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ABSTRACT
Understandingusagepatternsin wirelesslocal-areanetworks(WLANs)
is critical for thosewhodevelop,deploy, andmanageWLAN tech-
nology, aswell asthosewhodevelopsystemsandapplicationsoft-
ware for wirelessnetworks. This paperpresentsresultsfrom the
largestandmostcomprehensivetraceof network activity in alarge,
productionwirelessLAN. For elevenweekswe tracedtheactivity
of nearlytwo thousandusersdrawn from a generalcampuspopu-
lation, usinga campus-widenetwork of 476 accesspointsspread
over 161buildings. Our studyexpandson thosedoneby Tangand
Baker, with asignificantlylargerandbroaderpopulation.

We foundthat residentialtraffic dominatedall other traffic, par-
ticularly in residencespopulatedby newer students;studentsare
increasinglychoosinga wirelesslaptopastheir primarycomputer.
Althoughwebprotocolswerethesinglelargestcomponentof traf-
fic volume, network backupand file sharing contributed an un-
expectedlylarge amountto the traffic. Although therewassome
roamingwithin a network session,we weresurprisedby thenum-
berof situationsin whichcardsroamedexcessively, unableto settle
ononeaccesspoint. Cross-subnetroamswereanespecialproblem,
becausethey brokeIPconnections,indicatingtheneedfor solutions
thatavoid or accommodatesuchroams.

Categoriesand SubjectDescriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tectureandDesign—Wireless communication
; C.2.2[Computer-Communication Networks]: Network Proto-
cols
; C.2.3[Computer-Communication Networks]: Network Opera-
tions—Network management, Network monitoring
; C.2.5[Computer-Communication Networks]: LocalandWide-
AreaNetworks

GeneralTerms
Measurement

Keywords
802.11,LAN, Usagecharacterization,network analysis

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
MOBICOM’02, September23–26,2002,Atlanta,Georgia,USA.
Copyright 2002ACM 1-58113-486-X/02/0009...$5.00.

1. INTRODUCTION
Wirelesslocal-areanetworks (WLANs) are increasinglycom-

mon,particularlyonuniversityandcorporatecampuses.For exam-
ple, a contemporarysurvey of 392academicinstitutions[4] found
thatnearlyall planto install a wirelessnetwork, abouthalf already
havealimited deployment,andafew (7%)havea“comprehensive”
deployment.AlthoughtechnologysuchasIEEE802.11b is broadly
deployedandusageis increasingdramatically, little is known about
how thesenetworksareused.A clearunderstandingof usagepat-
ternsin realWLANs is critical informationfor thosewho develop,
deploy, and manageWLAN technology, and thosewho develop
systemsandapplicationsoftwarefor wirelessnetworks.

Thispaperpresentsresultsfrom thelargestandmostcomprehen-
sive traceof network activity in a large,productionwirelessLAN.
DartmouthCollege has11 Mbps 802.11bcoveragefor nearlyev-
erybuildingoncampus,includingall administrative,academic,and
residentialbuildings,andmostathleticfacilities. We collectedex-
tensive traceinformation from the entirenetwork throughoutthe
Fall termof 2001.

Our work significantly expandsupon the WaveLAN study by
TangandBaker [13], which traced74 computer-scienceusersin
onebuilding for 12 weeks. Our studytracesnearly two thousand
usersdrawn from a generalcampus population,across161 build-
ings for oneacademicterm (11 weeks). It alsoexpandsuponthe
MetricomstudybyTangandBaker[14] whichtracedametropolitan-
areanetwork for seven weeks. Although that tracecoversa wide
geographicalareaandalmost25,000users,our traceincludesde-
tailedinformationabouttheamountandnatureof thenetwork traf-
fic. Thesize,populationdiversity, anddetailof our datacollection
offersextensive insight into wirelessnetwork usage.Althoughev-
eryenvironment is different,ourstudyhascharacteristicscommon
to bothresidentialandenterprisedeployments.

We next describethe environmentof our study, the campus of
DartmouthCollege, and then detail our tracing methodologyin
Section3. In Section4 we presentanddiscussthe most interest-
ing characteristicsof thedata.Section5 comparesour resultswith
thoseof earlierstudies,andSection6 concludes.

2. THE TEST ENVIRONMENT
TheDartmouthCollegecampusis compact,with over161build-

ingson 200acres,including administrative, academic,residential,
andathleticbuildings.Everybuilding is wired to thecampusback-
bonenetwork. Every office, dorm room, and lecturehall, and in
someplaceseveryseatin alecturehall, haswiredEthernet.In 2001
Dartmouthinstalled476 accesspointsfrom CiscoSystems,eachan
Aironetmodel3501, to provide11Mbpscoverageto nearlytheen-
tire campus.Eachaccesspoint (AP) hasa rangeof about130–350

1Specificationsatwww.cisco.com.



feet indoors,so thereareseveralAPs in all but thesmallestbuild-
ings.Althoughtherewasnospecificeffort to coveroutdoorspaces,
thecampusis compactandtheinteriorAPstendto covermostout-
doorspaces.

All APssharethesamenetwork name(SSID),allowing wireless
clientsto roamseamlesslyfrom oneAP to another. On the other
hand,abuilding’sAPsareconnectedthroughaswitchor hubto the
building’sexistingsubnet.The161coveredbuildingsspan81sub-
nets,soin many casesa wirelessclient roamingfrom onebuilding
to anotherwill be forcedto obtaina new IP address.(Dartmouth
chosenot to constructaseparatecampus-widesubnetfor thewire-
lessnetwork, unlike theWirelessAndrew project[3].)

DartmouthCollegehasabout5,500studentsand1,215full-time
professors.During Fall 2001approximately3,330undergraduate
studentslived on campus. Eachis requiredto own a computer.
Eachyear, approximately1000undergraduatestudentsenterDart-
mouthCollege, andmost purchasea computerthroughthe cam-
puscomputerstore. Of thosepurchases,laptops have becomein-
creasinglydominantin recentyears:27% in 1999,45% in 2000,
and 70% in 2001. Assuming that that studentsobtaining com-
puterselsewherechooselaptops in the samefraction, andthat in
1998 (for which no datais available) about15% purchasedlap-
tops,about40% of currentundergraduatesown laptops. All lap-
topspurchasedin 2001hadbuilt-in wirelesssupport,andover1000
802.11bcardshave beensoldover the pastyearto otherusers.In
addition,all business-schoolstudents,andmostengineering-school
graduatestudents,own laptops.

3. TRACE COLLECTION
We began collecting datain April 2001, when the first access

pointswereinstalled. After preliminarystudyof the datain May
2001 [12], we began full-scale datacollection when studentsre-
turnedto campusin September 2001. In this paperwe focuson
thedatacollectedduringtheeleven-weekFall 2001term,Tuesday
September25 throughMondayDecember10, inclusive. Although
we have datafor abouta weekprior andabouta monthafter, there
wassignificantlylessusageduringvacationperiodsandsowelimit
ouranalysisto theactiveperiod.

At thebeginningof thetraceperiodtherewere465accesspoints
(APs). ElevenmoreAPswereinstalledin thefirst monthto bring
the total to 476 by October21. As we discussbelow, it appears
thatsomeof the “installed” APswerenot completelyor correctly
configuredduring the tracing period, however, which resultedin
fewerAPsrepresentedin ourdata.

We usedthreetechniquesto collectdataaboutwireless-network
usage:syslogevents,SNMPpolling, andtcpdumpsniffers.

3.1 Syslog
Weconfiguredtheaccesspointsto transmitasyslogmessageev-

ery timeaclientcardauthenticated,associated,reassociated,disas-
sociated,or deauthenticatedwith the accesspoint (seedefinitions
below). The syslogmessagesarrived via UDP at a server in our
lab,which recordedall 3,533,352of themfor lateranalysis.

Most APs contributedto the syslogtraceassoonasthey were
configuredand installed. Of the 476 APs, only 430 were repre-
sentedin our trace.Althoughsomeappearneverto havebeenused,
many were misconfiguredanddid not sendsyslogmessages.Fur-
thermore,we have incompletedatafor a few dateswhenthecam-
pusexperienceda power failure,or whena centralsyslogdaemon
apparentlyhungup. Finally, sincesyslogusesUDP it is possible
that somemessageswerelost or misordered.As a resultof these
spatialandtemporalholesin the trace,someof our statisticswill
undercountactualactivity.

Oursyslog-recordingserveraddeda timestampto eachmessage
asit arrives. EachmessagecontainedtheAP name,theMAC ad-
dressof thecard,andthetypeof message:

Authenticated. Beforeacardmayusethenetwork, it mustauthen-
ticate.We ignorethismessage.

Associated. After authentication,a card choosesone of the in-
rangeaccesspointsandassociateswith that AP; all traffic to and
from thecardgoesthroughthatAP.

Reassociated.The cardmonitorsperiodicbeaconsfrom the APs
and(basedon signalstrengthor otherfactors)maychooseto reas-
sociatewith anotherAP. This featuresupportsroaming. Unfortu-
nately, cardsfrom somevendorsapparently never usetheReasso-
ciateprotocol,andalwaysuseAssociate[5].

Roamed. Whena card reassociateswith a new AP, the new AP
broadcaststhatfacton theEthernet;uponreceipt,theold AP emits
a syslog“Roamed”message.We ignorethis message;becauseit
dependson aninter-AP protocolbelow theIP layer, it only occurs
whenacardroamsto anotherAP within thesamesubnet.

Disassociated.Whenthecardno longerneedsthenetwork, it dis-
associateswith its currentAP. We found,however, that thesyslog
containedalmostnosuchmessages.

Deauthenticated.While it is possiblefor thecardto requestdeau-
thentication,this almostnever happenedin our log. Normally, the
associatedAP deauthenticatesthecardafter30 minutesof inactiv-
ity. In our log it is commonto seeseveral deauthenticationmes-
sagesfor a widely roamingcard,onemessagefrom eachsubnet
visitedin thesession;we ignoreall but themessagefrom themost
recentAP.

Ournetwork doesnotuseMAC-layerauthenticationin theAPs,
or IP-layerauthenticationin theDHCPserver. Any cardmayasso-
ciatewith any accesspoint, andobtaina dynamicIP address.We
thusdo not know theidentity of users,andtheIP addressgivento
a uservariesfrom time to time andbuilding to building. We make
theapproximatingassumptionto equatecardswith users,although
someusersmayhave multiple cards,or somecardsmaybeshared
by multipleusers.

3.2 SNMP
We usedtheSimpleNetwork ManagementProtocol(SNMP)to

periodically poll the APs; 451 of the 476 APs respondedto our
polls. We choseto poll every 5 minutesto obtaininformationrea-
sonablyfrequently, within thelimits of thecomputationandband-
width availableon our two polling workstations.Our traceperiod
includes193,111,734of theseSNMP records.Unfortunately, we
have incompletedatafor the following dates: October7, 9, and
12 (maintenanceof our server), November19 (unknown causes),
andDecember5 (a campus-widepower failure). We choseto en-
tirely excludethosedatesfrom our analysis,becausemostof our
SNMP-basedplotsexaminetraffic perday, anumberthatwouldbe
pollutedby “short” days.

Eachpoll returnedthe MAC addressesof recentlyassociated
client stations,andthe currentvalueof two counters,onefor in-
boundbytesandonefor outboundbytes. TheAP doesnot reset
the counterswhenpolled, so we computethe differencebetween
thevaluesretrievedby onepoll andthevaluesretrievedby thenext
poll. Thecountersare32-bit unsignedintegers,andour computa-
tion properlyhandlescounterroll-over. We ignoretheresult,how-
ever, in two instances:a)whenthetimebetweensuccessfulpolls is
morethan12minutes(twice thepolling interval plusa little slack);



b) when the resultingnumberof bytesis more than the wireless
interfacecouldhave sentor receivedin thetime sincethelastpoll.
In theformercase,theAP wasunreachablefor morethanonepoll,
andwe wereunsurehow many timesthecountermayhave rolled
duringthosemissedpolls. In thelattercase,theAP (andits coun-
ters)werelikely resetdueto maintenanceor apower failure.

AlthougheachSNMPrecordcontainsa list of cards associated
with the AP, we choseto usethe syslogdatafor tracking cards
becausethesyslogdataprovidestheexactseriesof eventsfor each
card,whereastheSNMPpolling datawaslessprecise. We do use
thelist to computeper-cardtraffic statistics.

3.3 Sniffers
ThesyslogandSNMPtracesallowedusto computebasicstatis-

tics abouttraffic, users,and mobility. To get a betterpicture of
what the usersweredoing with the network, we usedtcpdumpto
captureall of thepacket headerson a selectionof theAPsaround
campus.Becauseof thevolumeof data,andprivacy concerns,we
recordedonly packet headers.Becauseof the numberand geo-
graphicdistribution of APs, the structureof our network (many
subnets,andswitchedEthernet),andthe volumeof traffic, it was
not possibleto captureall of the wirelesstraffic. In eachof four
locationsweattachedacomputerandthebuilding’s APsto acom-
monhub,andattachedthehub’suplink to aswitchportonthecam-
pusnetwork. With this “sniffer” in promiscuousmode,we used
tcpdumpto recordthe headerof every packet passingby; in our
lateranalysis,we focusonly on thewirelesspackets.

Wechosefour representative locations:
Sudikoff: theDepartmentof ComputerScience(6 APs). There

werethreeholesamountingto 21hours.
Brown: adormitorywith many first-yearstudents(2APs). There

were15holesamountingto 213hours.
Berry: themaincampuslibrary. Dueto the sizeof thebuilding

andtheswitchednatureof its network, we wereonly ableto sniff
5 of the13APs.Thereweresevenholesamountingto 139hours.

Collis/Thayer: two buildings,thestudentcenteranddininghall,
containingfive cafes,several loungeareas,severalmeetingrooms,
andsomeoffices(total 9 APs). Therewereeightholesamounting
to 337hours.

Many of theholeswerecausedby power outages,in which case
the sniffer lost power, but so did the the accesspoint andnearby
networking hardware.Thustherewasno traffic to sniff duringthe
power failure.Since,afterpowerwasrestored,thesniffer nodoubt
tookmoretimeto boot thantheaccesspointandnetwork hardware,
weprobablymissedasmallamountof data.Thusourstatisticswill
slightly undercountthe traffic. The Collis sniffer, unfortunately,
wasmoreseriouslyaffectedby onepower failureandrequiredsev-
eral daysto repair. Sincewe did not usethe sniffer datafor any
daily analyses,wedid notdiscardany data.

3.4 Definitions
Onegoalof this studyis to understanduserbehavior. We imag-

ine user“sessions”in which a user(card)joins the network, uses
thenetwork, possiblyroamsto otherAPs,andleavesthe network.
Weneedprecisedefinitions:

Card: a wirelessnetwork interfacecard, identifiedby MAC ad-
dress.

Active Card: a cardinvolved in a session(seebelow), during the
hour, duringtheday, or at theplace,in question.

Mobile Card: an active card that visits more than one building
duringthehour, duringtheday, or at theplace,in question.Weaim

to understandphysical mobility, so we focus on buildings rather
thanaccesspoints.

Roamer Card: an active cardthat roams(seebelow) during the
hour, duringtheday, or at theplace,in question.We aim to under-
standnetwork mobility within asession.

Session: A sessionstartswhen a card associateswith an access
point. Exception1: any Associatemessagesthat arrive lessthan
SessionThreshold after thetheprecedingAssociateor Reassociate
messagearetreatedas if they werea Reassociatemessagerather
than startinga new session.Thus they indicatea roam. Excep-
tion 2: for any cardthat never usedReassociateduring our trace,
we assumedthat cardis of thevariety thatusesAssociate(within
a session)to meanReassociate,sowe countedasroamsany Asso-
ciatearriving within anexistingsession.
A sessionendsin oneof threeways:

1. If a Deassociateor Deauthenticatemessageis received from
the last accesspoint usedby the card(othersuchmessages
areignored),thesessionis clearlyover. If thereasonis “In-
activity,” andthis messagearrivedmorethan30 minutesaf-
ter the sessionstart time, we computethe sessionendtime
to be30minutesprior to thismessage’s time. Otherwise,the
sessionendtime is thismessage’s time.

2. As mentionedabove, we treatsomeAssociatemessagesar-
riving during an existing sessionasmarkinga new session.
The time of this Associatemessagedefinesthe end time of
thecurrentsession andthestarttimeof thenew session.This
rule wasnecessarybecauseit appearedthat many sessions
did not endwith a Disassociateor Deauthenticatemessage,
eitherbecausetheAP did notsendthemessageor wedid not
receive it.

3. Theendof thetraceis reached.Whenthis occurs,all ongo-
ing sessionsendat the lastAP beingusedby theclient and
thesessionis assumedto endat thetimeof thelastlog in the
entiretrace.

Roam: a cardswitchesaccesspointswithin a session,identified
by aReassociatemessageto anew AP, or by anAssociatemessage
thatis treatedasa roam(asdescribedabove).

Extra-subnet roam: a roamto anAP in anothersubnet.

Intra-subnet roam: a roamto anAP in thesamesubnet.

Stationary session:asessioncontainingno roams.

Roamingsession:asessioncontainingroams.

Extra-subnet session:asessioncontaininganextra-subnetroam.

Intra-subnet session:aroamingsessioncontainingnoextra-subnet
roams.

Inbound: traffic sentby theaccesspoint to thecard.

Outbound: traffic sentby thecardto theaccesspoint.
Thesecard-centricdefinitionsof “in” and“out” arethe reverse

of thoseusedin our earlierdrafts[12, 8], but matchthoseusedby
TangandBaker [13].

If a sniffer saw a framewith a wirelesssourceand destination
(likely rare),wecountedit as“inbound,” ratherthandouble-counting
it asinboundandoutbound.In theSNMPanalysis,we believe the
AP countedsuchtraffic twice.

A noteabouttheSessionThreshold mentionedabove. On occa-
sion, a card would AssociateratherthanReassociate,apparently



becausethestatemachineon thecardwasout of syncwith thaton
the AP [5]. It is difficult to identify preciselywhich of theseAs-
sociatemessagesshoulddefinea new “session,” andwhich really
representa roamwithin thecurrentsession.WesetSessionThresh-
old to 30 seconds,underthe assumptionthat anything shorteris
certainlynotanew “session”in theeyesof theuser.

A noteaboutthe timestamps in the syslog. Although the mes-
sagesmaybedelayedor reorderedasthey passthroughthecampus
network to ourserver, thedelaysaresmallrelativeto ourtimestamp
granularity(onesecond)andany reorderingthat affectscausality
shouldberare.

4. RESULTS
We collectedanenormousamountof data,andcanpresentonly

a subsetof the interestingcharacteristicsin this paper. First, the
basics.In the77-day traceperiodwe saw 1706distinctcards. Of
the 476 installedaccesspoints,we monitored430 by syslog,451
by SNMP, and 22 by tcpdump.Theaccesspointsweredistributed
among161buildings,whichwedivideinto fivecategories:82Res-
idence,32 Academic,6 Library, 19 Social,and 22 Administrative.
Theresidentialbuildingsaremostlyundergraduatedormitoriesand
fraternities,but also includesomeDartmouth-ownedhousingfor
facultyandstaff, anda residentialfacility for thebusinessschool.
All business-schoolstudentshave laptopsand(asthedatashows)
many arebusywirelessusers.Thesocialbuildings includedining
facilities,theartscenter, andathleticfacilities(includinga lodgeat
theski areaandaboathouseon theriver).

In therestof this sectionwe presenta seriesof questionsabout
thenetwork’s usage,andour analysisbasedon thedata.For each
figureor table,we identify thedatasourceas[syslog],[SNMP], or
[tcpdump].

4.1 Traffic
Perhapsthe most fundamentalquestionsabouta new network

involvehow muchit is used,andwhen:

• How muchtraffic doesthenetwork handle?

• How muchtraffic percard?

• How doestraffic varyacrosshours,days,weekdays?

Over the courseof our studyperiodwe measured3.3 terabytes
of total traffic, althoughmorethanhalf that traffic wascausedby
only 5% of cards.The busiestcardtransferred117GB, while the
mediancardusedonly 350MB.

Thedaily traffic alsovariedconsiderably. Figure1 is a time se-
ries,andFigure2 is a cumulative distribution function; we usethe
CDF format in all of our distribution graphs. On the busiestday
thenetwork movedover 240GB, whereasthemediandaily traffic
was53 MB. Thereis a cleardip aroundtheThanksgiving holiday.
Therewasalwayslessoutboundtraffic thaninboundtraffic, but the
proportionof outbounddatavarieddaily between18and89%.

In Figure3 we normalizethedataby thenumberof cardsactive
in thatday. Thispresentationflattensthecurvesomewhat,although
thereis still awidevariationin daily activity.

Thesefiguresshow areasonablystrongweeklypatternwith some
surprisingpeakson Mondays.In Figure4 we seetheweeklypat-
ternsmoreclearly. Friday andSaturdayare the quietestdays,as
studentsrelax,but Sundaypicksup asstudentsbegin their home-
work. Monday’s averageis skewed by activity in one building,
Whittemore,which includes study roomsand residencesfor stu-
dentsof the Tuck Schoolof Business.If Whittemoreis removed
from Figure4, Monday’s traffic matchesTuesday’s (not shown).

Figure1: [SNMP] Daily traffic (GB). A date’sbar appearsto the right
of its ticmark. Gaps in the plot representholesin our data. Note that
there is typically more inbound than outbound traffic.

0

50

100

150

200

250

Sep 30Oct 07 Oct 14 Oct 21 Oct 28Nov 04Nov 11Nov 18Nov 25Dec 02Dec 09

Date (Sundays are labeled)

Total
Inbound

Outbound

Figure2: [SNMP] Daily traffic (GB), distrib ution acrossdays.
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Figure5 displaysthevariationof traffic overthehoursof theday.
Thebar for 10 AM is skewedabove 11 GB by thetraffic in Whit-
temore;without Whittemore,the10 AM bardropsslightly below
thatof the11 AM bar. Whenwe examinedtheWhittemoretraffic,
we saw a dramaticburst of activity, both inboundandoutbound,
every Mondayduring the10 AM hour, often accountingfor nearly
100%of campus-widetraffic duringthathour. Wedonothavedata
to determinethe applicationcausingthe traffic, but we speculate
that it is a regularly scheduledactionsuchasbackupor software
update.

The traffic is steadythroughouttheafternoonand eveningwith
a dip arounddinner, tailing off throughthe night when students
finally go to sleep,andrising again asemployeesreturnto work.
Becauseour environmentis a mixtureof residentialandacademic
uses,this plot shows a mixture of the workdaybell curve andthe
residentialeveningbell curve.

4.2 Usersand usermobility
We did not (andcould not) track users, but sincefor the most

parteachcardis associatedwith oneuser, andmostusershave just
onecard,weexaminedcardsasif they representusers.Weask:

• How many cardsarethere?Fromwhichvendors?

• How many daysis eachcardactive?

• How many APsdoesacardvisit?

• How many buildingsdoesacardvisit?

Therewere1706uniqueMAC addressesseenin oursyslogtrace,
mostfrom afew commonvendors(Table1). Dartmouth’scampus



Figure3: [SNMP] Daily traffic per card (GB).
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Figure4: [SNMP] Averagedaily traffic (GB), by weekday.
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computingstoreresellsexclusively AppleandDell computers,and
asof 2001all laptopssoldto first-yearstudentshavewirelesscards
built-in: Agere(partof Lucent)cardsin theDell laptops,andAp-
ple Airport cardsin the Apple laptops.The storealsosellsCisco
(Aironet)wirelessPCcards,anoption for thosewith olderlaptops.

Usersvaried in the numberof daysthat they usedtheir cards,
from only onceto every day in the77-daytrace(Figure6). Many
usersarestudents,living on campus,andit is not surprisingto see
somewith wirelesslaptopson their dorm-roomdesk,alwayson-
line. Interestingly, thedistribution is roughly uniform betweenone
and77days,with amedianof 28days.

Thegraphalsoshows that few cardsmove aroundmuch,with a
medianof five buildings andnine APs, andno cardvisiting even
half of the entirenetwork. Indeed,nearly18% of the cardsspent
all their timein onebuilding. Clearly, mostuserslimit theiractivity
to a few key sitesin their daily routine. We expectto seethis pat-
ternchangeasmoresmalldevices,suchasPDAs with an802.11b
CompactFlashcard,easemobility.

4.3 Card activity
Now thatwe have seenthenetwork from thecard’s perspective,

weexaminethecardsfrom thenetwork’s perspective:

• How many cardsareactive?

• Whenarecardsactive?

• How longaresessions?

• How many sessionsarestartedeachday?

• How aresessionsdistributedamongbuildings?

• How many sessionsareroaming?extra-subnet?

• How oftendocardsroampersession?

Figure 5: [SNMP] Averagehourly traffic (GB), by hour (truncated).
The 10ampeak reaches11.4GB (60% inbound).
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Table1: [syslog]Commoncard vendors.
Number Vendor

624 Lucent/Agere
536 AppleComputer
489 Cisco/Aironet
57 Other (15 brands)

1706 Total

Althoughtherewere1706cardsseenin our traces,not all were
active every day. Figure 7 shows the numberof cardsactive in
eachdayof our traceperiod. Clearlyvisible aretheThanksgiving
holiday, weeklycycles,anda tail-off at theendof the term. Also
visible is a slow trendtoward moreactive cardsper day, asmore
usersobtain wirelesscapability and chooseto useit more often.
Herewe define“active” to meanany cardthat is associatedwith
anaccesspoint, regardlessof whethertheuseris actuallyusingthe
computeror network. The plot alsoshows “mobile” cards,which
visited more than one building on that day, and “roamer” cards,
whichvisitedmorethanoneAP duringany sessionthatday.

In anotherview, Figure8 shows the distribution of the number
of active, roamer, andmobilecardsin any givenday. Almost half
of our cardpopulationwasactive on a typical day, andover a third
of thoseweremobile.

The visible weekly cycle of Figure7 is reinforcedin Figure9,
which we believe reflectsa typical studentpatternof activity, hus-
tling to complete their work early in theweek,relaxingon Friday
andSaturday, andpickingupagainonSunday.

Figure10 shows diurnalpatterns.As in thehourly traffic graph,
this pattern matchesa mixture of workplaceand residentialpat-
terns.Thebulk of theactivity wasduringtheafternoon,with sub-
stantial activity during the evening and a slow decline in activ-
ity through the wee hours of the morning. Curiously, although
on weekdays therewerefewer active cardsin the eveningthanin
theafternoon,thetraffic remainsrelatively flat (Figure5); perhaps
eveningusersarebusier.

With mostoffice workersaway on weekends,theweekendmid-
dayactivity is lower, butdueto theresidentialpopulationtheevening
andovernighthoursremainaboutthesameonweekendsandweek-
days.Wereachsimilarconclusionsaboutroamerandmobilecards,
not shown.

Figure 11 demonstratesthe different patterns,and relative ac-
tivity, of differentcategories of buildings on campus. Residential
activity dominates.Residencesandsocialspacestend to be used
more in the eveninghours,whereasacademicandadministrative
buildings areactive during the work day, and librariesaresome-



Figure 6: [syslog]Activity per card, distrib ution acrosscards. Maxi-
mums: 77 days,64 buildings, and 161APs. Medians: 28 days,5 build-
ings,and 9 APs.
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Figure 7: [syslog] Number of active, mobile, and roamer cards per
day. A date’s data appearsto the right of its tick-mark.
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what in-between.We saw similar patternsfor mobile androamer
cards(notshown),althoughwith asharperovernightdip whenpeo-
plemove less.

Sessions. We are interestedin when, and for how long, users
chooseto usethe wirelessnetwork. In the precedingsectionwe
definea “session,” intuitively, to be theperiodof activity with the
network, althoughit is difficult to accuratelydetectthe beginning
andendof all sessionsgiven thesyslogdata. We believe thatour
resultsarea reasonableapproximationof thenotionof a userses-
sion.

Our data(Figure 12) shows that most sessionsare short. The
mediansessionlengthwas16.6minutes,and71%of sessionsfinish
in lessthanonehour. Given that studentsmove frequentlyfrom
classto classto diningto dorm,and liketo checkemailin between,
thesenumbersarereasonable.

On the other hand, therewere a few sessionsthat were very
long (69 days in one case). Theseextremely long sessionsare
likely artifactsof holes in the syslogdata, in which we lost the
session-endingmessage.Therearemany shortsessions: 27% of
sessionslast lessthana minute. Despiteour 30-secondSession-
Threshold,our session-begin definitionwasapparently too liberal.
Nonetheless,this databegs the questionaboutwhy the cardsas-
sociatesoquickly andfrequently. Examinationof samplesessions
show many instancesin whichacardAssociateswith anAP despite
(from our reading)beingassociatedalready, an indicationthat the
statemachinein the cardand in the AP are out of sync [5]. Al-

Figure8: [syslog]Number of active,mobile, or roamercardsper day;
distrib ution acrossdays. Medians are 780(all), 304(roamer),and 301
(mobile).
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Figure 9: [syslog] Number of active, mobile, or roamer cards per
weekday. The curve shows the mean, while the bars show standard
deviation. The thr eecurvesare slightly offset so the bars are distin-
guishable.
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thoughfurtherstudyis necessary, it appearsthatthereis substantial
room for improvementin the card firmware and possibly in the
802.11protocols.

Although most (82%) sessionsare non-roaming,roamingses-
sionsdo include one or more roams. Figure 13 shows the dis-
tribution of the numberof roamsduring roamingsessions.Most
roamingsessionswereshortandroamedinfrequently(themedian
is two roams). Somesessionsroamedextremely frequently: one
sessionroamednearly20,000times! Nearly60%of roamingses-
sionsroamedonly within one subnet. Unfortunatelythat means
thatover40%roamedacrossasubnetboundary, whichbreakscon-
nectionsandforcestheuserto obtainanew IP address.

So, why do cardsreassociateso frequently?The cardsaggres-
sively searchfor a strongsignal,andin anenvironmentwith many
APsandoverlappingcells,cardswill roamfrequently[5]. (In some
cases,wheretheAPswerefrom multiplesubnets,it is doubtfulthe
userhadmuchluck usingthenetwork!) Eithercardfirmwareneeds
to belessaggressive,or ourenvironmentneedsto reducecell over-
lap, to reducethe roaming,reducethe resulting load on the net-
work, andgive betterserviceto the user. Furthermore,sinceit is
expensive to deploy a singlecampus-widesubnetfor the wireless
network [6, 7], Mobile IP [11] or similar servicesarerequiredto
supportseamlessroaming.

Whenwe ignoreany roamsthatoccurwithin thirty secondsof a
precedingroam,themaximumnumberof roamspersessiondropped



Figure 10: [syslog] Number of active cards per hour. The number
of active cards for eachhour of the day, separatelyfor weekdaysand
weekends. The curve shows the mean, while the bars show standard
deviation. The two curvesareslightly offsetsothe bars aredistinguish-
able.
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Figure 11: [syslog]Mean active cards per hour, by category. A card
visiting multiple building categorieswithin an hour wascountedonce
for eachcategoryit visits.
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to 1574,but noneof ourgraphsor conclusionschange.
This aggressive roamingis the likely reasonthat thenumberof

“mobile” cardsis similar to thenumberof “roaming” cards.There
aremany locationswhereacardmayassociatewith APsin multiple
buildings, despitebeingphysically stationary. Thusthe “mobile”
cardcountis anoverestimateof large-scalemobility.

Figure14 is anotherview of daily network activity, in which we
countthenumberof sessionsstartedin eachday, andherepresent
the countasa distribution acrossdays. The large numberof ses-
sionsseenhereis consistentwith the shortnessof sessions noted
earlier. Although most sessionstartsare in the dominantcate-
gory (residence),we found (not shown) that sessionsstartedin
academicor administrative buildings tend to be more stationary,
andthat thosein librariestendto have slightly moreextra-subnet
roams. The latter may have more to do with the configurationof
thelibrariesandsubnetsthanany realphysicalmobility.

4.4 AP activity
Wenow examinenetwork activity in termsof theAPs:

• How many APsarethere?

• WhenareAPsactive?

• How doesactivity vary acrossAPs,andwhich aremostac-
tive?

Figure12: [syslog]CDF of sessionduration (truncated to 1 day). The
longestsessionmeasured 69 days, although that is probably an error
due to holesin our data. The median is 16.6minutes.
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Figure 13: [syslog] Roams per roaming session,distrib ution across
sessions.This graph is truncated. The maximum is 19,902roams.
About 18% of sessionswere roaming.
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• How doestraffic varyacrossAPs,andwhichhavemosttraf-
fic?

Therewere476APsinstalledby theendof thestudy. Thedata
in this section arebasedon the430APsin thesyslogtraceandthe
451respondingto ourSNMPpolls.

A detailedidentificationof the busiestAPs is perhapsonly of
internalinterestatDartmouthCollege,andin any caseweexamine
therelatedquestionaboutthebusiestbuildingsin thenext subsec-
tion. TheAPswith themostactive cardsin their busiesthourwere
thoselocatednearlargelecturehalls;in its busiesthour, thebusiest
AP had71 active cards. The traffic waselsewhere,however: the
APswith thelargestmaximumandaveragedaily traffic werefrom
residences.

Figure15 shows thevariationin thenumberof APsactive each
day. Clearly visible arethe weekly cycle, the Thanksgiving holi-
day, anda generaltrendto usemoreAPs,asthenumberof cards
increasedandaspeopleused thenetwork more.Eachdaysaw be-
tween171and352accesspoints in use,with amedianof 292.Oth-
erwise,we found (not shown) that the temporalpatternsof active
APsfollows a patternsimilar to thenumberof active cardsshown
in Figures10and11.

Over thelife of thetrace,theAPsvariedwidely in theamountof
traffic they handled(Figure16), with the medianAP handlingan
averageof only 39 MB perday, while thebusiestAP handledan
averageof over2 GB perday.



Figure14: [syslog]Number of sessionstarts per day, distrib ution over
days. Median is 3582sessions,or 664roamingsessions.
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Figure 15: [syslog]Number of active APs per day. A date’s data ap-
pearsjust to the right of its tick-mark.
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4.5 Building activity
An examinationof buildingsallowsusto classifythemostactive

locationsoncampus.

• How many buildingsarethere?

• Whenarebuildingsactive?

• How doesactivity varyacrossbuildings,andwhicharemost
active?

• How doestraffic varyacrossbuildings,andwhich havemost
traffic?

• How doesactivity varyacrossbuilding categories?

• How doestraffic varyacrossbuilding categories?

Therewere 161 buildings with installedAPs, ranging widely
from hugecentrallibrariesto tiny houses,andeven a shedat the
tenniscourts.AlthoughFigure17shows thatthebulk of thetraffic
wasseenin the residentialbuildings (averaging48 GB per day),
whennormalizedby populationsize(active cards,in Figure18) or
by building size (numberof APs, not shown) we seesomewhat
morebalancedtraffic. Residentialusersspendmore hoursin res-
idencesthanmostpeoplespendin otherbuildings,accountingfor
someof thisdifference.

The building with the largestaveragedaily traffic (Figure 19)
wasWhittemore.RecallthatWhittemore’s traffic is skewedby the
Monday10 AM peakmentionedearlier;on theotherhand,about
a third of Tuck Schoolstudentsdo have a wirelesslaptop. Cum-
mings is the engineeringschool andMurdoughis the library be-
tweenCummingsandWhittemore.Berry is themain library, and

Figure 16: [SNMP] Average daily traffic (GB), distrib ution across
APs. Median is 39MB, maximum is 2.0GB.
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Figure17: [SNMP] Averagedaily traffic (GB), by category.
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theotherbuildingsaredormitorieswith largepopulationsof first-
yearundergraduates.

Figure20 normalizesby the numberof APs, to reducethe im-
portanceof larger buildings,but Whittemorestill dominates. The
othersareall undergraduatedormitories,particularlythosefull of
first-yearstudents.On the otherhand,whenwe normalizetraffic
by thenumberof active cards(not shown), thegraphwasskewed
towardbuildingsvisitedby a few busyusers.

Examiningthebusiestdayfor eachbuilding (Figure21), wefirst
noticethat maximumtraffic is nearlya hundredtimeslarger than
theaveragesin Figure20. Also, otherthanWhittemoreandGile,
thischarthasadifferentsetof buildings: someacademic buildings
(Gilman,Rockefeller, andSilsby),anadministrativebuilding (Sls),
anddorms.Averagebehavior is not a goodpredictorof burstybe-
havior.

In Figure22, thebuildingswith the busiesthour, in termsof the
numberof activecards,aremostlybuildingswith largelecturehalls
(Moore,Murdough,Tuck, Byrne,andCummings),themaincam-
pus library (Berry), and someresidences(Whittemore,Hinman,
McLane,andBuchanan).Clearly network designersneedto plan
carefullyfor suchlargeconcentrations.

Finally, in Figure23, we seethebuildingswith thelargestnum-
berof cardsvisiting over theentiretrace.Theseareall largebuild-
ingswhereyouexpectadiversepopulation:libraries(Baker, Berry,
Murdough,andSanborn),socialanddining spaces(Hop, Collis,
andThayer),an academicbuilding with large lecturehalls (Dart-
mouth)frequentedbystudentsin introductory courses,andthecam-
puscomputerstoreandrepairshop(betweenGerryandBradley),
wherewirelesscardsareoftenfirst installedandtested. Figure24
shows,though,thatthesebuildingswereunusual.Half of all build-



Figure18: [SNMP] Averagedaily traffic per card (GB), by category.

Residence Academic Library Social Administrative
0

0.01

0.02

0.03

0.04

Figure 19: [SNMP] Averagedaily traffic (GB), for the busiestbuild-
ings. Rankedby daily traffic.
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ings saw fewer than65 usersover the life of the trace,lessthan
Mooresaw in asinglehour.

The numberof active buildings (not shown) followed a pattern
similar to thenumberof activeAPs(notshown) andnumberof ac-
tive cards(shown in Figure11), althoughthevariation wasdamp-
enedasweconsolidatetheactivity into buildings.

4.6 Protocols
Althoughthesniffer datacoversonly four buildingsand22APs,

it coversavarietyof populations(library, dormitory, studentcenter,
and academiccomputerscience). Above, we examinequestions
aboutwhere,when,andhow muchpeopleusethewirelessnetwork;
now, weaskabouthow they usedthenetwork:

• Whichprotocolsarethemostcommonlyused?

• Whichprotocolsconsumethemosttraffic?

• For eachprotocol, how many bytes(or packets) flow each
way?

Wecaptured1.2billion frames,of whichweidentifiedabout357
million (28%) as explicitly wireless. Of all frames,about2.6%
were sentto the broadcastMAC, and thus would be transmitted
to all wirelessclients,but for our purposestheseframeswerenot
“wireless” unlessthe source was a wirelessclient. Of the wire-
lessframes,99.7%containedIP packets,evenly split betweenout-
boundandinbound.Dueto a glitch in thetracedata,we werenot
alwaysableto identify wirelessnon-IPpackets,but the1.2million
we could identify wereall ARP (66%), Appletalk (31%), or IPX
(3%).

Figure 20: [SNMP] Averagedaily traffic per AP (GB), for the busiest
buildings. Rankedby daily traffic, per AP.
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Figure21: [SNMP] Maximum daily traffic (GB), for the busiestbuild-
ings. Rankedby their busiestday.
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We sniffed nearly228GB of wirelessIP data,countingonly IP
databytes(notheaders).Thedormitoryaccountedfor 135GB and
the restwasroughly evenly distributed. Although we saw a tiny
amountof ICMP, IGMP, PIM, RSVP, andNARP, morethan99%
of theIP traffic wasUDP (2.5%of bytes,5.0%of packets)or TCP
(97.5%of bytes,94.3%of packets).

More thanhalf (956) of all wirelesscardswerecaughtat least
onceby our sniffers. Although Brown dormitory saw 142 cards,
andSudikoff (ComputerScience)saw 134cards,theCollis student
centersaw 476 andBerry Library 729, as they are larger, public
spaceswith adiversepopulation.

Wewereableto identify many application-layerprotocols in the
TCP andUDP packetswe sniffed, by recognizing“well-known”
port numbers. We usedthe official IANA list2 associating3801
protocolnameswith TCPandUDPportnumbers(or in many cases,
both) andaddeda list of 116 Dartmouth-specificprotocolassign-
ments(whichoverrided50of theIANA definitionswith localmean-
ings).Weexaminedtheeachpacket individually (later, wehopeto
analyzeflows). If the packet wasa TCP SYN packet, we associ-
atedthepacket with thedestination(server) port; if thepacket was
aTCPSYN/ACK packet,weassociatedthepacketwith thesource
(server)port; for otherpacketsweexaminedbothsourceanddesti-
nationports.If neitherwerewell-known, weassociatedthatpacket
with the “unknown” protocol. If eitherport waswell-known, we
associatedthatpacket with thatprotocol. If bothportswerewell-

2www.iana.org/assignments/port-numbers (July19,2002)



Figure 22: [syslog] Maximum cards per hour, for the busiestbuild-
ings. Rankedby their busiesthour (in number of activecards).
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Figure 23: [syslog] Number of active cards per building, for the ten
mostpopular buildings. Rankedby thenumber of unique cardsvisiting
that building, over the whole trace.
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known, we associatedthatpacket with theprotocolcorresponding
to thelowerportnumber:in many suchcases,arandomlyassigned
client’s port happenedto matchoneof the well-known port num-
bers,but in most suchcasesthe server is using a low-numbered
port (suchas80 for http) and thetraffic will beassociatedwith the
server’s port.

Thistechniqueis anapproximation,of course,sinceit is possible
thatsomeapplicationsusea“well-known” port for otherpurposes,
but it providesagoodoverall estimate.

After strippingtheirheaders,wemeasured218.7GB of TCPand
UDP data.Nine protocols,andthepool of unknown protocols,ac-
countfor 85.4%(186.8GB), asshown in Figure25. Thesymmetry
of this traffic is exploredin Figure26. Althoughmostwereasym-
metric by bytes,they wereall nearly symmetricby packet count
(not shown), presumablybecauseeven one-way file transfer typi-
cally requiresoneacknowledgementpacket for eachdatapacket.
Wenow look ateachin detail.

http (116GB, 53%), includingbothhttpandhttps,andsomeother
commonhttp ports(suchas8000).Clearly, webbrowsingis a sig-
nificant fraction of any network traffic today. It is not dominant
everywhere,however: in Collis andSudikoff, therewaslesshttp
traffic than“dantz.” Althoughmosthttp traffic is inbound,thereis
substantialoutboundtraffic in Brown; mostlikely this traffic repre-
sentsfile-sharingprogramsoperatingover http.

dantz (33GB, 15%), aprotocolfor theRetrospectbackupproduct
from Dantzcorporation,in useherefor office Macintoshcomput-

Figure 24: [syslog]Number of active cards per building, distrib ution
over buildings.
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Figure25: [tcpdump] Total traffic (GB), by TCP or UDP protocol.
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ers.Collis andSudikoff have several suchoffices,andthe“dantz”
protocoldominatesthetraffic seenby thosesniffers. Thetraffic is
mostlyoutbound,of course,as wirelessclientsarebacked-upto a
wired server. While it wasanunexpectedfrontrunner, a few peri-
odicbackupsaccountedfor thevolume.

unknown (8.6 GB, 3.9%): We weresurprisedby the volumeof
traffic in which neithersourcenor destinationport numberwason
IANA’sor Dartmouth’s list. Othertraffic matchedobscureportson
thelist, but we doubtthey actuallyusetheassociatedprotocols, so
the “unknown” category shouldactuallybe larger. We speculate
thattheseconnectionsmayberelatedto file-sharing or gamingap-
plicationsin whichacoordinatorarrangespeer-to-peerconnections
througharbitraryports.

netbios(6.9GB, 3.2%), asetof Windowsprotocols(dgm,ns,ssn)
thatsupportWindowsprint andfile sharing, includingSamba.

kazaa(5.7GB, 2.6%) and gnutella (3.9GB, 1.8%), two popular
Internetpeer-to-peerfile-sharingapplications.Seenmostly in the
dormandthelibrary.

ftp (3.6 GB, 1.6%), including all variants of the commonfile-
transferprotocol, including ftp, ftp-data, ftplog, bftp, tftp, ftps,
andsftp. Curiously, therewasnearlyan even split betweenout-
boundandinbounddata,althoughin eachsniffer (not shown) it is
moreskewedtowardeitheroutbound(Collis andBerry)or inbound
(Brown andSudikoff).

AOL (3.4GB, 1.5%): Instantmessagingis gainingin popularity.



Figure 26: [tcpdump] Total traffic (GB), by TCP or UDP protocol,
normalized.
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Figure27: [tcpdump] Total connections,by TCP protocol.
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blitzmail (2.9 GB, 1.3%): BlitzMail is a locally developedemail
client, with a customprotocol,in ubiquitoususeoutsideSudikoff.
Thehighvolumeis nodoubttheresultof largeenclosures.

microsoft-ds(2.0GB, 0.9%): In October2001therewerereports
of anew form of denial-of-serviceattack,aimedatWindows2000,
usingthis port. Our snifferssaw it mostly in thecomputerscience
building.

Most of the above protocolsarecommonlyusedfor file trans-
fer, which accountsfor their dominancein this rankingbasedon
volume. Nearly thesameprotocolsdominatewhenrankedby the
numberof TCPconnections,asshown in Figure27. Thesymmetry
of this traffic is exploredin Figure28. A new protocol,ssh,appears
here(with 1.2 GB it was ranked 11th by bytes). A secure-shell
protocol that supportsinteractive logins, secureremotefile copy,
secureX-windows sessions, andothersecuretunnels,it occurred
mostlyin thecomputer-sciencebuilding.

While the detailsof our protocol distribution may be specific
to Dartmouth,weexpectthatothersin academicenvironmentswill
seeapproximatelythesamesetof activitiesdominating:web,email,
backup,file transfer, andfile sharing.

5. RELATED WORK
Ourstudyis thelargestandmostcomprehensivecharacterization

of wirelessLAN users to date. In threeearlierstudies,Tangand
Bakercharacterizedwireless-networkusage.In 1998they usedtcp-
dumpin alimited studyof eightlaptopsovereightdays[10], focus-
ing onthenumberof timesthelaptopsswitchedbetween wiredand

Figure 28: [tcpdump] Total connections,by TCP protocol, normal-
ized.
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wireless,andonthelatency encounteredby packets.They notethat
usersdid tendto behavedifferentlyonthewirelessnetwork thanon
the wired network, dueto extremelyhigh latencies.In 1999they
characterizedtheusersof theMetricomRicochetnetwork, a wire-
lessmetropolitan-areanetwork service [14]. This studyis notable
for its size(24,773clientsand14,053accesspoints)andduration
(aboutseven weeks).Given the natureof the dataavailable,their
analysisfocuseson network activity andclient mobility. Finally,
in 2000they usetcpdumpandSNMP recordsto characterizethe
activity of 74 Wi-Fi usersin the StanfordComputerScienceDe-
partment,over a 12-weekperiod[13]. While this studyis similar
to our own, our populationis muchlarger andmorediverse,and
our roamingpatternsaremorecomplex thana singlesubnetin a
singlebuilding. Wehavesyslogdatathatallowsmoreprecisemea-
surementsof roaming, but we do not have authenticationdatathat
allow us to associateMAC addresseswith users.Althoughwe do
not have sniffer datafor the entirepopulation,we do have it for
four diversebuildings. Their top five protocols(http, netbios,ftp,
unknown, andssh+telnet)representthe CS workload; ours (http,
dantz,unknown, netbios,andkazaa)includeCSaswell asa more
diverseworkload.

Duringourstudy, Balachandranetal. [2] traced195Wi-Fi users
at one locationduring theactive hoursof the2.5 daySIGCOMM
conference. Their resultsare necessarilylimited by the homo-
geneousactivity, asall attendeesfollow the conferenceschedule.
They found that most sessionswere short, lessthan 10 minutes;
that longer sessionstendedto be idle most of the time; that the
cardswereevenly distributedacrossthe four APs,but theoffered
load was highly unbalancedacrossusersand henceacrossAPs.
Thepeakbandwidthrequirementswerewell within thecapability
of four accesspoints. Of their TCP traffic, 46% was http (ours
was53%)and18%ssh(ourswas0.8%),reflectingtheir computer-
scientistaudience.

TheWirelessAndrew projectatCarnegie-MellonUniversitycre-
atedthefirst largeWaveLAN installation,andtheir papersdiscuss
thedesignanddeploymentof thatnetwork [3, 6, 7]. Althoughthey
hint of plansfor a usagestudy [3], thereareasyet no published
results.

Kunzet al. studiedcustomersusingWAP webbrowserson their
cell phones[9]. For seven monthsthey usedtcpdumpto capture
packetsat the WAP gateway. Unfortunately, they wereunableto
identify uniqueusersor phones,but the numberof IP addresses
assignedin any givendayincreasedto about400 by theendof the
trace. The PCSnetwork reassignedan IP addresswhenever the



browserwasidle for 90 seconds,sothesessionlengthswerequite
short (average3.38 minutes). Otherwise,the usagefollowed the
expectedweeklyanddaily patterns.

A more recentstudy [1] characterizesthe behavior of cellular
wirelessusersof a specific commercialservice,an information
browsing and notification service. Due to the natureof the ser-
vice, thenatureof themobileclients(mostly cellularphones),and
thenature of thedataavailable(URLs), their studyfocuseson dif-
ferentquestionsthanours.They focuson content;we focuson the
network: protocols,mobility, andtraffic.

6. CONCLUSIONS
Weconductedthelargest-evertrace-basedstudyof wirelessLAN

users,in aneffort to understandpatternsof activity in thenetwork.
Although our populationwaslarge anddiverse,it is importantto
interpretour resultswithin its context. Our residentialuniversity
campuspopulationmaynot reflectactivity on a corporatecampus,
apublic space,or othervenues.

Theactivity andtraffic variedwidely from hour to hour, day to
day, andweekto week. While we do seecleardaily andweekly
patterns,they reflecta mixtureof a residentialcampusandanaca-
demicworkplace,including moreovernightusagethanmight be
commonin enterpriseWLANs. Wefoundthatmany wirelesscards
areextremelyaggressivewhenassociatingwith accesspoints,lead-
ing to alargenumberof short“sessions”andahighdegreeof roam-
ing within sessions.About 17%of sessionsinvolvedroaming,and
of these“mobile sessions”about40% involved roamingto a dif-
ferentsubnet.Fromanecdotalevidence,theseextra-subnetroams
oftenoccurwhenwhentheuseris stationary, leadingto failuresof
IP traffic.

Network designersshouldnotethehigh variancein theactivity
of buildings, accesspoints,andcards,over both time andspace.
We neednew solutionsto prevent cardsfrom roaming too fre-
quently, without sacrificingcoverage.We neednetwork-layer[11]
and application-layersolutionsto supportmulti-subnetroaming.
Finally, note that the traffic is not definitively dominatedby out-
boundor inboundtraffic. Theratiovariedsignificantly from dayto
day, building to building, andprotocolto protocol.Thisconclusion
arguesagainstany designwith asymmetricbandwidth.

In theearlystagesof thewirelessproject,thestaff at Dartmouth
Collegedebatedwhetherit would beimportantto provide wireless
coveragein thedormitories,whichwerealreadywiredwith at least
oneport perresident.Our datashows that thebulk of wirelessac-
tivity occursin the residences.Furthermore, for wirelessnetwork
connectivity to be useful to a mobile user, it needsto be perva-
sive,allowing theuserto grabtheir laptopon thewayout thedoor,
confidentthat therewill benetwork accesswherever they maygo.
Nonetheless,wesaw thatmostusersvisitedfew APsandbuildings
over the life of the trace,andmostuserswerestationarywithin a
session.

Future work. Our study, andnearlyall of thestudiesbeforeit,
characterizedonly the wirelessnetwork. It would be useful (but
extremelydifficult, on switchednetworks) to collectsimultaneous
information aboutusageon the wired and wirelessnetworks, to
determinethecharacteristicsuniqueto thewirelessenvironment.

Wewould like to studythegeographicpatternsof mobility. Pre-
sumablymostusershaveregularhabitsasthey move from dormto
classto dininghall.

We wereunableto distinguishusersor typesof users(students,
faculty, staff). It may be possibleto infer the type of usersfrom
theirbehavior (for example,studentsareseenfrequentlyin dorms),
or to useclusteringtechniques[13]. Wewerealsounableto distin-

guishthemobile hosthardware(PDA, laptop,or desktop)or oper-
atingsystem,but for thoseseenin a tcpdumptracewemaybeable
to learnsomethingfrom theprotocolsthey use.
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