
DiST: A Simple, Reliable and Scalable Method to
Significantly Reduce Processor Architecture Simulation

Time

Sylvain Girbal
LRI, Paris South

University and CEA
France

Gilles Mouchard
LRI, Paris South

University and CEA
France

Albert Cohen
INRIA Rocquencourt

France

Olivier Temam
LRI, Paris South

University
France

ABSTRACT
While architecture simulation is often treated as a methodology is-
sue, it is at the core of most processor architecture research works,
and simulation speed is often the bottleneck of the typical trial-
and-error research process. To speedup simulation during this re-
search process and get trends faster, researchers usually reduce the
trace size. More sophisticated techniques like trace sampling or
distributed simulation are scarcely used because they are consid-
ered unreliable and complex due to their impact on accuracy and
the associated warm-up issues.

In this article, we present DiST, a practical distributed simula-
tion scheme where, unlike in other simulation techniques that trade
accuracy for speed, the user is relieved from most accuracy issues
thanks to an automatic and dynamic mechanism for adjusting the
warm-up interval size. Moreover, the mechanism is designed so
as to always privilege accuracy over speedup. The speedup scales
with the amount of available computing resources, bringing an av-
erage 7.35 speedup on 10 machines with an average IPC error of
1.81% and a maximum IPC error of 5.06%.

Besides proposing a solution to the warm-up issues in distributed
simulation, we experimentally show that our technique is signifi-
cantly more accurate than trace size reduction or trace sampling for
identical speedups. We also show that not only the error always re-
mains small for IPC and other metrics, but that a researcher can re-
liably base research decisions on DiST simulation results. Finally,
we explain how the DiST tool is designed to be easily pluggable
into existing architecture simulators with very few modifications.

Categories and Subject Descriptors
C.1.1 [Processor Architecture]: Single Data Stream Architectures—
RISC/CISC, VLIW architectures; C.4 [Performance of Systems]:
Measurement techniques

General Terms
Design,Measurement,Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03,June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

Keywords
Distributed simulation, Processor architecture

1. INTRODUCTION
Within architecture research works and articles, simulation (and

methodology in general) is often treated as a minor issue, and de-
voting a research article to this topic is rather atypical. However,
in the last editions of four major conferences in computer architec-
ture (MICRO, ISCA, ASPLOS and HPCA), cycle-precise simula-
tors are used in 72 out of 103 articles, i.e., 70% of articles: simula-
tion is a critical tool at the core of our research works. All processor
architects have experienced in their research studies that what they
are able to simulate in a restricted period of time often determines
the extent, precision and quality of their research work, and even in
some cases, the number of solutions and ideas that they can evalu-
ate.

Therefore, simulation and the ability to speed up simulation are
not just methodology issues, they directly affect the research part
of architecture studies, and thus deserve more attention.

In many cases, exploring a new idea is a trial-and-error process:
one implements a variation of an idea, tests it, updates the simula-
tor, tests it again, and so on. In practice, whenever a variation of
an idea looks interesting, processor architects want to confirm their
observations by simulating and validating it on a large number of
benchmarks, e.g., part or all of the Spec benchmarks, for a range
of architectural parameters. In that case, having lots of computing
resources is useful because simulations can be run in parallel over
a large number of machines. However, between these convergence
steps, the research process often consists in analyzing what is hap-
pening in a few or even a single benchmark, leading to a fast-paced
sequence of modify-run simulation cycles. Because this part of the
research process can be the most time-consuming, researchers are
often willing to temporarily trade some accuracy for speed, pro-
viding research decisions are not significantly altered by the loss
of accuracy. As a result, researchers often cut down on trace sizes
to get trends faster, and later on, run longer traces on more bench-
marks and more parameters when the research process seems to
converge again. However, because of increasingly large data struc-
tures such as large L2 caches, trace size reduction can become too
unreliable and thus an unsatisfactory alternative, as we later show
in this study.

Because of the increasing processor complexity, processor simu-
lation is now also used for program tuning [4, 18, 23] where simu-
lation time is even more critical. Simulators provide a very detailed
understanding of program behavior on complex processor architec-
tures, but in that case, the optimization process is usually entirely

1

sequential: a single program is tuned on a single architecture.
Finally, as processor complexity and application size increase,

simulation time increases as well. For instance, simulating a Spec95
benchmark running on a 5-stage pipeline MIPS R2000 processor
requires 7 hours in average on a Pentium 4 1.6GHz, while simulat-
ing a Spec2000 benchmark running on a 4-way out-of-order super-
scalar processor (using the SimAlpha simulator [7]) requires 356
hours in average on the same machine.

The most frustrating aspect of processor simulators is that their
complexity and sequential nature does not lend well to paralleliza-
tion. As a result, whenever running one or a few simulations, hav-
ing lots of computing resources does not enable to cut down simu-
lation time.

Several studies have demonstrated that sampling methods can
bring significant speedups without loosing much accuracy [14, 17,
16]. However, they do not propose a simple and comprehensive
method to control the associated accuracy issues; indeed, the accu-
racy decreases relatively quickly with the speedup since the princi-
ple is again to reduce the trace size in order to decrease simulation
time. Conte et al. [5] has analyzed in details the effect of reset-
ting processor state in sampling techniques, but the method has
not gained a wide acceptance in the community because of what
is often seen as an excessively complex overhead for a method-
ology issue. Several studies [20, 21, 11, 2, 10, 8] have proposed
identifying representative program regions for simulation, but in
practice, an exhaustive search of architecture research articles in
the major conferences shows that few research groups effectively
use such techniques yet, again because of their complexity, their
restricted scope or the lack of widely distributed tools. Still, the
Basic Block Vectors[21] approach is promising because it is com-
pletely hardware-independent; however, while it is quite accurate
for global metrics such as IPC, it is less accurate for large memory
components like L2 caches because it is based on relatively small
trace sizes, and more important the mechanism is not designed to
adjust the trace size to the memory components size; finally, the
technique is data-set sensitive, and the analysis must first be con-
ducted for each program/data set pair.

Nguyen et al. [15] proposed another approach for speeding up
simulation: to split the whole trace into N separate chunks that
are distributed over N machines. As a result of splitting, simu-
lation accuracy decreases because the processor state is implicitly
reset at the beginning of each chunk as with sampling techniques.
Consequently, each chunk needs to perform a simulation warm-up
to refresh the processor state (especially the memory structures),
but the minimum warm-up interval size varies strongly with each
chunk, benchmark and simulator combination. To compute the
warm-up interval size, Nguyen et al. [15] propose a heuristic which
requires to know in advance the L1 miss ratio of each program.
Haskins et al. [9] propose a more sophisticated probabilistic tech-
nique to determine the warm-up interval size, but they again need
to run cache simulations first for each benchmark, and their compu-
tations are excessively time-consuming for set-associative caches.
Thus, in most cases, these heuristics are impractical.

In this article, we present the Distributed Simulation Tool (DiST),
a practical distributed simulation technique that automatically ad-
justs the warm-up interval size to satisfy user-defined error thresh-
olds, relieving the user from most of the accuracy issues. As a
consequence, DiST can strongly reduce simulation time at the cost
of slightly reducing simulation accuracy while still remaining very
easy to use. The technique focuses on limiting the associated ac-
curacy issues, and it is designed to always privilege accuracy over
speedup. While a researcher is always willing to speedup simula-
tions, one is not ready to accept an unpredictableloss of simula-

tion accuracy that can impair research decisions. We experimen-
tally show that, for none of the SpecInt2000 and SpecFp2000, the
IPC error is greater than 5.29% when we applied our technique
to SimAlpha [7], a validated Compaq Alpha EV6 processor ver-
sion of the SimpleScalar [3] simulator which is widely used in
the processor architecture community. DiST achieves an average
speedup of 7.35 with 10 machines. Moreover, we experimentally
show that typical research architecture decisions — the relative per-
formance comparison of two simulated hardware configurations —
were never affected by the slight loss of accuracy, provided the ob-
served metric variation is not smaller than the error. For all statis-
tics, we have alwaysobserved that either the relative error is small
or the number of events is negligible. Finally, the DiST tool has
been specifically designed for easy plugging into existing simula-
tors with minimal modifications: in order to plug the tool into Sim-
pleScalar and SimAlpha, we only had to modify 10 source lines in
each simulator.

Section 2 introduces the principles of the distributed simulation
technique, Section 3 describes the DiST implementation, Section 4
outlines the experimental methodology, Section 5 presents speedups
and analyzes accuracy issues, and Section 6 outlines that fast sim-
ulation enables new applications like program optimizations.

2. PRINCIPLES

Figure 1: Chunks and subchunks schedule.

With DiST, simulation speedups derive from splitting the simu-
lation process into a set of N chunks and distributing them over the
same number of machines. Implementing simulation splitting and
distribution is rather straightforward, except for the accuracy issue.

Cycle-level simulation models are not 100% accurate: they al-
most all include some approximations, e.g., imprecise description
of the memory system, missing or too many internal data paths, im-
pact of the operating system not considered, etc. Therefore a small
additional source of inaccuracy may be acceptable. To be tolerated
in practice, it must fulfill two constraints: the user must have confi-
dence that the additional error is small, and moreover, it must have
as little impact as possible on her/his research decisions. The goal
of our technique is to meet these accuracy constraints with mini-
mal user overhead. And we experimentally show in the next sec-
tion that both of these conditions are satisfied with DiST. The main
challenge is to automatically control the level of accuracy and to
privilege accuracy over speedup by trading speedup for accuracy
whenever necessary.

The principles of distributed simulation are the following. As-
sume one wants to run a simulation of N instructions with 3 ma-
chines: then, each machine will simulate N

3
instructions. The first

N
3

instructions are simulated on the first machine, the second N
3

2

instructions on the second machine and so on, see Figure 1. Each
machine runs the program from the beginning but starts simulating
only at the first instruction of the specified chunk, thus, each ma-
chine must emulate(functional simulation only) the program until
it has reached this point. So, the first machine performs no em-
ulation, the second machine emulates the first N

3
instructions and

the second machine emulates the first 2×N
3

instructions. Consider-
ing the speed gap between emulation and simulation, a typical dis-
tributed simulation schedule will look like Figure 1. However, at
the end of emulation, before simulation starts, all processor struc-
tures are empty (caches, branch prediction tables. . .) so the first
simulated instructions are likely to exhibit unusual behaviors (ex-
cessive cache misses, branch wrong predictions. . .) that would flaw
statistics. For that purpose, the processor state is usually warmed-
up/refreshed by simulating a certain number of instructions with-
out recording the corresponding metrics; in other words, simula-
tion starts before the chunk first instruction is reached. Because
this warm-up interval can have a strong impact on both accuracy
and simulation time, the biggest difficulty is to find an appropriate
warm-up interval size.

Dynamic warm-up mechanism. In DiST, instead of running
a fixed number of warm-up instructions beforechunk m, we let
chunk m−1 perform additional instructions after it has completed
all its instructions. Therefore the last instructions of chunk m − 1
are the same as the first instructions of chunk m. During that over-
lap period, we constantly compare the simulation results of chunk
m − 1 and chunk m until they converge. When they become al-
most identical, we can reasonably assume that the processor state
in chunk m has been properly warmed-up and chunk m − 1 stops.
More precisely, to perform these comparisons, we split each chunk
into a set of subchunks of fixed size (typically a few million in-
structions, see Section 4). For instance, in Figure 1, chunks 2 and
3 respectively need 2 and 1 warm-up subchunks; symmetrically,
chunks 1 and 2 perform 2 and 1 overlap subchunks. During the
overlap period, the chunks m and m−1 dump the simulation statis-
tics of all the subchunks, and an offline process gathers the data
and compares the statistics of the subchunks corresponding to the
same instructions. The user can specify, through a simple scripting
language described in Section 3, which statistics are used for the
comparison and what is the convergence threshold. Typically, in
many of the simulations of this study, the convergence is based on
the IPC metric with a 98% convergence threshold, i.e., the IPC of
the subchunks from chunks m and m − 1 cannot differ by more
than 2%. Whenever a subchunk meets this criterion, the warm-up
stops. Then, all the statistics of “inaccurate” warm-up subchunks
of chunk m, i.e., the subchunks simulated before the convergence
occurred, are discarded and replaced in chunk m by the statistics of
overhead (overlap) subchunks of chunk m−1. Note that, assuming
all chunks run at a similar speed, the overhead subchunks have no
impact on the distributed simulation time, because the last chunk
has no such overhead subchunks, see Figure 1. Finally, another
asset of the technique is that simulation accuracy is implicitly priv-
iledged over simulation speedup: in the worst case where a chunk
m − 1 never converges with chunk m or any later chunk, chunk
m − 1 will run sequentially for the remainder of the simulation.

Overall, the main asset of dynamic warm-up over previous static
warm-up techniques is not speed but accuracy: using dynamic warm-
up, it is possible to distribute simulation and ensure a reasonable
level of accuracy with minimal user input.

3. IMPLEMENTATION
Using distributed simulation raises several implementation is-

sues: fine-tuning the dynamic warm-up mechanism, applying dis-

tribution to an existing simulator, combining the distributed statis-
tics of each chunk without modifying the statistics procedures of
an existing simulator, specifying the local accuracy constraints. At
the end of the section, we also we provide a brief description of the
software environment.

Using existing simulators. Simulator development is a painstak-
ing and time-consuming task because of a long modeling, debug-
ging and validation process. Consequently, DiST is designed so
as to require minimal simulator modifications. To plug DiST into
a simulator, we only need to force the simulator to dump statis-
tics at periodic intervals instead of at the end of the simulation. To
plug DiST into SimAlpha [7], we only had to modify 10 source
lines, see http://www.microlib.org/DiST for more details. Simi-
larly, DiST was plugged into SimpleScalar [3] and a PowerPC G3
Simulator based on SystemC [22].

A simulator is DiST-compatible if it provides a mechanism for
fast-forwarding in the simulation: either an emulator or a check-
pointing mechanism. Though we used emulation for fast-forwarding
in this study, checkpointing is even more reliable and efficient be-
cause it guarantees that all distributed threads will not be sensi-
tive to operating system effects, and besides, it saves the emulation
phase.

Combining distributed statistics. During simulation, DiST col-
lects each subchunk statistics from the simulator; upon termination
all collected local statistics must be combined to obtain the statis-
tics of the full run. Depending on statistics, the task can be trivial
or require some overhead. For instance, cumulative statistics like
the number of misses need only be summed up to get the full run
statistics. But ratios must be recomputed, i.e., if chunk 1 dumps
the ratio A1

B1
and chunk 2 dumps A2

B2
, the ratio for the full run is

A1+A2
B1+B2

, not A1
B1

+ A2
B2

. For that purpose, the tool implements a
simple scripting language to define statistics. We only assume that,
upon completion, a simulator dumps a text file which contains all
statistics, and that statistics are listed one per line. See Figure 2 for
the data L1 cache statistics in the SimAlpha output (unmodified).

DL1.hits # total number of (all) hits

DL1.misses

DL1.accesses

DL1.miss_rate

total number of misses

total number of accesses

miss rate (i.e., misses/ref)

25916780

0.0173

1497571725.0000

1471654945

Figure 2: An example of simulator output (SimAlpha).

In the tool, DL1.hits, for instance, is directly used as a vari-
able name to characterize the statistic, so the only additional con-
straint on the statistics file is to have unique names for each statis-
tic. The statistics file lists variables which are either followed by
a comment (in which case they are cumulated), or by “=” and any
mathematical expression followed by a comment.

DL1.misses : "total number of misses"

DL1.accesses = DL1.hits + DL1.misses : "total number of accesses"

DL1.miss_rate = DL1.misses / DL1.accesses : "miss rate (i.e., misses/ref)

DL1.hits : "total number of (all) hits"

Figure 3: An example script for combining statistics.

For instance, the fourth line in Figure 3 specifies that the
DL1.miss rate full run statistic is equal to the ratio of the full
run DL1.misses statistic over the full run DL1.accesses statis-

3

tic, which is itself defined in the above line as the sum of two full
run statistics.

Therefore to get full run statistics, the user needs only get the
output file and write the appropriate expressions for some of the
statistics. At run-time, the tool will parse the simulator local out-
puts and match them with these expressions. Consequently, it is not
necessary to modify the statistics procedures and the output file of
a simulator to plug DiST, except if several statistics have the same
name.

Implementing local constraints. We use the same scripting lan-
guage and statistic parsing mechanism to implement local accuracy
constraints. For instance, if we want to impose a 1% local accuracy
constraint on Data L1 cache miss rate, we will insert the line of
Figure 4 into the local constraints file.

abs(~DL1.miss_rate − DL1.miss_rate) / DL1.miss_rate < 0.01

Figure 4: An example of local accuracy constraint.

˜DL1.miss rate denotes the statistic of the new chunk, e.g.,
chunkm, which is compared with the statistic of the terminating
chunk, i.e., chunkm−1. The comparison is repeated on each sub-
chunk until the condition is fulfilled, as explained in Section 2. The
different constraints are listed in the local constraints file, see Fig-
ure 4, and the tool performs a logical AND on all these constraints.

Thread
Master

Client
socket

Client
socket

Simulator Simulator

Client
Thread

socket

Statistics Statistics

ConfigurationConfiguration

Client
Thread

socket

host
On the local

stderr
On remote

hostsstderr

Host list

Constraints

Statistics

Figure 5: The DiST architecture.

DiST. DiST itself uses a client/server architecture, see Figure 5.
We assume the simulator object code and the benchmarks data
reside on all the machines (hosts). When a simulator is started
through DiST, it spawns one client to each target host (one chunk
per client) using a remote shell service. Each client connects to
the server which determines the chunk size, assigns chunks de-
pending on the number of available processors and the processor
speed. The server is multithreaded: one master thread plus one
thread per client; the client gets its client configuration upon start-
up and sends back statistics to the server after each subchunk; the
server determines when a client should stop by comparing the over-
lap and warm-up subchunks of two consecutive clients; finally, the
master thread also combines statistics when all chunks have com-
pleted.

Note that distributing several chunks of the same benchmark
trace over different machines raises file sharing issues (they write
in the same benchmark output files) which are resolved through
copying by the server.

Also, note that since each client only sends one message per sub-
chunk, the network traffic is very low and does not induce any
contention, even with a large number of machines (several tens).
For instance, with SimpleScalar, 16-million instructions subchunks
for a 4-billion trace only induce a few hundred 100-byte messages.
Consequently, DiST is compatible with slow networks.

DiST versus workload management systems. Many environ-
ments, like Condor [13], propose to exploit multiple computing re-
sources by distributing jobs across several machines. For instance,
Condor schedules, pauses, and migrates queued jobs to optimize
CPU utilization. However, Condor is not designed to manage inter-
process communications, especially for the cooperative jobs of a
client/server application like DiST. Still, we might augment DiST
with Condor, and use the Condor library to distribute our specific
jobs more efficiently across the available computing resources.

Figure 6: DiST graphical user interface.

GUI. Finally, DiST comes with a simple text-based graphical
user interface, see Figure 6, which is helpful for monitoring simu-
lation progression, the amount of warm-up for each chunk and to
estimate the total simulation time.

4. EXPERIMENTAL FRAMEWORK
Simulation environment. In the next section, we use SimAlpha

and the Spec2000 benchmarks to evaluate distributed simulation.
We chose SimAlpha [7] over SimpleScalar [3] because the sim-
ulated architecture is closer to that of a true processor (Figure 7
describes SimAlpha baseline configuration), and because the ratio
of emulator speed over simulator speed is higher than SimpleScalar
so that the speedup threshold is higher as well, see Section 5. We
used 4-billion instructions traces for each benchmark, skipping the
first 4 billions. We performed the main experiments (speedup and
accuracy) on 22 Spec2000 benchmarks (4 could not be run on our
machines). We ran our experiments on several different machine
sets: we had access to 10 Pentium III 733 Mhz machines with
128MB, 10 Pentium III 500 MHz machines with 256MB, and we
had restricted access to 40 Athlon XP1800 with 1GB. Because of
these access restrictions, we could run several, but not all, our ex-

4

Parameter Value
Processor core

Fetch width up to 4 instructions per cycle
Issue width up to 4 integer ops per cycle

plus 2 floating ops per cycle
Functional units 4 ALUs + 2 FPUs
Commit width up to 11 instructions per cycle

Branch Prediction
Predictor 21264 predictor (hybrid)
BTB 512 entry/4-way associative
Return Addr Stack 32 entries

Memory Hierarchy
L1 Data Cache 32 KB/2-way associative/LRU
L1 Instruction Cache 32 KB/2-way associative/LFU
L2 Cache 2 MB/direct mapped/LRU
ITLB 128 entries/fully associative
DTLB 128 entries/fully associative

Figure 7: Baseline configuration.

SpecINT2000 SpecFP2000
175.vpr 172.mgrid
186.crafty 178.galgel
197.parser 179.art
252.eon 187.facerc
255.vortex 188.ammp
300.twolf 200.sixtrack

Figure 8: Reference set.

periments on the 40 Athlon. For each figure, we indicate on which
set of machines the experiments were run. Note that 10 of the 22
Spec2000 benchmarks induce excessive swapping during simula-
tion on the Pentium III 733 Mhz with 128MB due to limited mem-
ory resources, so that the execution time, and thus the speedup,
could not be accurately estimated. Consequently, we have defined
a full setcorresponding to all 22 benchmarks, and a reference setof
12 benchmarks that could run on all machine sets, see Figure 8 (for-
tunately, the reference set is a balanced mix of SpecInt and SpecFp
codes). Because of these machine constraints, and subsequently,
for the sake of the comparisons, some experiments are only pro-
vided for the reference set.

DiST parameters. The main parameterization issues of DiST
are finding the appropriate subchunk size and defining the conver-
gence threshold. Intuitively, the larger the subchunk, the more rel-
evant and accurate the comparison between warm-up and overlap
subchunks. Therefore, the larger the subchunk, the smaller the er-
ror. But with a too large subchunk, the warm-up period and thus
the simulation time of a machine m can increase up to the point
that it affects the overall distributed simulation time, see Figure 9.
Therefore, we need to find a subchunk size value which realizes a
reasonable tradeoff between accuracy and speedup. Figure 10 sug-
gests that 16-million instructions subchunks achieve both low error
and low warm-up overhead.

We experimentally found that in many cases only constraining
the IPC metric error was sufficient to achieve reasonable accuracy
for most processor components and metrics. Imposing an error
constraint on another metric is only necessary when the purpose
of simulation is to study a specific component. Experiments also
showed that a 98% local accuracy constraint on IPC proved a rea-

Total distributed simulation time

Without overhead Impact of

Chunk Id

Chunk 0

Chunk 1

Chunk 2

Chunk 3

overhead

Subchunk

Overlap

Subchunk

Warm−Up

Subchunk

Simulation Time

Figure 9: Impact of subchunk size on total distributed simula-
tion time.

Figure 10: Impact of subchunk size on speedup and accuracy;
10 PIII 500.

Figure 11: Choosing a convergence threshold based on IPC.

sonable value for all benchmarks: for instance, at 90% or less, ac-
curacy significantly decreases and the dynamic warm-up mecha-
nism is not exploited, while beyond 99%, the warm-up overhead
increases significantly so that speedup decreases, see Figure 11.

5

Figure 12: Speedup with 10, 20 and 40 machines; full set, Athlon XP 1800+.

Figure 13: Speedup with 10 and 20 machines; reference set, 10
PIII 500 and 10 PIII 500 + 10 PIII 733.

Figure 14: Speedup with 40 machines; restricted set, 16 billion
instructions, fastforward of 4 billions, 40 Athlon XP 1800+.

Definitions. In the paragraph below, we define several metrics.
Global error on a metric is defined by the following formula:
metricdist − metricseq

metricseq

wheremetricseq is the metric provided by the sequential simula-
tion on a single processor, andmetricdist is the combined metric
computed by DiST after all chunks have executed.
Sequential timeis the sequential simulation time on a single pro-
cessor.
Distributed timeis the time interval between the beginning of the
first chunk and the end of the last running chunk, see Figure 9.
Speedupis the ratio of Sequential time over Distributed time.

5. SPEEDUP AND ACCURACY
Speedup. Distributed simulation can achieve very significant

speedups. Figure 12 shows that DiST achieves an average speedup
of 7.35 using 10 processors, 11.15 using 20 processors and 14.29
with 40 processors, for a 98% local accuracy constraint on IPC for
a 4-billion simulated trace.

With a larger (16-billion) trace, DiST better benefits from a large
number of machines, and with 40 processors the average speedup
increases to 19.5 with a maximum speedup of 39.07 for179.art
spec-code, see Figure 14. As an example, the average sequential
simulation time for a 16-billion trace on an Athlon is 20 hours and
it decreases to 1 hour using 40 machines.

The average speedup is not the same for all benchmarks because
of the variable size of the warm-up phase. As the number of ma-
chines increases, the warm-up overhead increases while the trace

size remains constant, thus the speedup does not increase linearly
because there are proportionnally more warm-up subchunks in each
chunk (from 6% with 10, 12% with 20 machines to 22% with 40
machines for 4-billion traces).

With 10 Pentium III 500 MHz, the speedup is 7.82 with an av-
erage sequential simulation time of 15 hours, see Figure 13. It
increases to 14.35 using a heterogeneous set of 10 Pentium III 500
MHz (256MB) plus 10 Pentium III 733 MHz (128MB), where the
reference performance is given by a Pentium III 500 MHz (256MB).

Threshold speedup. Besides the trace size limitation, the ra-
tio of the speed of the emulator over the speed of the simulator
is a speedup upper-bound. Let us consider a simple case where
emulation and simulation speed remain constant during the whole
simulation. vs denotes the simulator speed (number of instruc-
tions per second),ve denotes the emulator speed,I is the num-
ber of instructions per chunks, andN is the number of chunks
(i.e., the number of processors).ts = I/vs is the time needed
to simulate one chunk, andte = I/ve is the time needed to em-
ulate one chunk. Then,Tseq = N · ts is the sequential time, and
Tdist = (N − 1) · te + ts is the distributed time (time to emulate
N − 1 chunks and simulate the last chunk). The speedup is then

equal to
Tseq

Tdist
=

N · ts

(N − 1) · te + ts
. Note that whenN → ∞ ,

the speedup converges towardsts/te = ve/vs, i.e., the ratio of the
emulator speed over the simulator speed.

We noted this speed ratio varies with each simulator-emulator
pair on both the Athlon and the Pentium III, and for each bench-
mark. On the Athlon, the average ratios are 31 for SimAlpha, 23 for

6

Figure 15: DiST accuracy; full set, 40 Athlon.

Figure 16: Small (100 millions) trace accuracy; full set, 1 Athlon.

Figure 17: Trace sampling accuracy; full set, 1 Athlon.

SimpleScalar and 185 for a PowerPC G3 simulator based onSys-
temC. And on the Pentium III, they are respectively 48, 36 and 239.
The speed ratio also varies widely accross benchmarks, e.g., from
32 to 94 for SimAlpha on the Pentium III. Still, we did not have
enough machines and use long enough traces to reach the speedup
threshold of any of these simulators. Assuming a large number of
machines, the best way to take advantage of distributed simulation
and DiST is to develop fast emulators [12, 19]. It is also possible
to get rid of the emulation phase altogether and use checkpointing,
such as the EIO checkpointing implemented in SimpleScalar [3].
In that case, DiST performance is only bounded by the number of
available computing resources.

Accuracy. Even though distributed simulation can provide very

significant speedups, researchers will effectively use it only if they
have reasonable confidence in the results accuracy. For that pur-
pose, we have applied distributed simulation on all the Spec2000
benchmarks (see Section 4), and we found that not only the aver-
age distributed simulation IPC error is fairly small at 2.60%, but
that it alsoalwaysremains smaller than 5.17%, using a local ac-
curacy constraint on IPC at 98%, see Figure 15. Besides IPC, the
error on other important metrics like branch prediction, L1 miss
rate and L2 miss rate also remains smaller than 10% in most cases.

Small error or negligible number of events. We have always
observed that either the relative error is small or the number of
events is negligible. Consider Figure 15 where the bargraphs rep-
resent the absolute value of the relative error (which can be positive

7

or negative) and the line represents the L2 miss frequency; the left
vertical axis corresponds to bargraphs and the right vertical axis
corresponds to the line. The L2 miss frequency is defined as the
ratio of the number of L2 misses over the trace size. In the three
cases where the error is not negligible, i.e., the L2 data cache miss
rate ofeon(266%),craftyandtwolf, the absolute number of events
measured by each metric is in fact negligible — 1985 misses ineon
— so that a tiny variation of the number of events is enough to in-
duce a large variation of the relative error. Such a tiny number of
events has a negligible impact on performance, and therefore the
variation is unlikely to bias research decisions.

Dynamic warm-up is necessary, especially because of large
memory structures. Even though DiST achieves almost the same
level of accuracy for all benchmarks, i.e., 2.60% error on IPC in
average, the dynamic warm-up mechanism often proves useful be-
cause the warm-up size varies significantly with each benchmark,
see Figure 18 where we have measured the average warm-up size
(number of warm-up subchunks per chunk). The dynamic warm-
up mechanism proves even more useful when we vary the L2 size.
Consider Figure 19: clearly, large memory structures have the strong-
est impact on the warm-up size, i.e., increasing the L2 size can in-
crease the warm-up size, but the effect varies strongly from one
program to another. While we effectively observed that the amount
of warm-up increases with L2 size on 8 of the 12 benchmarks,
for 2 benchmarks the warm-up size is unchanged, and for 2 other
benchmarks,vortexandsixtrackthe warm-up size varies unexpect-
edly. Therefore, the dynamic warm-up mechanism is necessary for
both achieving the required accuracy and preserving the speedup by
avoiding excessive warm-up overhead. Naturally, when the warm-
up interval increases with the L2 size, the speedup slightly de-
creases, i.e., DiST implicitly privileges accuracy over speedup.

Confidence in research decisions. To further increase confi-
dence in DiST, we have made several experiments to show that
research decisions are unlikely to be influenced by the small loss of
accuracy. For that purpose, we have selected three processor com-
ponents often targeted by researchers (branch prediction, L2 cache,
register bank), and for each component, we vary a single parameter.
For each component and each parameter value, we focus on thedi-
rectionof the performance variation, i.e., positive or negative, with
respect to the default configuration parameter, and theamplitudeof
this performance variation. A research decision is not affected by
distributed simulation if the variationdirectionis the same as for se-
quential simulation, and to a lesser extent, if the variationamplitude
is similar as well. We have observed that both the variation direc-
tion and amplitude are almost always the same for sequential and
distributed simulation. Implicitly, these experiments suggest that
a research decision based on distributed simulation, e.g., choosing
the optimal parameter value for a processor component, is usually
the same as the decision based on sequential simulation.

For our experiments, we vary the size of the L2 cache, the EV6
branch predictor tables size, and the number of physical registers
in SimAlpha [7]. Figures 20, 22 and 24 show the performance vari-
ation for each parameter value with respect to the default parame-
ter value, using sequential and distributed simulation. Figures 21
and 23 show the variation of the corresponding processor compo-
nent metric when applicable: respectively L2 miss rate and branch
prediction rate.

The variation direction is almost always the same, and the varia-
tion amplitude is usually similar, except when the absolute number
of events is negligible as for the L2 miss rate ineon. Only when the
performance difference is of the order of the error (a few percent),
the comparison becomes less precise. Consider the branch predic-
tion experiment in Figure 22 and benchmarksvpr, gcc, crafty and

Figure 18: Average warm-up size per chunk; reference set,
Athlon.

Figure 19: Influence of large memory structures on speedup
and accuracy; reference set, 10 PIII 500.

parser: the IPC variation amplitudes are very small and the varia-
tion direction differs. However, the variation direction and ampli-
tude of the componentmetric — branch prediction rate — are al-
most the same as for sequential simulation forall benchmarks, see
Figure 23, so that a research decision based on this metric would be
correct. Generally speaking, the scale of the performance variation
serves as a safeguard for exploiting distributed simulation results:
when it becomes of the order of one percent, i.e., below the typical
distributed simulation error, the researcher knows the results may
not be trusted.

DiST versus trace size reduction or trace sampling.
Trace size reduction.As mentioned before, trace size reduction

is a simple means often used for speeding up simulation. To com-
pare the accuracy of the trace size reduction technique with DiST,
we decreased the trace size so that the simulation time is the same
as DiST, i.e., 100 million traces for all benchmarks. Then, we mea-
sured the average error for each 100-million chunk within the 4-
billion trace used for DiST; because the error can either be positive
or negative depending on the chunk, we measured the average ab-
solute value of the relative error over all 100-million chunks, see
Figure 16. We can see that the error variation is far bigger than
with DiST, between 3.28% (twolf) and 120.48% (gcc) for IPC, and
between 5.74% (art) and 1766% (fma3d) for L2 miss rate; note
that in many cases, when the error is large the number of events
is not negligible, e.g., number of L2 misses. Consequently, it may
be difficult to trust research results and decisions based on such (or
smaller) trace sizes (note that 100-million traces are not uncommon
in research articles).

8

Figure 20: Varying L2 size (IPC); reference set, 10 PIII 500. Figure 21: Varying L2 size (L2 miss rate); reference set, 10
PIII 500.

Figure 22: Varying branch prediction tables size (IPC); refer-
ence set, 10 PIII 500.

Figure 23: Varying branch prediction tables size (branch pre-
diction rate); reference set, 10 PIII 500.

A recent study [21] proposes a novel approach to trace size re-
duction by carefully picking the starting points. The technique is
efficient and accurate (3% IPC error on 100-million traces com-
pared to full runs) except for large memory components like L2
caches (more than 20% on L2 miss rate) because it is based on
small and fixed-size traces. Augmenting this technique with DiST
dynamic warm-up mechanism to automatically determine the ap-
propriate trace size has the potential to achieve both efficiency and
accuracy over a large share of the design space.

Trace sampling.Trace sampling was also mentioned as another
and more sophisticated technique for reducing the trace size [14].
Instead of picking a trace ofT consecutive references, the trace is
split into a number of randomly located intervals within a larger
trace. Because the resulting simulated instructions span over a
larger share of the program execution, the trace is usually more rep-
resentative. On the other hand, the program must be emulated be-
tween each simulated interval which slows down simulation com-
pared to straight trace size reduction. We have applied trace sam-
pling by splitting the trace into 40 intervals, reducing the interval
size so that the speedup is the same as DiST. The distance between
two intervals is randomly choosen. Even though trace sampling
proves more accurate than straight trace size reduction, Figure 17
shows that it is significantly less accurate than DiST.

Finally, note that, whenever speeding up simulation is vital, it is
possible to combine trace size reduction techniquesandDiST.

Confidence in research decisions.For instance, when varying the
branch prediction table size, trace size reduction and trace sampling
perform significantly worse than DiST. These techniques detect al-

Figure 24: Varying the number of physical registers (IPC); ref-
erence set, 10 PIII 500.

most no amplitude variation, compare Figure 23 with Figures 26
and 25.

A simple mechanism for occasional validations during the
research process. All experiments show that DiST results are
trustworthy and that overall, it is a significantly more trustwor-
thy technique for speeding up simulation than trace reduction tech-
niques. Nevertheless, when a researcher uses DiST for a particu-
larly long sequence of analysis steps without extensive validation
on traditional simulation and/or many benchmarks, there always

9

Figure 25: Trace Sampling: Varying branch prediction tables
size (branch prediction rate); 1 PIII 500.

Figure 26: Trace Size Reduction: Varying branch prediction
tables size (branch prediction rate); 1 PIII 500.

Figure 27: Evolution of global versus local error (IPC); full set, 10 PIII 500.

Figure 28: Evolution of global versus local error (L1 miss rate); full set, 10 PIII 500.

exists a tiny risk that several days of analysis are based on a trend
wrongfully derived from erroneous simulation results, as when us-
ing small traces. For the sake of efficiency, DiST is fitted with
a simple backup mechanism: the first chunk is always run until
completion, i.e., until the end of the full trace. The researcher
starts making research decisions/analyses as soon as DiST has com-

pleted, and when the full trace completes, she/he can check the true
DiST error. This validation is optional: when starting a new simu-
lation, the user can decide to kill the validation thread if it has not
yet completed, in order to have all machines available for achieving
the maximum speedup.

10

Accuracy versus speedup: error increases with the number
of machines, but slowly. Because accuracy is enforced only lo-
cally, the error can increase with the number of machines. Consider
chunkm. Since the convergence threshold is necessarily smaller
than 100% (or convergence would almost never occur), each new
chunk can slightly degrade accuracy, i.e., convergence is achieved
without a perfect match between the statistics ofm−1 andm. Over
time, these errors may cumulate, and the higherm, the higher the
loss of accuracy. Therefore, while the “local” error remains fixed,
bounded by the local accuracy constraint, the “global” error may
diverge. In practice, even though we effectively observe that, for
some codes, the “global” IPC error increases with the chunk num-
ber, see Figure 27, the progression is generally very slow. More-
over, for other metrics such as the L1 miss rate, the “global” error
remains almost always constant, see Figure 28.

Accuracy can be based on other metrics than IPC. Note that
accuracy needs not target IPC alone: if the purpose of simulations
is to analyze a specific processor component, local accuracy con-
straints can target the relevant statistics. We can either replace the
IPC constraint by a constraint on another statistic, or add a new
constraint on another statistic.

For instance, let us assume we want to focus on L2 miss rates.
We have run experiments with a relaxed IPC constraint (error less
than 10% instead of 2%) and we find that the average error on L2
miss rates is equal to 3.24%; then, we add a local accuracy con-
straint on the L2 miss rate (error less than 2%), and run again the
experiments: the average global error on L2 miss rate decreases
to 2.17%, and even the average IPC error gets close to what we
achieved with a strict 2% error constraint on IPC. Still, when the
local constraints are too numerous or excessively tight, they either
have a redundant effect or decrease the speedup. For instance, when
adding the local 2% L2 miss ratio constraint to the 10% IPC con-
straint, the L2 error is improved but the average total number of
warm-up subchunks increases from 13 to 48.

6. FAST SIMULATION ENABLES NEW AP-
PLICATIONS

������
��

incremental simulationchunk

subchunk

full simulation
begin end

begin end

modified interval
Modified Trace

Overhead
Warm−up
Simulation
Emulation

Trace
Original

Figure 29: Iterative local program analysis and optimizations
using DiST warm-ups.

Compilers are increasingly unable to cope with quickly grow-
ing architecture complexity, resulting in a rapidly increasing gap
between peak and sustained performance. Currently program op-
timizations either rely on time profiling tools or hardware-counter
based tools such as DCPI [1] and ProfileMe [6]. However, simulat-
ing program execution on the target processor architecture provides
a wealth of information that can considerably help understand why
performance degradations occur, how the different processor com-
ponents interact and how the program behavior can be improved.
Still, processor simulators are rarely used in program optimiza-

tions tasks because they are dauntingly slow. Depending on the
number of available simulation machines and the speed ratio emu-
lator/simulator, DiST can bring a simulation slowdown of several
thousands back to a more acceptable few hundreds or even less.
And a few additional modifications can make DiST even more ap-
propriate to the trial-and-error process of optimizing a program. We
briefly discuss one such modification in this section.

Most often, program optimization will focus on a given code
section where optimizations are repeatedly applied and tested. Usu-
ally, after an initial simulation, the programmer applies (local) code
transformations and then has to run again a full simulation to moni-
tor the impact of the transformations. A few modifications to DiST
enable selective (re)simulation of a small superset of the modified
trace interval, see Figure 29; then, upon entering this interval, the
processor state is almost the same as in the original simulation with-
out effectively simulating prior instructions. Let us now describe
the technique in more details.

The modified interval must be inferred from the exact occur-
rences of the bounding instructions in the original and modified
traces. These instructions are simply tagged by user-inserted direc-
tives in the assembly code. A fully automatic alternative consists in
relying on a binary matching tool to automatically locate the mod-
ified code segments. For instance, BMAT [24] is used to spot local
changes in object code in the debugging process of a large applica-
tion.

Then, we need to spot the chunk whose warm-up period imme-
diately precedes — and does not intersect with — the modified
interval. During the original simulation, we store the size of this
warm-up period. To resimulate the interval, we can simply emulate
until the beginning of this chunk, and then start simulating as in
DiST. In order to determine when statistics become valid, the dy-
namically determined warm-up size is replaced with the recorded
size. When simulation starts, the processor state is exactly the same
as with DiST, without simulating prior chunks. The lower part of
Figure 29 represents an incremental simulation run after a program
transformation. Note that it is even possible to analyze the im-
pact of the program transformation on the rest of the program by
carrying on the simulation, assuming the transformation does not
affect the program trace beyond the end point. This lightweight in-
cremental approach is a step towards the pervasive use of accurate
simulators in optimization frameworks and methodologies.

7. CONCLUSIONS AND FUTURE WORK
Because simulation speed is not just a methodology issue but

can have a strong impact on design space exploration, we pre-
sented DiST, a distributed simulation technique that can speedup
processor simulation while preserving a high accuracy. Accuracy
is always privileged over speedup thanks to a dynamic warm-up
mechanism that automatically adjusts the warm-up size of each
distributed chunk to satisfy user-defined local accuracy constraints.
DiST is much more accurate than the traditional trace size reduc-
tion technique used by many researchers to speed up some parts
of the research process; and it is significantly more accurate than
more sophisticated techniques like trace sampling. Moreover, we
have experimentally shown that the technique is reliable and that
research decisions based on distributed simulation are usually not
affected by the slight loss of accuracy; besides, DiST comes with
a backup mechanism for delayed validations. Speedup can scale
with the number of available computing resources and is currently
bounded by the trace size and the ratio emulator/simulator speed.
Finally, the tool was designed so that it can be easily plugged to
existing simulators with minimal modifications. We demonstrated
a distributed version of SimAlpha and SimpleScalar which are pub-

11

licly available with DiST at http://www.microlib.org/DiST.
DiST speeds up simulation and the speedup is bounded by the

ratio of the emulator speed over the simulator speed. Using check-
pointing, this speedup upper-bound disappears and thread behavior
is not disrupted by differing system calls, so that augmenting DiST
with EIO-checkpointing, for instance, has the potential of improv-
ing both speedup and accuracy.

Fast simulation enables new applications such as detailed pro-
gram behavior analysis on complex processor architectures. Based
on the warm-up principles of DiST, we can quickly and repeatedly
analyze/modify a given code section without rerunning a full simu-
lation. In the future, we intend to investigate further improvements
of this application, particularly by fastening or even removing the
emulation phase that precedes the target code section using check-
pointing.

More generally, DiST is part of a broader methodology effort
conducted by our research group to address several simulation method-
ology issues: fast and reliable simulator design using modular struc-
tures, speeding up simulations, improving simulator accuracy and
using simulators as dynamic analysis tools for program optimiza-
tion purposes.

8. ACKNOWLEDGEMENTS
We would like to thank the other members of the Computer Ar-

chitecture Group at LRI, especially Nathalie Drach and Sami Yehia
for many helpful suggestions.

9. REFERENCES
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,

S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone, July 1997.

[2] P. Bose and T. M. Conte. Performance analysis and its
impact on design. IEEE Computer, pages 41–49, May 1998.

[3] D. Burger and T. Austin. The simplescalar tool set, version
2.0. Technical Report CS-TR-97-1342, Department of
Computer Sciences, University of Wisconsin, June 1997.

[4] S. Chatterjee and S. Sen. Cache-efficient matrix
transposition. In Sixth International Symposium on
High-Performance Computer Architecture, pages 195–205,
Toulouse, France, 2000.

[5] T. Conte, M. Hirsch, and K. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In
International Conference on Computer Design, pages
468–477, 1996.

[6] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. ProfileMe : Hardware support for
instruction-level profiling on out-of-order processors. In
International Symposium on Microarchitecture, pages
292–302, Research Triangle Park, North Carolina, 1997.

[7] R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In The 28th
Annual Intl. Symposium on Computer Architecture, pages
266–277, June 2001.

[8] L. Eeckhout, K. DeBousschere, and H. Neefs. Performance
analysis through synthetic trace generation. In Int. Symp. on
Performance Analysis of Systems and Software, Liege,
Belgium, April 2000.

[9] J. Haskins and K. Skadron. Minimal subset evaluation:
Rapid warm-up for simulated hardware state. In Proc. of the
2001 International Conference on Computer Design, Austin,
Texas, September 2001.

[10] V. S. Iyengar and L. H. Trevillyan. Evaluation and generation
of reduced traces for benchmarks. Technical Report
RC20610, IBM T. J. Watson, Oct 1996.

[11] A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja.
Adapting the SPEC 2000 benchmark suite for
simulation-based computer architecture research. In
Proceedings of the Third IEEE Annual Workshop on
Workload Characterization, International Conference on
Computer Design (ICCD),, pages 73–82, September 2000.

[12] T. Lafage, A. Seznec, E. Rohou, and F. Bodin. Code cloning
tracing: A “pay per trace” approach. In EuroPar’99 Parallel
Processing, Toulouse, France, August 1999.

[13] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. In Proc. of the 8th Intl. Conf. on
Distributed Computing Systems, pages 104–111, San Jose,
Calif., June 1988.

[14] M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of
trace sampling for performance debugging tools. In
Proceedings of the 1993 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages
248–259. ACM Press, 1993.

[15] A. Nguyen, M. Michael, A. Nanda, K. Ekanadham, and
P. Bose. Accuracy and speed-up of parallel trace-driven
architectural simulation. In Proc. Int’ l Parallel Processing
Symp., IEEE Computer Soc. Press,, pages 39–44, Geneva,
Switzerland, April 1997.

[16] D. B. Noonburg and J. P. Shen. A framework for statistical
modeling of superscalar processor performance. In Proc.
Thrird In. Symp. On High Perf. Computer Architecture, San
Antonio, Texas, February 1997.

[17] S. Nussbaum and J. Smith. Modeling superscalar processors
via statistical simulation. In PACT ’01, International
Conference on Parallel Architectures and Compilation
Techniques, Barcelona, September 2001.

[18] D. Parello, O. Temam, and J.-M. Verdun. On increasing
architecture awareness in program optimizations to bridge
the gap between peak and sustained processor performance -
matrix-multiply revisited. In Supercomputing 2002,
Baltimore, November 2002.

[19] V. Rajesh and R. Moona. Processor modeling for hardware
software codesign. In International Conference on VLSI
Design, Goa, India, January 1999.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on
Parallel Architecture and Compilation Techniques,
Barcelona, Spain, September 2001.

[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proc. of Tenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, San Jose, Calif., October 2002.

[22] Synopsys. SystemC. http://www.systemc.org, 2000-2002.
[23] X. Vera, M. Hogskola, and J. Xue. Let’s study

whole-program cache behaviour analytically. In Proceedings
of the Eighth International Symposium on High-Performance
Computer Architecture (HPCA’02), Boston, Massachusettes,
February 2002.

[24] Z. Wang, K. Pierce, and S. McFarling. BMAT — a binary
matching tool for stale profile propagation. Journal of
Instruction-Level Parallelism, 2(1–6), 2000.

12

