focuson the
network: protocols,mobility, andtraffic.

6. CONCLUSIONS

We conductedhelargest-e@ertrace-basedtudyof wirelessLAN
usersjn aneffort to understangatternsof actwvity in the network.
Although our populationwas large and diverse,it is importantto
interpretour resultswithin its context. Our residentialuniversity
campuspopulationmay notreflectactivity onacorporatecampus,
apublic spacepr othervenues.

The actvity andtraffic variedwidely from hourto hour, dayto
day andweekto week. While we do seecleardaily andweekly
patternsthey reflecta mixture of aresidentiacampusandanaca-
demicworkplace,including more overnight usagethan might be
commonin enterpriseVLANs. We foundthatmary wirelesscards
areextremelyaggressie whenassociatingvith accesspoints,lead-
ingto alargenumberof short‘sessions’anda high degreeof roam-
ing within sessionsAbout 17% of sessionsnvolvedroaming,and
of these“mobile sessions’about40% involved roamingto a dif-
ferentsubnet.From anecdotakvidence theseextra-subnetoams
oftenoccurwhenwhenthe useris stationaryleadingto failuresof
IP traffic.

Network designershouldnotethe high variancein the activity
of buildings, accessoints, and cards,over both time and space.
We neednew solutionsto prevent cardsfrom roamingtoo fre-
quently without sacrificingcoverage We neednetwork-layer[11]
and application-layersolutionsto supportmulti-subnetroaming.
Finally, notethat the traffic is not definitively dominatedby out-
boundor inboundtraffic. Theratio variedsignificantly from dayto
day, building to building, andprotocolto protocol. This conclusion
arguesagpinstary designwith asymmetridoandwidth.

In the early stageof thewirelessproject,the staf at Dartmouth
College debatedvhetherit would beimportantto provide wireless
coveragen thedormitories which werealreadywired with atleast
oneport perresident.Our datashavs thatthe bulk of wirelessac-
tivity occursin the residencesFurthermae, for wirelessnetwork
connectvity to be usefu to a mobile user it needsto be pena-
sive, allowing the userto grabtheir laptopon theway out thedoor,
confidentthattherewill be network accessvhererer they maygo.
Nonethelessye sav thatmostusersvisitedfew APsandbuildings
over thelife of the trace,and mostuserswere stationarywithin a
session.

Future work. Our study andnearlyall of the studiesbeforeit,
characterizednly the wirelessnetwork. It would be useful (but
extremelydifficult, on switchednetworks)to collectsimultaneous
information aboutusageon the wired and wirelessnetworks, to
determinghe characteristicsiniqueto the wirelesservironment.

We would lik e to studythe geographigatternsof mobility. Pre-
sumablymostusershave regularhabitsasthey move from dormto
classto dining hall.

We wereunableto distinguishusersor typesof users(students,
faculty staf). It may be possibleto infer the type of usersfrom
theirbehaior (for example studentareseerfrequentlyin dorms),
or to useclusteringtechnique$13]. We werealsounableto distin-

guishthe mohile hosthardware (PDA, laptop,or desktop)or oper
atingsystemput for thoseseenn atcpdumptracewe maybeable
to learnsomethingrom the protocolsthey use.
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