DiST: A Simple, Reliable and Scalable Method to
Significantly Reduce Processor Architecture Simulation
Time

Gilles Mouchard
LRI, Paris South
University and CEA
France

Sylvain Girbal
LRI, Paris South
University and CEA
France

ABSTRACT

While architecture simulation is often treated as a methodology is-
sue, it is at the core of most processor architecture research works,
and simulation speed is often the bottleneck of the typical trial-
and-error research process. To speedup simulation during this re-
search process and get trends faster, researchers usually reduce the
trace size. More sophisticated techniques like trace sampling or
distributed simulation are scarcely used because they are consid-
ered unreliable and complex due to their impact on accuracy and
the associated warm-up issues.

In this article, we present DiST, a practical distributed simula-
tion scheme where, unlike in other simulation techniques that trade
accuracy for speed, the user is relieved from most accuracy issues
thanks to an automatic and dynamic mechanism for adjusting the
warm-up interval size. Moreover, the mechanism is designed so
as to always privilege accuracy over speedup. The speedup scales
with the amount of available computing resources, bringing an av-
erage 7.35 speedup on 10 machines with an average IPC error of
1.81% and a maximum IPC error of 5.06%.

Besides proposing a solution to the warm-up issuesin distributed
simulation, we experimentally show that our technique is signifi-
cantly more accurate than trace size reduction or trace sampling for
identical speedups. We also show that not only the error always re-
mains small for |PC and other metrics, but that aresearcher can re-
liably base research decisions on DiST simulation results. Finally,
we explain how the DiST tool is designed to be easily pluggable
into existing architecture simulators with very few modifications.

Categories and Subject Descriptors

C.1.1[Processor Architecture]: Single Data Stream Architectures—
RISC/CISC, VLIW architecture€.4 [Performance of Systems):
Measurement techniques

General Terms
Design,Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SIGMETRICS’03June 10-14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

Albert Cohen
INRIA Rocquencourt
France

Olivier Temam
LRI, Paris South
University
France

Keywords

Distributed simulation, Processor architecture

1. INTRODUCTION

Within architecture research works and articles, simulation (and
methodology in general) is often treated as a minor issue, and de-
voting a research article to this topic is rather atypical. However,
in the last editions of four major conferences in computer architec-
ture (MICRO, ISCA, ASPLOS and HPCA), cycle-precise smula-
torsare used in 72 out of 103 articles, i.e., 70% of articles; smula-
tionisacritical tool at the core of our research works. All processor
architects have experienced in their research studies that what they
are able to simulate in arestricted period of time often determines
the extent, precision and quality of their research work, and evenin
some cases, the number of solutions and ideas that they can evalu-
ate.

Therefore, simulation and the ability to speed up simulation are
not just methodology issues, they directly affect the research part
of architecture studies, and thus deserve more attention.

In many cases, exploring a new ideais atrial-and-error process:
one implements a variation of an idea, tests it, updates the simula-
tor, tests it again, and so on. In practice, whenever a variation of
an idealooksinteresting, processor architects want to confirm their
observations by simulating and validating it on a large number of
benchmarks, e.g., part or al of the Spec benchmarks, for a range
of architectural parameters. In that case, having lots of computing
resources is useful because simulations can be run in parallel over
alarge number of machines. However, between these convergence
steps, the research process often consists in analyzing what is hap-
pening in afew or even asingle benchmark, leading to afast-paced
sequence of modify-run simulation cycles. Because this part of the
research process can be the most time-consuming, researchers are
often willing to temporarily trade some accuracy for speed, pro-
viding research decisions are not significantly altered by the loss
of accuracy. As aresult, researchers often cut down on trace sizes
to get trends faster, and later on, run longer traces on more bench-
marks and more parameters when the research process seems to
converge again. However, because of increasingly large data struc-
tures such as large L2 caches, trace size reduction can become too
unreliable and thus an unsatisfactory aternative, as we later show
in this study.

Because of the increasing processor complexity, processor simu-
lation is now also used for program tuning [4, 18, 23] where simu-
lation timeis even more critical. Simulators provide avery detailed
understanding of program behavior on complex processor architec-
tures, but in that case, the optimization process is usualy entirely

sequential: asingle program is tuned on a single architecture.

Finally, as processor complexity and application size increase,
simulation timeincreases aswell. For instance, simulating a Spec95
benchmark running on a 5-stage pipeline MIPS R2000 processor
requires 7 hours in average on a Pentium 4 1.6GHz, while smulat-
ing a Spec2000 benchmark running on a 4-way out-of-order super-
scalar processor (using the SimAlpha simulator [7]) requires 356
hours in average on the same machine.

The most frustrating aspect of processor simulators is that their
complexity and sequential nature does not lend well to paralleliza-
tion. Asaresult, whenever running one or afew simulations, hav-
ing lots of computing resources does not enable to cut down simu-
lation time.

Several studies have demonstrated that sampling methods can
bring significant speedups without loosing much accuracy [14, 17,
16]. However, they do not propose a simple and comprehensive
method to control the associated accuracy issues; indeed, the accu-
racy decreases relatively quickly with the speedup since the princi-
pleisagain to reduce the trace size in order to decrease simulation
time. Conte et al. [5] has analyzed in details the effect of reset-
ting processor state in sampling techniques, but the method has
not gained a wide acceptance in the community because of what
is often seen as an excessively complex overhead for a method-
ology issue. Several studies [20, 21, 11, 2, 10, 8] have proposed
identifying representative program regions for simulation, but in
practice, an exhaustive search of architecture research articles in
the major conferences shows that few research groups effectively
use such techniques yet, again because of their complexity, their
restricted scope or the lack of widely distributed tools. Still, the
Basic Block Vector§21] approach is promising because it is com-
pletely hardware-independent; however, while it is quite accurate
for global metrics such as |PC, it isless accurate for large memory
components like L2 caches because it is based on relatively small
trace sizes, and more important the mechanism is not designed to
adjust the trace size to the memory components size; finally, the
technique is data-set sensitive, and the analysis must first be con-
ducted for each program/data set pair.

Nguyen et al. [15] proposed another approach for speeding up
simulation: to split the whole trace into N separate chunks that
are distributed over N machines. As a result of splitting, simu-
lation accuracy decreases because the processor state is implicitly
reset at the beginning of each chunk as with sampling techniques.
Consequently, each chunk needs to perform a simulation warm-up
to refresh the processor state (especialy the memory structures),
but the minimum warm-up interval size varies strongly with each
chunk, benchmark and simulator combination. To compute the
warm-up interval size, Nguyen et al. [15] propose a heuristic which
requires to know in advance the L1 miss ratio of each program.
Haskins et a. [9] propose a more sophisticated probabilistic tech-
nigue to determine the warm-up interval size, but they again need
to run cache smulationsfirst for each benchmark, and their compu-
tations are excessively time-consuming for set-associative caches.
Thus, in most cases, these heuristics are impractical.

Inthisarticle, we present the Distributed Simulation Tool (DiST),
a practical distributed simulation technique that automatically ad-
justs the warm-up interval size to satisfy user-defined error thresh-
olds, relieving the user from most of the accuracy issues. As a
consequence, DiST can strongly reduce simulation time at the cost
of dightly reducing simulation accuracy while still remaining very
easy to use. The technique focuses on limiting the associated ac-
curacy issues, and it is designed to always privilege accuracy over
speedup. While a researcher is always willing to speedup simula-
tions, one is not ready to accept an unpredictableloss of simula-

tion accuracy that can impair research decisions. We experimen-
tally show that, for none of the SpecInt2000 and SpecFp2000, the
IPC error is greater than 5.29% when we applied our technique
to SimAlpha [7], a validated Compaq Alpha EV6 processor ver-
sion of the SimpleScalar [3] simulator which is widely used in
the processor architecture community. DiST achieves an average
speedup of 7.35 with 10 machines. Moreover, we experimentally
show that typical research architecture decisions— the relative per-
formance comparison of two simulated hardware configurations —
were never affected by the slight loss of accuracy, provided the ob-
served metric variation is not smaller than the error. For all statis-
tics, we have alwaysobserved that either the relative error is small
or the number of events is negligible. Finally, the DiST tool has
been specifically designed for easy plugging into existing simula-
tors with minimal modifications: in order to plug the tool into Sim-
pleScalar and SimAlpha, we only had to modify 10 source linesin
each simulator.

Section 2 introduces the principles of the distributed simulation
technique, Section 3 describes the DiST implementation, Section 4
outlinesthe experimental methodology, Section 5 presents speedups
and analyzes accuracy issues, and Section 6 outlines that fast sim-
ulation enables new applications like program optimizations.

2. PRINCIPLES

Sequential | 1 |2 [3]4]5]6]7]8]910[11]12[13]14]15]

|| subchunk
D Overlap Subchunk

D Warm-Up Subchunk

Chunk1|1]2]3]4]5[6]7]

Chunk 2 [6] 7] 8|9 |10[11]

Chunk 3 ///////////////////ﬂ 1112131415

i/ Emulation

Simulation Time

Figure 1. Chunksand subchunksschedule.

With DiST, simulation speedups derive from splitting the simu-
lation processinto aset of N chunks and distributing them over the
same number of machines. Implementing simulation splitting and
distribution is rather straightforward, except for the accuracy issue.

Cycle-level simulation models are not 100% accurate: they al-
most al include some approximations, e.g., imprecise description
of the memory system, missing or too many internal data paths, im-
pact of the operating system not considered, etc. Therefore a small
additional source of inaccuracy may be acceptable. To be tolerated
in practice, it must fulfill two constraints: the user must have confi-
dence that the additional error is small, and moreover, it must have
as little impact as possible on her/his research decisions. The goal
of our technique is to meet these accuracy constraints with mini-
mal user overhead. And we experimentally show in the next sec-
tion that both of these conditions are satisfied with DiST. The main
challenge is to automatically control the level of accuracy and to
privilege accuracy over speedup by trading speedup for accuracy
whenever necessary.

The principles of distributed simulation are the following. As-
sume one wants to run a simulation of N instructions with 3 ma-
chines: then, each machine will simulate % instructions. The first
& instructions are simulated on the first machine, the second &

instructions on the second machine and so on, see Figure 1. Each
machine runs the program from the beginning but starts simulating
only at the first instruction of the specified chunk, thus, each ma-
chine must emulate(functional simulation only) the program until
it has reached this point. So, the first machine performs no em-
ulation, the second machine emulates the first % instructions and

the second machine emulates the first 22X instructions. Consider-
ing the speed gap between emulation and simulation, atypical dis-
tributed simulation schedule will look like Figure 1. However, at
the end of emulation, before simulation starts, al processor struc-
tures are empty (caches, branch prediction tables...) so the first
simulated instructions are likely to exhibit unusual behaviors (ex-
cessive cache misses, branch wrong predictions. . .) that would flaw
statistics. For that purpose, the processor state is usually warmed-
up/refreshed by simulating a certain number of instructions with-
out recording the corresponding metrics; in other words, simula-
tion starts before the chunk first instruction is reached. Because
this warm-up interval can have a strong impact on both accuracy
and simulation time, the biggest difficulty is to find an appropriate
warm-up interval size.

Dynamic warm-up mechanism. In DiST, instead of running
a fixed number of warm-up instructions before chunk m, we let
chunk m — 1 perform additional instructions after it has completed
all itsinstructions. Therefore the last instructions of chunk m — 1
are the same as thefirst instructions of chunk m. During that over-
lap period, we constantly compare the simulation results of chunk
m — 1 and chunk m until they converge. When they become al-
most identical, we can reasonably assume that the processor state
in chunk m has been properly warmed-up and chunk m — 1 stops.
More precisely, to perform these comparisons, we split each chunk
into a set of subchunks of fixed size (typically a few million in-
structions, see Section 4). For instance, in Figure 1, chunks 2 and
3 respectively need 2 and 1 warm-up subchunks; symmetrically,
chunks 1 and 2 perform 2 and 1 overlap subchunks. During the
overlap period, the chunks m and m — 1 dump the simulation statis-
tics of all the subchunks, and an offline process gathers the data
and compares the statistics of the subchunks corresponding to the
same instructions. The user can specify, through a simple scripting
language described in Section 3, which statistics are used for the
comparison and what is the convergence threshold. Typically, in
many of the simulations of this study, the convergence is based on
the IPC metric with a 98% convergence threshold, i.e., the IPC of
the subchunks from chunks m and m — 1 cannot differ by more
than 2%. Whenever a subchunk meets this criterion, the warm-up
stops. Then, all the statistics of “inaccurate” warm-up subchunks
of chunk m, i.e., the subchunks simulated before the convergence
occurred, are discarded and replaced in chunk m by the statistics of
overhead (overlap) subchunks of chunk m — 1. Notethat, assuming
all chunks run at a similar speed, the overhead subchunks have no
impact on the distributed simulation time, because the last chunk
has no such overhead subchunks, see Figure 1. Finally, another
asset of the technique isthat simulation accuracy isimplicitly priv-
iledged over simulation speedup: in the worst case where a chunk
m — 1 never converges with chunk m or any later chunk, chunk
m — 1 will run sequentially for the remainder of the simulation.

Overall, the main asset of dynamic warm-up over previous static
warm-up techniquesis not speed but accuracy: using dynamic warm-
up, it is possible to distribute simulation and ensure a reasonable
level of accuracy with minimal user input.

3. IMPLEMENTATION

Using distributed simulation raises several implementation is-
sues: fine-tuning the dynamic warm-up mechanism, applying dis-

tribution to an existing simulator, combining the distributed statis-
tics of each chunk without modifying the statistics procedures of
an existing simulator, specifying the local accuracy constraints. At
the end of the section, we also we provide a brief description of the
software environment.

Using existing simulators. Simulator development isapainstak-
ing and time-consuming task because of a long modeling, debug-
ging and validation process. Consequently, DiST is designed so
as to require minimal simulator modifications. To plug DiST into
a simulator, we only need to force the simulator to dump statis-
tics at periodic intervals instead of at the end of the simulation. To
plug DiST into SimAlpha [7], we only had to modify 10 source
lines, see http://www.microlib.org/DiST for more details. Simi-
larly, DiST was plugged into SimpleScalar [3] and a PowerPC G3
Simulator based on SystemC [22].

A simulator is DiST-compatible if it provides a mechanism for
fast-forwarding in the simulation: either an emulator or a check-
pointing mechanism. Though we used emulation for fast-forwarding
in this study, checkpointing is even more reliable and efficient be-
cause it guarantees that all distributed threads will not be sensi-
tive to operating system effects, and besides, it saves the emulation
phase.

Combiningdistributed statistics. During simulation, DiST col-
lects each subchunk statistics from the simulator; upon termination
all collected local statistics must be combined to obtain the statis-
tics of the full run. Depending on statistics, the task can be trivia
or require some overhead. For instance, cumulative statistics like
the number of misses need only be summed up to get the full run
statistics. But ratios must be recomputed, i.e., if chunk 1 dumps

the ratio 41 and chunk 2 dumps 42, the ratio for the full run is

Fits. Mot 57 + 53 For that purpose, the tool implements a
simple scripting language to define statistics. We only assume that,
upon completion, a simulator dumps a text file which contains all
statistics, and that statistics are listed one per line. See Figure 2 for

the data L1 cache statistics in the SimAlpha output (unmodified).

DL1.hits 1471654945 # total number of (all) hits
DL1.misses 25916780 # total number of misses
DL1.accesses 1497571725.0000 # total number of accesses
DL1.miss_rate 0.0173 # miss rate (i.e., misses/ref)

Figure2: An example of simulator output (SimAlpha).

In the tool, DL1. hi t s, for instance, is directly used as a vari-
able name to characterize the statistic, so the only additional con-
straint on the statistics file is to have unique names for each statis-
tic. The statistics file lists variables which are either followed by
acomment (in which case they are cumulated), or by “=" and any
mathematical expression followed by acomment.

DL1.hits : "total number of (all) hits"
DL1.misses : "total number of misses"
DL1.accesses = DL1.hits + DL1.misses : "total number of accesses"

DL1.miss_rate = DL1.misses / DL1.accesses : "miss rate (i.e., misses/ref)

Figure 3: An example script for combining statistics.

For instance, the fourth line in Figure3 specifies that the
DL1. m ss_rat e full run statistic is equal to the ratio of the full
runDL1. m sses statisticover thefull runDL1. accesses statis-

tic, which is itself defined in the above line as the sum of two full
run statistics.

Therefore to get full run statistics, the user needs only get the
output file and write the appropriate expressions for some of the
statistics. At run-time, the tool will parse the simulator local out-
puts and match them with these expressions. Consequently, itisnot
necessary to modify the statistics procedures and the output file of
asimulator to plug DiST, except if several statistics have the same
name.

Implementing local constraints. We use the same scripting lan-
guage and statistic parsing mechanism to implement local accuracy
constraints. For instance, if we want to impose a 1% local accuracy
constraint on Data L1 cache miss rate, we will insert the line of
Figure 4 into the local constraintsfile.

abs(~DL1.miss_rate — DL1.miss_rate) / DL1.miss_rate < 0.01

Figure4: An example of local accuracy constraint.

~DL1. m ss.rat e denotes the statistic of the new chunk, e.g.,
chunk,,, which is compared with the statistic of the terminating
chunk, i.e., chunk,_;. The comparison is repeated on each sub-
chunk until the condition isfulfilled, asexplained in Section 2. The
different constraints are listed in the local constraints file, see Fig-
ure 4, and the tool performs alogical AND on all these constraints.

Host list Master
Constraints Thread Onthelocd
Statistics / < host
Client Client
Thread Thread
socket socket
Configurati oq Configurati ow
HStatistics ‘ ‘Statistlcs
I — |
socket socket
Client Client
On remote
stderr hosts stderr

Figure5: TheDiST architecture.

DiST. DiST itself uses a client/server architecture, see Figure 5.
We assume the simulator object code and the benchmarks data
reside on all the machines (hosts). When a simulator is started
through DiST, it spawns one client to each target host (one chunk
per client) using a remote shell service. Each client connects to
the server which determines the chunk size, assigns chunks de-
pending on the number of available processors and the processor
speed. The server is multithreaded: one master thread plus one
thread per client; the client gets its client configuration upon start-
up and sends back statistics to the server after each subchunk; the
server determineswhen aclient should stop by comparing the over-
lap and warm-up subchunks of two consecutive clients; finally, the
master thread also combines statistics when all chunks have com-
pleted.

Note that distributing several chunks of the same benchmark
trace over different machines raises file sharing issues (they write
in the same benchmark output files) which are resolved through
copying by the server.

Also, note that since each client only sends one message per sub-
chunk, the network traffic is very low and does not induce any
contention, even with a large number of machines (several tens).
For instance, with SimpleScalar, 16-million instructions subchunks
for a4-hillion trace only induce afew hundred 100-byte messages.
Consequently, DiST is compatible with slow networks.

DiST versus workload management systems. Many environ-
ments, like Condor [13], propose to exploit multiple computing re-
sources by distributing jobs across several machines. For instance,
Condor schedules, pauses, and migrates queued jobs to optimize
CPU utilization. However, Condor is not designed to manage inter-
process communications, especially for the cooperative jobs of a
client/server application like DiST. Still, we might augment DiST
with Condor, and use the Condor library to distribute our specific
jobs more efficiently across the available computing resources.

= {1 - v 3
11 Lbenc| { B “miem_ros Bl mawn_wmnm 13 ¢ BLE. miws_swse] e i
{1 Lk | { L = -

[= =RI LT

wimiTid LLL) L] OEENL R . Ve
sl i hib L] R hdasdls
slEldid 11] L [LNEEEHY
slml B0 1 a 1k [LEITET Y
wimlWil a4 o e EEECE R B T
i B T3 a B] [CEEFET
aiml: 1 iEE W TS | | FF 07 | S— [CEFIEL™
plmii @ g L] R | PRSI — [LARESET)
slmiiod 11 L] s AL EAE (LS ST

TR TEE U NN EEERY SN

fami. Berward iy Samaining sommlans

fimmlatnes [imishe Bl ics Fers=es
B Validsted @im Lok
W mismislaes shees

Figure 6: DiST graphical user interface.

GUI. Finally, DiST comes with a simple text-based graphical
user interface, see Figure 6, which is helpful for monitoring simu-
lation progression, the amount of warm-up for each chunk and to
estimate the total simulation time.

4. EXPERIMENTAL FRAMEWORK

Simulation environment. In the next section, we use SimAlpha
and the Spec2000 benchmarks to evaluate distributed simulation.
We chose SimAlpha [7] over SimpleScalar [3] because the sim-
ulated architecture is closer to that of a true processor (Figure 7
describes SimAlpha baseline configuration), and because the ratio
of emulator speed over simulator speed is higher than SimpleScal ar
so that the speedup threshold is higher as well, see Section 5. We
used 4-billion instructions traces for each benchmark, skipping the
first 4 billions. We performed the main experiments (speedup and
accuracy) on 22 Spec2000 benchmarks (4 could not be run on our
machines). We ran our experiments on several different machine
sets: we had access to 10 Pentium 11l 733 Mhz machines with
128MB, 10 Pentium Il 500 MHz machines with 256MB, and we
had restricted access to 40 Athlon XP1800 with 1GB. Because of
these access restrictions, we could run several, but not all, our ex-

Parameter | Value

Processor core
up to 4 instructions per cycle
up to 4 integer ops per cycle
plus 2 floating ops per cycle

Fetch width
Issue width

Functional units 4 ALUs+ 2 FPUs

Commit width up to 11 instructions per cycle
Branch Prediction

Predictor 21264 predictor (hybrid)

BTB 512 entry/4-way associative

Return Addr Stack 32 entries
Memory Hierarchy

L1 Data Cache 32 KB/2-way associative/LRU

L1 Instruction Cache | 32 KB/2-way associative/LFU

L2 Cache 2 MB/direct mapped/LRU
ITLB 128 entries/fully associative
DTLB 128 entries/fully associative

Figure 7: Baseline configuration.

Chunk Id
[] subchunk
Chunk 0 ‘ ‘ ‘ ‘ ‘ ‘ Overla
) SIS i M D b
chunk 1 _ ‘ ‘ ‘ ‘ Subchunk
[T ARNEEEES A
»- . :
chunk 2 : Warm-Up
un _ 7 :I:| = . Subchunk
SIVEIN - . —

Simulation Time

Total distributed simulation time
L | {
Impact of ‘
overhead

Without overhead

Figure 9: Impact of subchunk size on total distributed simula-
tion time.

22% - ;1200 ¢

20% —Sessssessesesseeemann..[EMESTRIBOMAN oo ... — 1100.%

SpecINT2000 | SpecFP2000 18% i ;EE" 5
175.vpr 172.mgrid 5'°% 7] | w0 5
186.crafty | 178.galgel S o N e
197 .parser 179.art §1oe/:) S - e00 F
252.eon 187.facerc O T -0 £
255.vortex 188.ammp Yo b e P
300.twolf 200.sixtrack P e R 3
o 200 E

2 e R A — N

Figure 8: Reference set. o%] : : : : : : : : ;00 =

Subchunk size (in millions of instructions)

periments on the 40 Athlon. For each figure, we indicate on which
set of machines the experiments were run. Note that 10 of the 22
Spec2000 benchmarks induce excessive swapping during simula-
tion on the Pentium 111 733 Mhz with 128MB due to limited mem-
ory resources, so that the execution time, and thus the speedup, 20 s
could not be accurately estimated. Consequently, we have defined 18% | 98% IPC local constraint
afull setcorresponding to all 22 benchmarks, and areference sebf e o
12 benchmarks that could run on all machine sets, see Figure 8 (for-
tunately, the reference set is abalanced mix of Specint and SpecFp
codes). Because of these machine constraints, and subsequently,
for the sake of the comparisons, some experiments are only pro-
vided for the reference set.

DiST parameters. The main parameterization issues of DiST 6% —f --- - mmmmmmmm e
are finding the appropriate subchunk size and defining the conver- 4

gence threshold. Intuitively, the larger the subchunk, the more rel- - 7r-r-
0%

evant and accurate the comparison between warm-up and overlap
IPC L1 miss rate L2 miss rate Warmup

Figure 10: Impact of subchunk size on speedup and accuracy;
10 PI11 500.

L e et

14% —f =

12% —f - mmmmmmme e

L e

8% — oo -oooeoooeoooeooeooooeos

Absolute error
Warm-up subchunks

subchunks. Therefore, the larger the subchunk, the smaller the er-
ror. But with atoo large subchunk, the warm-up period and thus
the simulation time of a machine m can increase up to the point
that it affects the overall distributed simulation time, see Figure 9.
Therefore, we need to find a subchunk size value which redlizes a
reasonabl e tradeoff between accuracy and speedup. Figure 10 sug-
gests that 16-million instructions subchunks achieve both low error
and low warm-up overhead.

We experimentally found that in many cases only constraining
the IPC metric error was sufficient to achieve reasonable accuracy
for most processor components and metrics. Imposing an error
constraint on another metric is only necessary when the purpose
of simulation is to study a specific component. Experiments aso
showed that a 98% local accuracy constraint on IPC proved a rea

Figure 11: Choosing a convergence threshold based on IPC.

sonable value for all benchmarks: for instance, at 90% or less, ac-
curacy significantly decreases and the dynamic warm-up mecha-
nism is not exploited, while beyond 99%, the warm-up overhead
increases significantly so that speedup decreases, see Figure 11.

| 110 hosts

[20 hosts
| Il 40 hosts

gzip wupwise swim

mgrid applu vpr gce mesa galgel art

crafty facerec ammp lucas fma3d parser sixtrack eon gap

vortex bzip2 twolf AVERAGE MAX

Figure 12: Speedup with 10, 20 and 40 machines; full set, Athlon XP 1800+.

QS & & & o &
&q‘\\ K Q,»Q’b & @'é\é‘

Figure 13: Speedup with 10 and 20 machines; reference set, 10
PI11 500 and 10 PI11 500 + 10 PI11 733.

Definitions. In the paragraph below, we define several metrics.
Global erroron a metric is defined by the following formula:
metricqist — MetriCseq

metTicCseq
wheremetricseq IS the metric provided by the sequential simula-

tion on a single processor, andetricq;s: is the combined metric
computed by DiST after all chunks have executed.

Sequential timés the sequential simulation time on a single pro-
cessor.

Distributed timeis the time interval between the beginning of the
first chunk and the end of the last running chunk, see Figure 9.
Speedups the ratio of Sequential time over Distributed time.

5. SPEEDUP AND ACCURACY

Speedup. Distributed simulation can achieve very significant

Figure 14: Speedup with 40 machines; restricted set, 16 billion
instructions, fastforward of 4 billions, 40 Athlon XP 1800+.

size remains constant, thus the speedup does not increase linearly
because there are proportionnally more warm-up subchunks in each
chunk (from 6% with 10, 12% with 20 machines to 22% with 40
machines for 4-billion traces).

With 10 Pentium Il 500 MHz, the speedup is 7.82 with an av-
erage sequential simulation time of 15 hours, see Figure 13. It
increases to 14.35 using a heterogeneous set of 10 Pentium Il 500
MHz (256MB) plus 10 Pentium Il 733 MHz (128MB), where the
reference performance is given by a Pentium 111 500 MHz (256 MB).

Threshold speedup. Besides the trace size limitation, the ra-
tio of the speed of the emulator over the speed of the simulator
is a speedup upper-bound. Let us consider a simple case where
emulation and simulation speed remain constant during the whole
simulation. v, denotes the simulator speed (humber of instruc-
tions per second)y. denotes the emulator speelljs the num-
ber of instructions per chunks, amd is the number of chunks

speedups. Figure 12 shows that DiST achieves an average speedufe., the number of processors), = I/v; is the time needed
of 7.35 using 10 processors, 11.15 using 20 processors and 14.2% simulate one chunk, and = I/v. is the time needed to em-
with 40 processors, for a 98% local accuracy constraint on IPC for ulate one chunk. Ther,., = N - ¢, is the sequential time, and

a 4-billion simulated trace.

Taist = (N — 1) - te + ts is the distributed time (time to emulate

With a larger (16-billion) trace, DiST better benefits fromalarge N — 1 chunks and simulate the last chunk). The speedup is then

number of machines, and with 40 processors the average speedu

increases to 19.5 with a maximum speedup of 39.071i9.art

N -t

. Note that whenNV — oo ,
1) ° te + ts

8 ual to =
q szst

(N —

spec-code, see Figure 14. As an example, the average sequentighe speedup converges towardst. = v./vs, i.e., the ratio of the
simulation time for a 16-billion trace on an Athlon is 20 hours and emulator speed over the simulator speed.

it decreases to 1 hour using 40 machines.

We noted this speed ratio varies with each simulator-emulator

The average speedup is not the same for all benchmarks becauspair on both the Athlon and the Pentium Ill, and for each bench-
of the variable size of the warm-up phase. As the number of ma- mark. On the Athlon, the average ratios are 31 for SimAlpha, 23 for
chines increases, the warm-up overhead increases while the trace

400 —J = === == = oo oo oo o e o g oo — 6,00%

Il 'PC error "
908]| [miss]rate oo e e G LR e R e SRty — 550%
[l L2 miss rate error - 5,00%
80% —T| [Branch prediction error | =~ == === === =TS oSS ossosssosooosossssssssssoss oo s ssosososssosos oo
5 m L2 miss frequency — 4,50%
R e e i Tl A
[} — 4,00%
)
L T e S = 3,50%
©
[i e v I t— 3,00%
)
% SO SO S S SOSYSYE S SOS SO SOV S SPSOSUOSSSYSSVSSISVSS SOSYSSSSOSS | O SOSVSOSYSHSSSSOSISNS SSRGS AL\ SPSOSYSN SISO OSSO S SRRSO NSRS | VSOSSOSSNSSS — 2,50%
14 — 2,00%
2 80% gl S A :
— 1,50%
B e N e e e STTEEEEEEEEEEEEEPEEEEEEES
o — 1,00%
L A 20 N S T | 55 N [- 050%
0% — — 0,00%
gzip wupwise swim mgrid applu vpr gcc mesa galgel art crafty facerec ammp lucas fma3d parser sixtrack eon gap vortex bzip2 twolf
Figure 15: DiST accuracy; full set, 40 Athlon.
100% — == @ = = === = e e e e e g e B REEEEEEEERE -~ - -— 6,0%
W IPC error
90% —-- - | L1 missrateerror |----------------m-ooo——---oooooooooooooooo - 55%
[l L2 miss rate error L 50%
_ 80% — -~ M| (] Branch prediction efror|- - - == === ===~ === === ff oo oo oo -
o m L2 miss frequency — 4,5%
R . e [-
o — 4.0%
% 60% - W | T T 35%
D 5005 —-- - oo ---- -1 3.0%
)
=1 - 2,5%
2 40% - T~
7]
— 2,0%
£ 30% . i A
— 15%
20% — —_ ~
— 1,0%
10% — - “— 0,5%
0% — = — 0,0%
gzip wupwise swim mgrid applu vpr gce mesa galgel art crafty facerec ammp lucas fma3d parser sixtrack eon gap vortex bzip2 twolf
Figure 16: Small (100 millions) trace accuracy; full set, 1 Athlon.
[T R R R - 6.0%
Il 'PC error 0
90% —1{MIL missrate emor [-== === = mmm e mmm el - 5.5%
[l L2 miss rate error L 5.0%
80% —|[] Branch prediction error |- === === == == === ==--=--------omooomomoo oo oo oo oo oo oo oo oo oo oo oo oo oo
‘5 m L2 miss frequency — 4.5%
S 700 MmN M.
@ - 4.0%
)
= e N e [| = 3,5%
©
1 S - T - 3,0%
P Y SUNURN U (SRR USRI - 2,5%
2 - 2,0%
S - 1,5%
””””””””””””” - 1,0%
””””””””””””””””””””””” - 0.5%
— 0,0%

gzip wupwise swim mgrid applu vpr gce galgel art crafty facerec ammp fma3d parser eon gap vortex bzip2 twolf

Figure 17: Trace sampling accuracy; full set, 1 Athlon.

SimpleScalar and 185 for a PowerPC G3 simulator baseflysn significant speedups, researchers will effectively use it only if they
temC And on the Pentium lll, they are respectively 48, 36 and 239. have reasonable confidence in the results accuracy. For that pur-
The speed ratio also varies widely accross benchmarks, e.g., frompose, we have applied distributed simulation on all the Spec2000
32 to 94 for SimAlpha on the Pentium lIl. Still, we did not have benchmarks (see Section 4), and we found that not only the aver-
enough machines and use long enough traces to reach the speedwgge distributed simulation IPC error is fairly small at 2.60%, but
threshold of any of these simulators. Assuming a large number of that it alsoalwaysremains smaller than 5.17%, using a local ac-
machines, the best way to take advantage of distributed simulationcuracy constraint on IPC at 98%, see Figure 15. Besides IPC, the
and DiST is to develop fast emulators [12, 19]. Itis also possible error on other important metrics like branch prediction, L1 miss
to get rid of the emulation phase altogether and use checkpointing,rate and L2 miss rate also remains smaller than 10% in most cases.
such as the EIO checkpointing implemented in SimpleScalar [3]. Small error or negligible number of events. We have always
In that case, DiST performance is only bounded by the number of observed that either the relative error is small or the number of
available computing resources. events is negligible. Consider Figure 15 where the bargraphs rep-
Accuracy. Even though distributed simulation can provide very resent the absolute value of the relative error (which can be positive

or negative) and the line represents the L2 miss frequency; the left £

i [10 host:
5 20 hets
[40 hosts

vertical axis corresponds to bargraphs and the right vertical axis
corresponds to the line. The L2 miss frequency is defined as the
ratio of the number of L2 misses over the trace size. In the three
cases where the error is not negligible, i.e., the L2 data cache miss
rate ofeon(266%),crafty andtwolf, the absolute number of events
measured by each metric is in fact negligible — 1985 missesin

— so that a tiny variation of the number of events is enough to in-
duce a large variation of the relative error. Such a tiny number of
events has a negligible impact on performance, and therefore the
variation is unlikely to bias research decisions.

Dynamic warm-up is necessary, especially because of large
memory structures. Even though DiST achieves almost the same
level of accuracy for all benchmarks, i.e., 2.60% error on IPC in
average, the dynamic warm-up mechanism often proves useful be-_ .
cause the warm-up size varies significantly with each benchmark, F19ure 18: Average warm-up size per chunk; reference set,
see Figure 18 where we have measured the average warm-up sizAthlon.

. B8 — oo
(number of warm-up subchunks per chunk). The dynamic warm- 36 — |[1512K8 L2 cache
up mechanism proves even more useful when we vary the L2 size. £ 3 7|22 =
Consider Figure 19: clearly, large memory structures have the strong 5 30 — | m4ue L2 cache
est impact on the warm-up size, i.e., increasing the L2 size can in- [(Move L2 coche
crease the warm-up size, but the effect varies strongly from one
program to another. While we effectively observed that the amount
of warm-up increases with L2 size on 8 of the 12 benchmarks,
for 2 benchmarks the warm-up size is unchanged, and for 2 other
benchmarksyortexandsixtrackthe warm-up size varies unexpect-
edly. Therefore, the dynamic warm-up mechanism is necessary for
both achieving the required accuracy and preserving the speedup by
avoiding excessive warm-up overhead. Naturally, when the warm-
up interval increases with the L2 size, the speedup slightly de- mgid vpr galgel art crafty facerec ammp parser sitrack eon vortex twolf
creases, i.e., DiST implicitly privileges accuracy over speedup.

Confidence in research decisions. To further increase confi-
dence in DiST, we have made several experiments to show that
research decisions are unlikely to be influenced by the small loss of
accuracy. For that purpose, we have selected three processor com-
f:gqggfboaﬁ]ekr; tz;\%eftg:jegg]es;iggﬁg t(bvr\laén\f;rsgagiﬁg%nb;rza(rf:{:parse_n thg IPC' variation amplitudes are very s_mal_l and the varig-
For each combonent and each parameier value. we focus dit the tion direction differs. How_ever, the variation d_lrectlon and ampli-

. RS o - ... tude of the componentetric— branch prediction rate — are al-
rectionof the performance variation, i.e., positive or negative, with

respect to the default configuration parameter, ancthglitudeof most the same as for sequential simulationafibbenchmarks, see
SP config P er, anatng Figure 23, so that a research decision based on this metric would be
this performance variation. A research decision is not affected by

distributed simulation if the variatiodirectionis the same as for se- correct. Generally speaking, the scale of the performance variation

Lential simulation. and to a lesser extent. if the variagiomlitude serves as a safeguard for exploiting distributed simulation results:
quents ! ’ Tl : when it becomes of the order of one percent, i.e., below the typical
is similar as well. We have observed that both the variation direc-

: . . distributed simulation error, the researcher knows the results may
tion and amplitude are almost always the same for sequential andnot be trusted

distributed 5|ml_JI§1t|on. Imphcntly_, th_ese experlme_nts suggest that DIST ver sus trace size reduction or trace sampling.

a research decision based on distributed simulation, e.g., choosing

the optimal parameter value for a brocessor component. is usuall Trace size reductionAs mentioned before, trace size reduction
P P o P " component, Yis a simple means often used for speeding up simulation. To com-
the same as the decision based on sequential simulation.

For our experiments, we vary the size of the L2 cache, the EV6 pare the accuracy of the trace size reduction technique with DiST,

) . . . Wi r he tr iz hat the simulation time is th m
branch predictor tables size, and the number of physical registers, e decreased the trace size so that the simulation time is the same

in SimAlpha [7]. Figures 20, 22 and 24 show the performance vari- as DiST, i.e., 100 million traces for all benchmarks. Then, we mea-

ation for each parameter value with respect to the default arame-Sured the average error for each 100-million chunk within the 4-
np i Ith respect { . Lp billion trace used for DiST; because the error can either be positive
ter value, using sequential and distributed simulation. Figures 21

and 23 show the variation of the corresponding processor compo-Or negative depending on the chunk, we measured the average ab-

. -) . 4 solute value of the relative error over all 100-million chunks, see
nent metric when applicable: respectively L2 miss rate and branch Figure 16. We can see that the error variation is far bigger than
prediction rate. '

i I 0, 0,
The variation direction is almost always the same, and the varia- with DIST, between 3.28%olf) and 120.48%dcq for IPC, and

. . . Do between 5.74%aft) and 1766% ffna39 for L2 miss rate; note
tion amplitude is usually similar, except when the absolute number . -

. - : . that in many cases, when the error is large the number of events
of events is negligible as for the L2 miss rateeimn Only when the

erformance difference is of the order of the error (a few percent) is notnegligible, e.g., number of L2 misses. Consequently, it may
P) . . P ! be difficult to trust research results and decisions based on such (or
the comparison becomes less precise. Consider the branch predic:

. . ST smaller) trace sizes (note that 100-million traces are not uncommon
tion experiment in Figure 22 and benchmarks, gcg, crafty and in research articles).

Avg nb of warm-up subchunks per

Number of warm-up subchunks

Figure19: Influenceof large memory structureson speedup
and accur acy; reference set, 10 P11 500.

500% T zs=o=sm=mmoio-eo-ooe-

100% —qrmm=m==== - - g T T [] 1M Sequential
- o, —| R -
90% —{™ Sequential | L ~ o [1M Distributed
80% — | ™MDistrbuted | . 2 400% —r/ |l 4m sequential -
70, _||M4MSequential| 2 350% —| M 4M Distributed | -~~~ -| | |- .
° M 4M Distributed =
N 60% —f============t------ 3 300%
]
g 50% —T S 250%
5 40% 2 200%
i B0 2 150%
3 ®
2 20% —f--mmmmmm oo e
2 1009
2he o oo M ew . 100%
0% — £ 50%
R -10% —t-----{ W W B 3 0%
-20% —f -50% —
-30% — -100% —
_40% —|
0% Sk \ \ \ \ \ \ \ \ \ \ \
% T T T T T T T T T T 1 S o e & S e e s oS
P) & & & o & o
> < > & o < NN kY SR N ? 2> N & N & & {¥ S
S ¢ g T & S & @ &F ¢ § RGN R ©
& &

Figure 21: Varying L2 size (L2 miss rate); reference set, 10
PI11 500.

g 3,00% —rmmsmm o s s e
[]2KB Sequential

Figure 20: Varying L2 size (IPC); reference set, 10 PI11 500.

3,00% —
2,50% —

- 2,50% —|[[]2KB Distributed |- ===~ ==="7"Tooooooosooosooosoooooosoooooooooooooos

2100 | I B2 L S i sy e S S S S S S S S
[l 8KB Distributed

[C]2KB Distributed |~
2.00% —|B8KB Sequential | _______________
M 8KB Distributed

ve

3
Qo
i
5 23
=R L S PSS B B 180% e o
2 1,00% 25 1,00%
o ©c
¥ 050% = £ 0.50%
E 0,00% 5 g{: 0,00%
B-050% 8 T -0.50%
2 .1,00% 2 3-1,00%
[o o
2 -1,50% S ©-1,50%
© o Q
© -2,00% M 7 2,00% —f - - - === m o mm e
g—z,so% S S e S e S S S S A S A S I S S S S I
-3.00% \ \ \ \ \ \ \ \ \ S \ \ \ \ \ \ T \ \
A &@é S & @ g & A SN &
Figure 22: Varying branch prediction tables size (IPC); refer- Figure 23: Varying branch prediction tables size (branch pre-
ence set, 10 PI11 500. diction rate); reference set, 10 PI11 500.

A recent study [21] proposes a novel approach to trace size re- 3% J(Seregns soveal| —om T
duction by carefully picking the starting points. The technique is 60 Registers Distrbuted

25% — | - ------- -
efficient and accurate (3% IPC error on 100-million traces com- | :ZEEZEZZCZEZ‘Z,”ZSQ‘:; Il
pared to full runs) except for large memory components like L2
caches (more than 20% on L2 miss rate) because it is based on g 15% —----=-r=mommoor| | M- oormsr s
small and fixed-size traces. Augmenting this technique with DiST 10% —

dynamic warm-up mechanism to automatically determine the ap-
propriate trace size has the potential to achieve both efficiency and
accuracy over a large share of the design space.

Trace samplingTrace sampling was also mentioned as another
and more sophisticated technique for reducing the trace size [14].
Instead of picking a trace af consecutive references, the trace is
split into a number of randomly located intervals within a larger $ & ¢ g
trace. Because the resulting simulated instructions span over a
larger share of the program execution, the trace is usually more rep-_. . . .
resgentative. On thg ot%er hand, the program must be e%ulated b%!:'gure%: Varying thenumber of physical registers (IPC); ref-
tween each simulated interval which slows down simulation com- & €ce set, 10 PI11 500.
pared to straight trace size reduction. We have applied trace sam-
pling by splitting the trace into 40 intervals, reducing the interval

size so that the speedup is the same as DIST. The distance betweeost no amplitude variation, compare Figure 23 with Figures 26
two intervals is randomly choosen. Even though trace sampling 5n 25,

proves more accurate than straight trace size reduction, Figure 17 A gmple mechanism for occasional validations during the

5% —

0% —

-5% —

IPC relative to default 41 registers file

-10% T T T T T T T T T

shows that it s significantly less accurate than DIST. ~ ~~ research process. All experiments show that DiST results are
Finally, note that, whenever speeding up simulation is vital, itis trystworthy and that overall, it is a significantly more trustwor-
possible to combine trace size reduction techniquesDiST. thy technique for speeding up simulation than trace reduction tech-

Confidence in research decisiori®r instance, when varyingthe piques. Nevertheless, when a researcher uses DiST for a particu-
branch prediction table size, trace size reduction and trace samplingarly jong sequence of analysis steps without extensive validation
perform significantly worse than DiST. These techniques detect al- 5, ‘traditional simulation and/or many benchmarks, there always

3,00%

[] 2KB Sequential

BL00% T mm s oo o o e
[[12KB Sequential

2,50% | [2B Sampling 2,50% T |[2KB Small Trage [~~~ ="~ 777TTTTTTTooooosToooooossooossooooooooooooos
™ 2,00% —- | 8KB Sequential 2.00% —f|BI8KB Sequential | _______________________ .
=0 [l 8KB Sampling E o ! M 8KB Small Trace
= 2
e T FQ 150% [T TTTTTmmomooooonononononoooooooo e
O = =
55 1.00% S5 too%
B
S & 0,50% ® & 050%
c5 ca
S m 0,00% Sm 000%
Qo 5 ° 5“
B ¥ .0,50% BT 0,50%
i i
_:%-1,0% o & 100%
2o -1,50% 2o -1,50%
oo 2o
L @ 200%

“2,50% —f - - 2,50%

-3,00% \ \ \ \ \ \ \ -3,00% T T \ \ \ \ \ \ \

gzip vpr gce crafty parser eon vortex bzip2 gzip vpr gcc crafty parser eon gap vortex bzip2 twolf
Figure 25: Trace Sampling: Varying branch prediction tables Figure 26: Trace Size Reduction: Varying branch prediction

size (branch prediction rate); 1 PI11 500.

15%
13%
1% —
9% —
7% —
5% —
3% —
1% —

tables size (branch prediction rate); 1 PI11 500.

‘D Chunk 2 [JChunk 3 [JChunk4 [Chunk5 [E Chunk6 [l Chunk7 [Chunk 8 EChunk 9 [l Chunk 10‘

-1% —
-3% —
-5% —

7%

Cumulated relative error on IPC for each chunk

Figure 27: Evolution of global versuslocal error (I1PC); full set, 10 PI11 500.

.
‘D Chunk 2 []Chunk 3 [JChunk 4 [Chunk5 [l Chunk6 [lChunk7 [llChunk8 [llChunk9 [llChunk 10 ‘

exists a tiny risk that several days of analysis are based on a trencpleted, and when the full trace completes, she/he can check the true
wrongfully derived from erroneous simulation results, as when us- DiST error. This validation is optional: when starting a new simu-
lation, the user can decide to kill the validation thread if it has not
a simple backup mechanism: the first chunk is always run until yet completed, in order to have all machines available for achieving

ing small traces. For the sake of efficiency, DiST is fitted with

Figure 28: Evolution of global versuslocal error (L1 missrate); full set, 10 PII1 500.

completion, i.e., until the end of the full trace. The researcher the maximum speedup.
starts making research decisions/analyses as soon as DiST has com-

10

Accuracy versus speedup: error increases with the number tions tasks because they are dauntingly slow. Depending on the
of machines, but slowly. Because accuracy is enforced only lo- number of available simulation machines and the speed ratio emu-
cally, the error can increase with the number of machines. Considerlator/simulator, DiST can bring a simulation slowdown of several
chunkm. Since the convergence threshold is necessarily smallerthousands back to a more acceptable few hundreds or even less.
than 100% (or convergence would almost never occur), each newAnd afew additional modifications can make DiST even more ap-
chunk can slightly degrade accuracy, i.e., convergence is achievedropriateto thetrial-and-error process of optimizing aprogram. We
without a perfect match between the statisticswf 1 andm. Over briefly discuss one such modification in this section.
time, these errors may cumulate, and the highethe higher the Most often, program optimization will focus on a given code
loss of accuracy. Therefore, while the “local” error remains fixed, section where optimizations are repeatedly applied and tested. Usu-
bounded by the local accuracy constraint, the “global” error may aly, after aninitial simulation, the programmer applies (local) code
diverge. In practice, even though we effectively observe that, for transformationsand then hasto run again afull simulation to moni-
some codes, the “global” IPC error increases with the chunk num- tor the impact of the transformations. A few modificationsto DiST
ber, see Figure 27, the progression is generally very slow. More- enable selective (re)simulation of a small superset of the modified
over, for other metrics such as the L1 miss rate, the “global” error trace interval, see Figure 29; then, upon entering this interval, the
remains almost always constant, see Figure 28. processor stateisamost the sameasin theoriginal simulation with-

Accuracy can be based on other metricsthan IPC. Note that out effectively simulating prior instructions. Let us now describe
accuracy needs not target IPC alone: if the purpose of simulationsthe technique in more details.
is to analyze a specific processor component, local accuracy con- The modified interval must be inferred from the exact occur-
straints can target the relevant statistics. We can either replace theences of the bounding instructions in the original and modified
IPC constraint by a constraint on another statistic, or add a new traces. These instructions are simply tagged by user-inserted direc-
constraint on another statistic. tivesin the assembly code. A fully automatic alternative consistsin

For instance, let us assume we want to focus on L2 miss rates.relying on abinary matching tool to automatically locate the mod-
We have run experiments with a relaxed IPC constraint (error lessified code segments. For instance, BMAT [24] is used to spot |ocal
than 10% instead of 2%) and we find that the average error on L2 changes in object code in the debugging process of alarge applica-
miss rates is equal to 3.24%; then, we add a local accuracy con-tion.
straint on the L2 miss rate (error less than 2%), and run again the Then, we need to spot the chunk whose warm-up period imme-
experiments: the average global error on L2 miss rate decreasesliately precedes — and does not intersect with — the modified
to 2.17%, and even the average IPC error gets close to what weinterval. During the original simulation, we store the size of this
achieved with a strict 2% error constraint on IPC. Still, when the warm-up period. To resimulate the interval, we can simply emulate
local constraints are too numerous or excessively tight, they eitheruntil the beginning of this chunk, and then start simulating as in
have a redundant effect or decrease the speedup. For instance, whddiST. In order to determine when statistics become valid, the dy-
adding the local 2% L2 miss ratio constraint to the 10% IPC con- namically determined warm-up size is replaced with the recorded
straint, the L2 error is improved but the average total number of size. When simulation starts, the processor stateis exactly the same
warm-up subchunks increases from 13 to 48. as with DiST, without simulating prior chunks. The lower part of

Figure 29 represents an incremental simulation run after a program

6. FASTSIMULATIONENABLESNEW AP- transformation. Note that it is even possible to analyze the im-
pact of the program transformation on the rest of the program by

PLICATIONS carrying on the simulation, assuming the transformation does not
affect the program trace beyond the end point. This lightweight in-

N alion begin rend cremental approach is a step towards the pervasive use of accurate
: ! ‘ simulators in optimization frameworks and methodol ogies.
- subchunk : Do :_ Original
e g™ 7. CONCLUSIONS AND FUTURE WORK
ook ina emental smulation | — Emulation Because simulation speed is not just a methodology issue but
—w 5%’2;#&&%” can have a strong impact on design space exploration, we pre-
\ \ ' modified interval | 253 Overhead sented D|S_T \ ad|§tr|but¢d smulatl_on technlque that can speedup
- ;1 A : Modified Trace processor simulation while preserving a high accuracy. Accuracy

' begin - en is always privileged over speedup thanks to a dynamic warm-up

mechanism that automatically adjusts the warm-up size of each
Figure 29: Iterative local program analysis and optimizations distributed chunk to satisfy user-defined local accuracy constraints.
using DiST warm-ups. DiST is much more accurate than the traditional trace size reduc-
tion technique used by many researchers to speed up some parts
of the research process; and it is significantly more accurate than

Compilers are increasingly unable to cope with quickly grow- more sophisticated techniques like trace sampling. Moreover, we
ing architecture complexity, resulting in a rapidly increasing gap have experimentally shown that the technique is reliable and that
between peak and sustained performance. Currently program op- research decisions based on distributed simulation are usually not
timizations either rely on time profiling tools or hardware-counter affected by the dlight loss of accuracy; besides, DiST comes with
based tools such as DCPI [1] and ProfileMe[6]. However, simulat- a backup mechanism for delayed validations. Speedup can scale
ing program execution on the target processor architecture provides with the number of available computing resources and is currently
awealth of information that can considerably help understand why bounded by the trace size and the ratio emulator/simulator speed.
performance degradations occur, how the different processor com- Finally, the tool was designed so that it can be easily plugged to
ponents interact and how the program behavior can be improved. existing simulators with minimal modifications. We demonstrated
Still, processor simulators are rarely used in program optimiza- adistributed version of SimAlphaand SimpleScalar which are pub-

11

licly available with DiST at http://www.microlib.org/DiST.

DiST speeds up simulation and the speedup is bounded by the
ratio of the emulator speed over the simulator speed. Using check-
pointing, this speedup upper-bound disappears and thread behavior
isnot disrupted by differing system calls, so that augmenting DiST
with EIO-checkpointing, for instance, has the potential of improv-
ing both speedup and accuracy.

Fast simulation enables new applications such as detailed pro-
gram behavior analysis on complex processor architectures. Based
on the warm-up principles of DiST, we can quickly and repestedly
analyze/modify agiven code section without rerunning afull simu-
lation. In the future, we intend to investigate further improvements
of this application, particularly by fastening or even removing the
emulation phase that precedes the target code section using check-
pointing.

More generaly, DiST is part of a broader methodology effort

conducted by our research group to address several simulation method-

ology issues: fast and reliable simulator design using modular struc-
tures, speeding up simulations, improving simulator accuracy and
using simulators as dynamic analysis tools for program optimiza-
tion purposes.

8. ACKNOWLEDGEMENTS

We would like to thank the other members of the Computer Ar-
chitecture Group at LRI, especially Nathalie Drach and Sami Yehia
for many helpful suggestions.

9. REFERENCES
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,
S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have al the cycles
gone, July 1997.
[2] P.Boseand T. M. Conte. Performance analysis and its
impact on design. IEEE Computer, pages 41-49, May 1998.
[3] D.Burger and T. Austin. The simplescalar tool set, version
2.0. Technical Report CS-TR-97-1342, Department of
Computer Sciences, University of Wisconsin, June 1997.
S. Chatterjee and S. Sen. Cache-efficient matrix
transposition. In Sxth International Symposium on
High-Performance Computer Architecture, pages 195-205,
Toulouse, France, 2000.
T. Conte, M. Hirsch, and K. Menezes. Reducing stateloss for
effective trace sampling of superscalar processors. In
International Conference on Computer Design, pages
468-477, 1996.
J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. ProfileMe : Hardware support for
instruction-level profiling on out-of-order processors. In
International Symposium on Microarchitecture, pages
292-302, Research Triangle Park, North Carolina, 1997.
R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In The 28th
Annual Intl. Symposium on Computer Architecture, pages
266-277, June 2001.
L. Eeckhout, K. DeBousschere, and H. Neefs. Performance
analysis through synthetic trace generation. In Int. Symp. on
Performance Analysis of Systems and Software, Liege,
Belgium, April 2000.
J. Haskins and K. Skadron. Minimal subset evaluation:
Rapid warm-up for simulated hardware state. In Proc. of the
2001 International Conference on Computer Design, Austin,
Texas, September 2001.

[4]

(5]

(6]

(8]

(9]

12

[10] V. S.lyengar and L. H. Trevillyan. Evaluation and generation
of reduced traces for benchmarks. Technical Report
RC20610, IBM T. J. Watson, Oct 1996.

A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja
Adapting the SPEC 2000 benchmark suite for
simulation-based computer architecture research. In
Proceedings of the Third IEEE Annual Workshop on
Workload Characterization, International Conference on
Computer Design (ICCD),, pages 73-82, September 2000.
T. Lafage, A. Seznec, E. Rohou, and F. Bodin. Code cloning
tracing: A “pay per trace” approach. In EuroPar’ 99 Parallel
Processing, Toulouse, France, August 1999.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. In Proc. of the 8th Intl. Conf. on
Distributed Computing Systems, pages 104-111, San Jose,
Calif., June 1988.

M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of
trace sampling for performance debugging tools. In
Proceedings of the 1993 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages
248-259. ACM Press, 1993.

A. Nguyen, M. Michael, A. Nanda, K. Ekanadham, and

P. Bose. Accuracy and speed-up of parallel trace-driven
architectural simulation. In Proc. Int’l Parallel Processing
Symp., |EEE Computer Soc. Press,, pages 3944, Geneva,
Switzerland, April 1997.

D. B. Noonburg and J. P. Shen. A framework for statistical
modeling of superscalar processor performance. In Proc.
Thrird In. Symp. On High Perf. Computer Architecture, San
Antonio, Texas, February 1997.

S. Nussbaum and J. Smith. Modeling superscalar processors
viastatistical simulation. In PACT ' 01, International
Conference on Parallel Architectures and Compilation
Techniques, Barcelona, September 2001.

D. Parello, O. Temam, and J.-M. Verdun. On increasing
architecture awareness in program optimizations to bridge
the gap between peak and sustained processor performance -
matrix-multiply revisited. In Supercomputing 2002,
Baltimore, November 2002.

V. Rajesh and R. Moona. Processor modeling for hardware
software codesign. In International Conference on VLS
Design, Goa, India, January 1999.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
pointsin applications. In International Conference on
Parallel Architecture and Compilation Techniques,
Barcelona, Spain, September 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proc. of Tenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, San Jose, Calif., October 2002.

[22] Synopsys. SystemC. http://www.systemc.org, 2000-2002.
[23] X.Vera, M. Hogskola, and J. Xue. Let’s study
whole-program cache behaviour analytically. In Proceedings
of the Eighth International Symposium on High-Performance
Computer Architecture (HPCA' 02), Boston, Massachusettes,
February 2002.

Z.Wang, K. Pierce, and S. McFarling. BMAT — a binary
matching tool for stale profile propagation. Journal of
Instruction-Level Parallelism, 2(1-6), 2000.

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[24]

