Persistent Dropping: An Efficient Control of Traffic
Aggregates

Hani Jamjoom Kang G. Shin

University of Michigan
{jamjoom,kgshin@eecs.umich.edu

ABSTRACT works and especially end-servers to a complete halt. The cause of

Flash crowd events (FCEs) present a real threat to the stability g}i_s overload need not be intentional nor need be originated by ma-

routers and end-servers. Such events are characterized by a IargeI s clients or applications. FCEs, unllke_ PDOS attacks, are gen-
ally caused by a very large number of legitimate users all targeting

sustained spike in client arrival rates, usually to the point of servic K Their sh p | h
failure. Traditional rate-based drop policies, such as Random Eal same network or server. Their sheer traffic volume ext austs.any
ailable network and server resources. In addition to high arrival

Drop (RED), become ineffective in such situations since clients te here i d hat | | looked |
to be persistent, in the sense that they make multiple retransmissiGic’ there is a second cause that is commonly overlooked, namely,

attempts before aborting their connection. As it is built into Tcpidne perS|_stence .Of 'nd'V'duf’iI clle_nts accessing Fhe server. We show
congestion control, this persistence is very widespread, making Rt Persistent client behavior, ultimately rooted into TCP congestion
a major stumbling block to providing responsive aggregate traffl%ontro" can be responsible for Increasing the aggregat_e traffic In an
controls. This paper focuses on analyzing and building a coherentE b_y two fplds. We also _descrlt?e the_lnt_ernal dynamics of persis-
model of the effects of client persistence on the controllability of agt-ent clients with the goal of Improving existing router and end-server
gregate traffic. Based on this model, we propose a new drop strateglr°!s to better handle client persistence. . .
calledpersistent droppingo regulate the arrival of SYN packets and his paper focgses on the control of aggregate traffic de_stlne_d for
achieves three important goals: (1) it allows routers and end-servé‘Y@b servers, which are the targets of flash crowds. Unlike video

to quickly converge to their control targets without sacrificing fair°" audio traffic, web servers are generally dominated by short-lived

ness, (2) it minimizes the portion of client delay that is attribute&onnedions' Our approach differs from recent studies [2, 9, 25, 32],

to the applied controls, and (3) it is both easily implementable an\e{here _at?gregate _tralffi_c Is treated as a black-box ar:d Is char_acter-
computationally tractable. Using a real implementation of this corf2€d With inter-arrival time, round-trip time, time-scale dynamics,

troller in the Linux kernel, we demonstrate its efficacy, up to 60oEtC Instead, we look inside the box to characterize the behavior of
delay reduction for drop p;robabilities less than 0.5 ’ the building blocks of the aggregates, namely, the individual clients.
A Similar to [1, 7, 17], we are interested in exploring the interactions

between clients, the network, and the end-server. We observe the

Categoriesand Subject Descriptors existence of a hierarchy of factors contributing to the behavior of

C.2.0 [Computer-Communication Networks]: General—Flash clients in FCEs. This has led us to a new model — which we call
Crowds; C.4 Performance of Systems]: Modeling Techniques persistent clients— that is different from traditional models in that
clients do not simply go away when their requests are dropped. In-
General Terms stead, they keep trying until they succeed or eventually quit. Based
on this new observation of client persistence, we build a coherent
Management, Performance picture detailing the expected behavior of the entire aggregate. We
found that this unfolds several unexpected behaviors of aggregate
Keywords traffic during overload.

Queue Management, Flash Crowd Events, Modeling, Optimization Several research efforts have focused on the detection of, and/or
protection from, FCEs and DDoS attacks. In particular, Aggregate-

based Congestion Control (ACC) is introduced to deal with such at-
1. INTRODUCTION tacks by limiting the rate of (large) aggregate traffic at the routers to
Flash crowd events (FCEs) and distributed denial of service (DD@&luce the impact of the added load on the underlying network and
attacks have received considerable attention from the mass megdif-servers [21, 23]. We observed, however, that the reaction of the
and the research community. They are characterized by a large aferlying traffic to a rate-limiting policy can, and often will, reduce
sudden increase in demand for both the network and end-server figs effectiveness of the applied control. This can be better explained
sources. Similar to natural disasters, both phenomena are relativgly decoupling aggregate traffic into two elements. The first element
infrequent but leave devastating damages behind. Their initial eﬁe@éscribes how existing or On_going connections react to the app“ed
is a dramatic reduction in service quality to clients sharing the negontrols; the second element describes how the arrival of new con-
work and the server. Even worse, sustained overload can bring ngéctions is affected by the applied control. We find that the com-
bination of TCP’s reaction to packet loss (first element) — namely,
retransmitting after timing out — with the arrival of connection re-
Permission to make digital or hard copies of all or part of this work forquests from new clients (second element) has an additive effect that
personal or classroom use is granted without fee provided that copies dfenot accounted for by current traffic controllers. To improve the
not made or distributed for profit or commercial advantage and that copiesontrollability of FCEs, we advocate the classification of incoming
bear this notice and the full citation on the first page. To copy otherwise, t8gnnection requests (into new SYN packets and retransmitted SYN

repuplis_h, to post on servers or to redistribute to lists, requires prior Specni’fackets) and applying specialized controls to each traffic class — a
permission and/or a fee.

SIGCOMM03 August 2529, 2003, Karlsruhe, Germany similar concept to [36].
Copyright 2003 ACM 1-58113-735-4/03/0008$5.00. Through the specialization of control, we are able to focus on new

287

(7))
m
<
m
o)

connection requests, the main ingredient of an FCE. We are also able

. . -) ROUTER =
to take into account the persistence of clients accessing the server. == E
We proposepersistent dropping (PD)an effective control mecha- =
nism, which we prove to minimize the client-perceived latency as
well as minimize the effective aggregate traffic (includes new ancg Parallelism Queue Management Content
. . . . A Web browsers often issue Drop policies in router queues Embedded objects increase the
I’etransmltted COﬂnectlon requests) Whlle malnta|n|ng the same co requests in parallel may increase TCP retransmits number of connections/client
trol targets as regular rate-control policies. PD randomly chooses a I I
number of requests based on a target reduction in the effective a |, Sagon Sl o N e
gregate traffic arrival rate and systematically drops them on every rgretansmis the request muliple resets connections after
times before timing out overflowing

transmission. PD is well suited for controlling aggregate traffic as i
achieves three goals: (1) it enables routers and end-servers to quickly
converge to their control targets, (2) it also minimizes the portion of
client delay that is attributed to aggregate control by Internet routeggngestion control and different queue-management techniques in
and end-servers while maintaining fairness to all packets, and (3)#uters and end-servers may raise the severity of FCEs. We use a
is both easily implementable and computationally tractable. We ergimple model where a client issues a single Hyper-Text Transfer Pro-
phasize that PD complements, but does not replace, existing contféol (HTTP) request using a separate TCP connection. This model
mechanisms that are optimized for controlling already-establisheglows us to study a single TCP connection in isolation. Conse-
TCP connections [6, 13]. We also emphasize that PD does not iguently, our findings fit well with clients implementing the HTTP
terfere with end-to-end admission-control policies as it represents arp specification. In Section 2.2, we extend our results to HTTP 1.1
optimization of existing queue management techniques. clients, where several HTTP requests can be multiplexed into a sin-
The contributions of this paper are fourfold. First, we analyzgjle connection.
the dynamics of the internal mechanisms of individual clients during Consider what could happen to our simple client’s request during
an FCE. Second, we show that the arrival of new users is not tig FCE. Before examining the consequences of the request packets
only cause of FCEs, but also show that the persistence of indiVidL@éing dropped by routers or end-servers during the various stages
clients plays an important role, which is further exacerbated by th& the request processing, we outline the stages that a successful
allowed parallelism of web browsers. Because requests are originggquest must go through before completion. The first stage of re-
ing from legitimate clients, our measurements emphasize that SYd\iest processing is the three-way handshake. In this stage, the client
packets are the main contributing factor in FCEs; those alreadgends a SYN packet to the server by performingetive openThe
established connections have limited contributions. This is differeRerver then performs gassive opeby queueing the SYN packet in
from DDoS attacks, where the adversary has the capability of spoef-global backlog queue (with possibly per-application-port quotas)
ing any packet that is injected in the network. It is also differenjyhere proper structures (e.gkbuf f in Linux) are allocated and a
from the traditional view of network traffic where the majority of SYN-ACK packet is sent back to the client. At this point, the con-
packets belong to established connections. Third, we examine thection at the server is said to balf open In most operating sys-
controllability of aggregate traffic and the shortcomings of existingems (0Ss), SYN packets are processed in the kernel independently
control mechanisms in the context of SYN packets being the maffom the corresponding application. Upon receiving the SYN-ACK
cause of FCEs. Finally, we propose PD, an efficient mechanism fgacket from the server, the client sends an ACK packet followed
controlling traffic aggregates. immediately (in most implementations) by the request's meta-data.
This paper is organized as follows. We first look at the anatomt the server, the client’s ACK causes the half-open connection to
of persistent clients in Section 2, where we focus on the behavior p& moved to the listen queue for processing by the application. Data
real clients during FCEs, isolate the factors that impose real threajgckets are then exchanged between the server and the client to com-
in an FCE, and combine these factors together to create a coherghite the request; the connection is optionally closed.
model of persistent clients. We, then, propose a PD controller to dealDuring overload, packets are lost due to any of the three types
with persistent clients in Section 3. In Section 4, we experimentallygf gueues filling up: router queues, server SYN backlog queues,
evaluate some performance issues. The paper ends with related warl§ server (or application) listen queues. Packet drops by differ-

Figure 1: Non-user related factors affecting FCEs.

and concluding remarks in Sections 5 and 6, respectively. ent queues may trigger different reactions from the client as part of
recovery from packet loss. Here we consider loss of packets on the
2. ANATOMY OF PERSISTENT CLIENTS path from the client to the server. An equivalent behavior occurs on

Many factors contribute to the persistence of clients, whereby B reverse direction; it is omitted for space consideration.

client keeps trying to access the server (normally at a later timeﬂ 1.1 Packet Dropsat Router Queues

even after server overload or network congestion is detected. Some

factors of this persistence are embedded in the applications and proYVhen router queues fill up and packets are dropped, the request

tocols that clients use. These are not design flaws, but are often nE&1 Pe in the connection-establishment stage or the connection has
essary to the proper operation of clients, e.g., TCP congestion cgHléady been established. In the first case, each time a SYN packet
trol. Other factors are due to purely human habits. We isolate fiy@ ItS corresponding response is lost, an exponentially-increasing re-
(non-user related) factors that can affect the persistence of a typidgnsmission timeout (RTO) is used to detect the packet loss and the
client's access to a web server (Figure 1). In the process of analy2YN Packet is retransmitted. The RTO values used by different

ing them, they are grouped in two separate categories: network-ledent OSs are listed in Table 1. Established connections, in the lat-
and application-level factors. While we only focus on non-user rder case, detect and recover from packet loss in ways that are more

lated factors, our proposed control mechanisms ultimately reduce thMPlex. These have been investigated by several studies, both em-
client-perceived latency; this indirectly reduces the impact of user-

related factors as, for example, users are less inclined to press #ig,s; Tcp stack implementations follow Jacobson's algorithm [19, 33],

reload button on their web browsers. where a SYN packet that is not acknowledged within an RTO period is re-
. . transmitted, but with the previous RTO period doubled. This is repeated until
2.1 Persstencein Network Protocols the connection is established or until the connection times out, at which point

In this subsection, we investigate how the combination of TCHe connection is aborted.

288

Client Behavior Server Behavior
oS Drops SYN Drops connection Drops connection \(Sl\?%aralile Sup$(lzlrts Slgnds reset on
RTO (sec) w/ sending reset) w/o sending reset S acklog S \ isten queue
(implemented by Linux only) Queue Cookies overflow
. . Yes* [ver<4.5]
FrReeBSD 3,9,21,45 Connects using 3-way Connects using 3-way handshake - Yes Yes
Syncache [ver 5 4.5]
handshake and sends a and sends a request packet. The
HP-UX 11 2,3,9,21,45 request packet. The server | server drops the connection and Yes No Yes
drops the connection and will keep dropping subsequent .
Linux 2.2/2.4 3,9,21,45 will either send the RST packets from the client. The client Yes Yes Optional
3.4,10.1, 23.6, packet after the connection will time out and retransmit the .
SoLARIs 2.7 50.6, 104.6, 164.6 | is dropped or after request packet. The timeout Yes™ No Yes
receiving the request intervals are based on the T
WiN 9x, NT 3,921 packet. The client will then | computed RTT values during the No No Yes
WIN 2000 3.9 abort the connection connection establishment phase. Yes* No Yes

* The length of the SYN backlog queue is based on the length of the listen queue but multiplied by a fudge factor (often 2/3).

* Dynamic backlog was introduced in NT SP3 and Windows 2000 to improve reaction against DoS attacks. Publicly available information does not
specify if Windows uses a separate queue to hold incomplete connections. However, the length of incomplete connections can be separately specified
in Windows NT SP3 and 2000, which, effectively, is the same as having a separate SYN backlog queue.

Table 1: Retransmission behavior for different OSs. The measurement assumes default OS configuration. Some parameters such as
the timeout before the connection is aborted, can be dynamically configured.

pirically and analytically — e.g., in [5, 30, 31]. corresponding connections. We denote ithd. stream of initial

To better understand the dynamics of FCEs, we extend some tedinsmission attempts by, (i.e., SYN packets on their first trans-
the results in [5] that pertain to connection establishment. We folission), the stream of first retransmissionsXay up to\,. Then,
low the same modeling assumptions in [5] and build on its estthe effective mean arrival rate is:

mate of the connection-establishment latency. We, thus, assume that , _— /1, 4+... 42,
end-points adhere to a TCP-Reno style congestion control mecha- 1 —pntl
nism [19]. However, to draw general conclusions for the entire ag- = Xo+pro+p*ro+--+p Ao = ﬁ)\o' @

gregate, we must also characterize the arrivals of new connection .) . .)
requests, namely, their interarrival times argependently and iden- Notice the s_lm_ple relationship between the arrlv_al rates of the d!f-
tically distributed (i.i.d.) and are exponentially distributed. Assum-ferent transmission classes. For example, the arrival rate of the first
ing i.i.d. implies that dropping one request packet does affect tH&transmission class\i, is just the gmval rate of the initial trans-
arrival of future request packets. This matches well the observatiSliSSIoNSAo, times the drop probability. Based on Eq. (2), a 50%
that clients behave independently. It, however, does not considdCP at the router will, 4 theory, increase the amount of new con-
the inter-dependency between requests from a single client. Thig}gction requests by 75{‘1"1 fact, Eq. (2) shows that a typical rate
considered in Section 3. Based on these two assumptions and @ntroller only causeg™™ Ao connections to time out; for the rest,
ementary queueing theory, one can also show that SYN-ACKs dicreasing the number of retransmissions has a substantial impact on
the reverse direction have the samel. distribution. Furthermore, cliént-perceived delay as shown in Eq. (1). We argue that this prob-
under a uniform drop policy (i.e., incoming requests are droppe@alllty, w_hlch we call theeffective timeout probabilityp™), r_eflects_

with an equal probability), the retransmitted requests hade and the true impact of the control mechanism on the underlying traffic.

exponentially-distributed interarrival times. The above illustrates that random dropping may not be well-suited
For a new connection, consider the retransmission epochs ofdf FCEs, and an alte_rnatlve technlqu_e is needeq. In_S_ectlo_n 3, we
dropped SYN packet &&, wherei = 0 n represents the num- present a better technique for controlling FCEs with minimal impact
, =0,...,

ber of times the corresponding SYN packet has been dropped an@n connection-establishment latency.

is the maximum number of attempts before aborting a connectiori. 1.2 Packet Dropsat SYN Backlog Queues

Let T,por¢+ De the maximum time a connection waits before abort-]
ing. Note thatl,, < Thpor:. Since FCES causes congestion on the When the backlog queue at the server fills up, the server can be

path from the client to the server, we also consigdeas the drop configured to drop incoming SYN packets, which triggers a simi-
probability in the forward direction. Extending the results to includd@’ 'étransmission behavior as discussed above. The server can also
drops in the reverse direction is trivial and omitted for space consi@€ configured to send SYN cookies to the client. A SYN cookie is

eration. The expected connection-establishment lat&Hgycan be simply a method for the server to avoid storing any state for half-
expressed as: open connections. In this case, a challenge is sent to the client and

upon its return, the server can establish the connection as if the orig-
inal SYN packet was queued properly in the backlog queue. The
challenge is encoded in the TCP’s sequence number and, thus, does
not require any client modification. When SYN cookies are lost, the
wherep”*! is the probability that the connection times out &7 client times out and retransmits the request as described above. SYN
is the mean round-trip time. The firstterm, then, represents expectggches are an alternative method to SYN cookies, which allow the
latency of successful connections, (ar— p"**) E[Ly|x succeeds server to store a large number of SYN packets by simply delaying
which was derived in [5]. By the independence assumption, it cafie creation of connection data structures until the three-way hand-
be easily shown that’L, is also the mean expected connectionshake is completed [22]. Depending on the size of the cache and the
establishment latency of all requests. arrival rate, SYN caches can fill up just like SYN backlog or router

Under our network model, we also deriye the effective or ag- queues. Table 1 shows the OSs that support SYN cookies and SYN
gregate arrival rate of SYN packets. This aggregate is a collectigfyches.

of newly-transmitted requests and retransmission of the previously-
dropped ones. It is divided into multiple streams, each represent
ing the number of transmission attemptgransmission clasefthe ~ “When all packets are droppetl,= (n + 1)o.

ELy = 3" [p/ (1= p)(Tj + RTT)] + p"+ ' Tapore, 1)
=0

289

. . Distribution Distribution
Average Maximum Average Minimum Average Average Average

Platf: B arallel arallel interarrival | interarrival connection connections regs per PEIEIEES (87 PEIEINEAES 2
atom o cognections cognections time (ms) time (ms) duration (ms) er page con%e(?tion il cenmeslai Miteeiiivel iines
per pag Weibull (o, B) Weibull (o, B)

IE6 5.9 15 161.2 0.2 359.8 8.1 2.7 241,775 0.58,99.84

Windows Netscape 7 4.5 14 281.8 0.1 137.1 25.6 1.0 4.21,5.75 0.91, 142.08

Opera 6.05 10.3 32 366.3 0.3 328.5 16.6 1.3 1.13,10.70 0.31, 38.84

U Mozilla 1.2 5.9 16 200.2 0.1 2724 10.5 2.1 1.20, 4.82 0.81, 133.67

inux
Netscape 4.7 7.8 14 274.4 0.1 395.4 18.8 1.2 1.176,7.10 0.53, 76.62

Table 2: Parallelism of different browsers. Values obtained from accessing 250 different linksfrom the top 25 websites. On average,
therewas 21.2 unique objects and 71.2 non-unique obj ects per page (excluding any Java or JavaScript).

Both SYN cookies and SYN caches are effective in handling aliminate this behavior. Our proposed solution allows the listen
flood of SYN packets, the majority of which are spoofed (or fake)queue to temporarily grow beyond its specified limit to accept those
The mechanism relies on the fact that only a small portion of thilly-established connections that would otherwise be dropped. Dur-
SYN-ACKSs will be replied back, after which the TCP connection ising that period, no new connection requests are allowed to be queued
fully established. When requests originate from legitimate clientsn the backlog queue. The listen queue is then allowed to decrease
both mechanisms increase the additional work on the end-serveruail it becomes smaller than the originally-specified limit; at that
the resulting fully-established connections (from the clients’ pempoint, the backlog queue is allowed to accept new SYN packets.
spective) are dropped due to insufficient room in the application lidA/ith this technique, we are able to completely eliminate “illegal” or
ten queue. As we show shortly, this is true even if SYN packets atsdesirable dropping of fully-established connections. When devel-

not accepted when the listen queue of the application fills up. oping our control mechanism, we assume that TCP stack implemen-
o] tation has been corrected, either using our approach or an alternative
2.1.3 Packet Dropsat Application Listen Queues one, to improve the consistency of the results and to simplify our

Once application listen queues fill up, no connections can be emnalysis.
tablished and the backlog queue drops incoming SYN reqiiests.)
However, some of the queued SYN packets can complete the threg1.4 Packet-level Analysis of FCEs
way handshake while the listen queue is full. In this case, the OS There still remains the question of whether connection requests
typically drops the fully-established connections all together and og-e., SYN packets) or actual data packets are the main cause of
tionally sends a reset packet back to the client. FCEs. Both of [21, 23] have characterized FCEs with a dramatic
This introduces an important consequence of having a separaterease in the number of clients accessing the server without iden-
SYN backlog queue that deserves careful examination. As explaingfying the type of packets that cause the overload. Because of insuf-
earlier, the backlog queue is generally independent of applicatiorf&ient availability of public traces, we used real emulation to deter-
listen queues to increase the server’s resilience to SYN flood attaaksne the cause of the overload. We used a collection of ten machines
(Table 1). However, when the listen queue fills up, incoming SYN500 MHz Pentium 11, 512 MBytes RAM, and running Linux Ker-
packets destined for the corresponding application are dropped evesi 2.4) all implementing Eve [20], a powerful home-grown client
if there is room in the backlog queue. This is to avoid the situsemulator that is able to emulate approximately 500 totally indepen-
tion where the three-way handshake is completed and the connectient clients per machine. We configured our clients to bombard
must be dropped due to the lack of room in the listen queue. How-single Apache 1.3 server (a 2.24 GHz Pentium 4 with 1 GByte
ever, connections can still get dropped when a burst of SYN packdRDRAM connected to the client machine through a FastEthernet
arrive and the listen queue is almost full. All SYN packets in theswitch) with a sustained request rate of up to 5000 requests/sec.
burst are queued in the backlog queue, but only a small portion @e also instrumented the server kernel to report both backlog and
the fully-established connections are moved to the listen queue, diglen queue behavior. This allowed us to observe — at the server
the rest are dropped. — the cause of the overload and the reaction of the server. As ex-
Once a connection is dropped, the server may or may not senghected, queues behaved in a manner that is consistent with what we
reset packet. As shown in Table 1, not sending a reset packet triggdescribed earlier and with [1, 27, 29]. Moreover, in our experiments
further retransmissions by the client. In fact, since RTO is based are did not observe any dramatic surge in reverse traffic (i.e., traf-
round-trip time (RTT) estimates, the client sends larger data packdis from the server to the client) especially when forward traffic is
more often than when the SYN packet is dropped and the connectimtreased well beyond the server’s capacity. In fact, the reverse traf-
is not allowed to complete. On the other hand, if a reset packet is sditt was always limited by the server’s capacity, and the added load
back to the client when the connection is dropped, the server cychas mainly in the forward path and was dominated by SYN packets.
between two phases. The first phase is when established connectidhis is due to the large numbers of new clients attempting to access
are dropped and reset packets are sent back to the client. The sedtedserver without prior knowledge of the network or the server's
phase is when SYN packets are dropped and then retransmitted aftendition. Even though they are sending a small number of pack-
exponentially-increasing timeouts. ets (including retransmissions), their sheer volume overwhelmed the
Depending on one’s view, connection dropping is either an accefsgterver. In Section 3, we show how to design a controller tailored
able behavior that the server uses to shed load or an unacceptabletbehe arrival of new clients and retransmissions of their dropped re-
havior as it incorrectly drops clients’ completed connections. If thquests.
latter view is taken, one can modify the TCP stack to completel&
.2 Persistencein Client’s Parallelism
Almost all the web content is organized such that a main object
e page) is first retrieved and followed by all of its embedded ob-
ects. Web browsers generally issue multiple requests to the em-
bedded objects in parallel to maximize the throughput and minimize

and FreeBSD TCP stacks. For other OS implementations, we deduced

3This behavior was verified by looking at the actual source code of the Limﬁs
tl
behavior using stress testing of tools.]

290

the time of content retrieval. Even with the availability of persisterg 1 1

IMeasured
- Estimated

connections in HTTP 1.1, where browsers are encouraged to use a
single connection to take advantage of TCP’s larger window*sizé,

parallelism is still used by most browsers. Traditionally, the addgd®

aggressiveness of parallelism was analyzed from the perspectivé gf,
network bandwidth or server resource sharing [1]. In this subséc-

tion, we look at clients’ parallelism as a factor contributing to thé 02
increase in the severity of FCEs since a single client can issue mul-o -
tiple independentonnection requests. As shown in Figure 1, there
exists an interplay between the client's browser implementation and,
the server's content organization (or encoding) that determines the
degree of parallelism, and hence, the aggressiveness of the clighns.
On the server side, having many embedded documents forces cligns |
to issue multiple HTTP requests (not necessarily in parallel). V§e

0 2 4 6 8 10 12 14
Number of Parallel Connections

have found from our experiments that there are an average of &84

proximately 21 unique objects embedded in each page. Browser§ Qn gr

the client’s side are free to request these objects using separate ¢on-

nections in parallel, series, or in a single connection using persistent® - o

connections in HTTP 1.1.
To investigate this issue more thoroughly, we analyzed the behav-

360 400 440 480

120 160 200 240 280

Time (msec)

ior of five popular browsers on two platforms, Linux (Kernel 2.4)Figure 2: Internet Explorer 6.0 browser distributions: (top) dis-
and Microsoft Windows 2000. We focused on each browser’s deribution of parallel connectionsand (bottom) distribution of in-
gree of parallelism, how the parallelism changes with different weterarrival times. Both are approximated by the Weibull distri-
content, and how each reacts to packet loss during the retrieval of thgtion with parameters in Table 2. In the bottom graph, the
primary or the embedded web content. Ten random links from thistribution converges to 1 after 4500 msec. We truncated the
top 25 websiteswere used to test the five browsers. Each browseslot to magnify the important region.

was configured to request the same 250 links. An intermediate ma-
chine running cpdunp was used to intercept and record all packets C1.
to and from the server. To improve the consistency of our results, we
cleared the data cache after every visited page. Furthermore, each
browser was configured to fetch the set of links 5 times over various
times of the day. This way, we also minimize the effects of the time
of day on our conclusions. We note, however, that there is a large set
of configurations for each browser. Testing all of them would require
long hours of manual labor. We, thus, used the default values as the
basis for our conclusions. co
Table 2 summarizes the parallelism of the different browsers. We™""
derived these numbers by careful analysis of the generated logs. Our
log analyzer kept track of connection start and end times by iden-
tifying the corresponding SYN, FIN, or reset packets. We were
conservative in making measurements since we considered a coe3,
nection terminated if it remains idle for 500 msec, which is roughly
5 times the average RTT value. Here we assumed that the imple-
menter did not bother to close the connection before issuing a new
one. The table shows (among other things) the statistical averages
for the number of parallel connections and their interarrival times.
The computed values are based on arrival epochs of new connec-
tions; they are not time averages. That is, each time a new con-

Even with the availability of persistent connections, browsers
tend to use HTTP 1.0-style connections. This can be seen in
values for the average requests per connection where a value
that is close to 1 indicates a single connection is used to re-
quest a single page. This is also confirmed by comparing the
average duration of a connection with the average interarrival
times. Values that are close to each other imply that a browser
is issuing a new connection as soon as an old one finishes.

Browsers are configured with a specific maximum number of
parallel connections. By pipelining their requests (C1), they
try to maintain this maximum value when more objects need
to be obtained.

There is an initial burst of connections after obtaining the main
page. The size of this burst is not the maximum allowed
value described in C2; otherwise, the average interarrival time
should be close to its minimum value. After the initial burst,
browsers tend to space their parallel connections by an order
of hundred milliseconds, roughly, the average time of com-
pleting a single request.

nection is detected, a snapshot of the system is taken and based ofhe last two points can be verified further by inspecting the distri-
their ensemble, the averages are computed. Table 2 also showshb#ions of the number of parallel connections and their interarrival
mean number of HTTP requests per TCP connection, which is thienes. These are shown in Figure 2 as Cumulative Distribution Func-
number of per-page unique objects divided by the number of issutidns (CDF). We only plotted the distributions for Internet Explorer
HTTP requests. We chose to use the number of unique objects(#8) 6.0 because of space limitation. A value on the ordinate (y-
we assume browsers perform some intelligent caching. Our reportaxiis) of the top graph, for instance, should be read as the probability
numbers are, thus, conservative since, in addition to using the nuof-having a maximum of: parallel connections, whete is drawn
ber of unique objects, they also do not include any additional objedi®m the abscissa (x-axis). Both plots, then, confirm the behaviors in
requested by any embedded Java applets or JavaScripts in the pa@2.and C3. We first note that because measurements of the number
Several conclusions can be drawn directly from the table. of parallel connections are taken at the arrival epochs of new con-
nections, the computed average should approximately be a half of
1 - - - . . . the allowed maximum when the maximum allowed number of con-
By using a single connection to request multiple objects, the TCP windowe i s close to the number of embedded objects. For example
in theory, grows to match the throughput of using multiple short connectlonfs . . _’
in paraliel [26]. if there are 18 embedc_ied c_JbJects and the maximum alloyved num
S\Website rankings were based on a the December, 2002 statistics frgﬁ':'lr of parallel connections is 15, then we haye th_e following set of
Nielsen Netratings (www.nielsen-netratings.com). measurements{1,2,3,...,15,15,15,15}, which yields an aver-
agevalue ofl +2+--- 4+ 15+ 15+ 15 4+ 15)/18 = 9.17. Here,

291

Client Model ements.
user think time

main)) E1l. Individual clients are independent of each other, and a client’s
object multiple requests per copnection requests are grouped intisits Each visit represents a client
?;Zﬁ:[‘de”t _ accessing a web page and its entire content. Requests within
W connections H H H \ a visit are correlated by the completion of the initial page that
contains all the embedded links.
oot H H H /;ﬁ?ﬁ E2. Once the main page is fetched, a batcli pérallel connec-
‘ tions with probability distributiory,, (1) are created to request
‘ the embedded objects with arrival distributigin(z). We do

I ‘\E;fgligl“r‘ggu‘gsft‘:”f‘b%°f not specify the exact distributions fdf, (1) or f.(t), but in
H H H T e our subsequent derivations, they are assumed to be indepen-
> o — dent and have finite means. Moreover, the retransmissions of
network + server delay '\ /‘ user think time . .
inter-arrival time distribution lost packets from parallel connections are independent as long
Observed Behavior of parallel requests, fa(t) as none of the connections is aborted.

E3. The expected visit completion tim&V, is the sum of the
time it takes to fetch the initial page and the longest finish

once we reached the maximum, the remaining three objects had to time of all parallel connections. Formally, consigeras the
wait for three other connections to complete. This is the observed ~ effective timeout probabilityy™ = 1 — p* as the probability
parallel behavior in Figure 2. The figure also verifies C3. It shows Of successin as the expected number of parallel connections,
that 50% of the connections arrive less than 50 msec apart, but the and~ as the mean interarrival times of the parallel connec-

Figure 3: Persistent client model.

bulk are spaced a few seconds apart. tions. Also, consideET, as the expected latency for com-
Using standard distribution fitting techniques [16], we are able Pleting a single request (we consider better estimate&'#or

(in most cases) to approximate both parallel and interarrival distri- 0 Section 3.3). Then,

butions using the Weibull distributions with parameters detailed in

Table 2. By observing the large variations in the distribution param- ~ ZV =" Tabort+ ©)

eters, we find that no concrete conclusion can be drawn from our ¢ [ETe + (1 = (¢")™)(Tabort + W) + (¢°)™ (ETe + W)] .

measurements regarding the exact distribution of browser behavior.
Specifically, we observe that different times of the day produce large ~ The second term in Eq. (3) estimates the expected delay when
variations, which is probably due to changing server and network the first page is fetched successfully. The téim- (¢*)™)
loads. As we show in Section 2.3, instead of using analysis of vari- represents the probability that at least one of #th&onnec-
ance techniques to describe browser behavior under different load tions times out andl = my is the approximate overhead
scenarios, we construct a simple model of their internal mechanisms. ~ of launchingm parallel connections. Thus, the last product
This model allows us to draw direct conclusions on the optimal way ~ term in Eq. (3) is the expected delay for completing the par-
of controlling web clients. allel requests. It is derived by taking the expectation of their
Based on Table 2, we see the benefits of persistent connections maximum completion time.
in HTTP 1.1. This is shown in the large difference between the av-
erage number connections per page for IE 6.0 and Mozilla 1.2, an
the other three browsers. There is, however, one caveat in using per-
sistent connections: it may cause servers to run out of available file
descriptors much faster than requiring connections to terminate after
each request [21]. Once the application runs out of file descriptors, itIn the absence of packet loss, our model is consistent with ear-
no longer is able to accept additional connections, which causes i@ ones (Observed Behavior in Figure 3) where it is assumed that
listen queue to fill up. To combat this problem, the server can dy client sends a batch of closely-spaced connection requaesige(
namically reduce the keep-alive timeout in HTTP 1.1 as the numbeeriod) followed by a relatively long period of user think timi@éc-
of descriptors approaches the maximum capacity. tive period [2]. Our distributions have similar characteristics to the
Finally, we also tested the reaction of browsers to packet loss. Vémes in [2, 9, 11] with very different distribution parameters. Our
instrumented (using pt abl es) an intermediate machine to drop model, however, captures the effects of the applied control, which
packets after the main object is fetched. Consequently, all browsetg use to construct an optimal controller.
abort the client’s request (after one of the parallel connections times

out) and display an error dialog box. 3. CONTROLLABILITY OF PERSISTENT CLIENTS

2.3 Modeling of Persistent Clients Client persistence imposes an added challenge to the controllabil-
of aggregate traffic. If a router or end-server is operating near or
ull capacity, then any slight increase in load will trigger dropping

4. A client may visit multiple pages within a web server before
leaving the server. This is often referred to asser session
The expected session time can be estimated in a manner simi-
lar to E3; it is omitted for space consideration.

. . . i
Creating accurate models of web clients is not an easy task. Seé%l
eral studies have empirically studied the interaction between the cligp equests. These persistent requests, upon their retransmission

network, and end-server to characterize the dynamics of underlyi . L)
traffic [2, 10, 11]. Unfortunately, such studies often lack the clients.wII set off further drops, creating a vicious cycle of drops caus

response to different control policies, which is the main ingredient future drops. Repeated dropping also dramatically increases the
P . . P ’ 9 rElient-perceived latency as it may require several timeouts before a
for constructing effective controllers.

. : . ' client successfully establishes a connection.
We are faced with the question of whether an effective traffic con- A traffic controller that drops incoming requests must, therefore,

roller can be built without exact knowledge of client behavior. Wedeal with its retransmission in the future. To this end, we introduce

argue that an optimal controller can be realized by apprommatmgers’is’tent droppinga new drop strategy that chooses a small num-

the internal structure of web clients. The model of persistent clienfs, ° requests based on a target timeout probability and systemat-

is presented in Figure 3; it captures the following four important eli'cally drop them on every retransmission. We show that this drop

292

Uniform Rate-based Dropping Persistent Dropping
Timed out requests = p° A, <— Drop new requests
-2 > Drop requests : ¢ ts=p’L with probability p° and
hEphe B equally with Timed out requests = p"J, drop all retransmitted
M= P Ay probability p M= A=p A requests
9 - 1 2 0 —_ L
) \ = (1-p)%,) Outgoing
Incoming —> (1-p)r, Outgoing Incoming requests
requests 0 requests requests 0
3
B N s (1) _— s (10

Figure4: Illustrative comparison between rate-based dropping and PD. We view the outgoing link asa smaller pipethan the stream
of incoming requests. We then show how the two strategies drop incoming requeststo fit them into the pipe.

policy minimizes the client’s expected response time, the numbepbnnection-establishment latencytis= RTT. Based on this, the
of retransmissions, and the bandwidth requirement of the aggregatgected connection-establishment delagy, , can be computed as:
traffic. We also show that this technique does not affect the fairness

of the control policy. EL, = (L—po-pn)RTT +
_ _ po(1 —p1)T1 +pop1(l —p2)T2 + -+
3.1 Persistent Dropping (o Prn1)(1 = pn)Tn + (B0 - - Pn)Tabort. (6)

Consider an Active Queue Management (AQM) technique that . o .
drops incoming SYN packets with probabilipy Here, we do not '€ optimal drop strategy must, thus, minimi2d., with the
consider how other packets are treated, grig set in accordance constraint of having an effective tlme_)out_pronbablllty th?t is equal to
with the underlying AQM technique. For instance, if packets ard1® one obtained by tradltlonal*pollues, iBl;_op:i = p". It suf-
dropped in routers using RED, theris based on dynamic measure-fIC€S t0 show thatif we sgb = p* andp; = 1, fori # 0, thenE Ly
ments of queue lengths [13]. We, thus, vipvas the percentage of 1S minimized. This can be seen by observing thqt (_aach termin Eq. (6)
packets that must be dropped regardless of how it is chosen. GiveR®CeIS out except for the last term. The minimum connection-
target drop probability (or equivalently, an effective timeout prob- establishment latency is thefiLj, = (1 — p")RTT + p™Tasort,
ability, p*, as described earlier), our goal is to find the optimal drovhere g* denotes our optimal policy. Note that sinéeL{ no
policy that minimizes the effective arrival rat&, and connection- longer has a delay component for successful connectidrizeaks
establishment latenc¥ L,. We base our development on the samehe dependency between the delay for successful connections and
network model introduced in Section 2, and still do not considgpacket drop.
the parallelism of individual clients. This will be addressed in Sec- The above discussion implies that the optimal policy must decou-
tion 3.4. ple connection requests that belong to new connections (i.e., on their

Traditionally, a control policy that drops aggregate traffic withfirst attempt) from those that are not. Viewed another way, this is a
probability p does not take into account the transmission class é6rm of low-level admission control where a new connection request
individual connections. Consider here a different mechanism the&n either be admitted into the system or denied access. But deny-
associates a drop probabiljty with each transmission classin or- ing access at the connection-establishment level can be performed
der to assign these probabilities, we assume that incoming requesyseither (1) sending back an explicit reject packet, such as a RST
are classified into their corresponding transmission classes; we shpacket, instructing the sender to terminate the initiated connection,
later how this can be achieved. Let us rewrite the aggregate arrivad (2) repeatedly dropping packets on every retransmission attempt.

rate,A, in Eq. (2) using the per-class drop probabilitig's: Unfortunately, the success of the first approach is predicated on the
n—1 sender’s cooperatich. It also requires the router or end-server to
A =X +poro +popiro + -+ (H pi) Ao. (4) have enough network and processing capacity to respond to each re-
i=0 jected SYN packet.

Based on the above discussion, we introdpessistent dropping
aQ]:’D) as the optimal drop strategy that choogél, new requests
and systematically drop them on every retransmission. An example
of PD is illustrated in Figure 4, showing how this new technique in-

To minimize the connection-establishment latency of clients, w rl]“g]?mtlﬂmftthhe gutg0|_ng IlnI?]to mlnlrr]nlze packett retransmls{;,‘lons. d
start by writing the probability mass function of the connection- '€ '8¢t that nis dropping SCheéme cnooses certain connections an

establishment latency using the per-class drop probabilities: consistently drops them on each retransmission does not imply that
it is biased against these connections. We have shown that a rate-

Notice here that the effective timeout probabilityps = TT"_ p:.
For a traditional rate control policy, all requests are dropped with
equal probability (op; = p for all 5), implying thatp* = p"*!
(consistent with the results in Section 2.1).

(1 =po) if t=To+ RTT control drop policy generally causgs\, = p" '\ connections
P{Ln(z) =t} = —opi(1—pi) ift="T;+RIT,1<i<n totime out, which is identical to (but less efficient than) PD. In this

ITi=o p; if ¢ = Toport respect, both PD and rate-control policies have the same fairness.

0 otherwise. Table 3 compares the performance improvement of PD over a tradi-

. . th o . () tional rate-control policy in terms of mean client-perceived latency,
whereT; is the time of thei™" retransmission7o = 0 is the time 4y6rage number of retransmissions, and aggregate arrival rate for the
of the initial transmission, antlu;,,. is the time before the con- game effective timeout probability. In Section 4, we also compare

nection times out. Intuitively, Eq. (5) establishes the probability ofhe yariance in the latency of the two schemes — they can be directly
connecting successfully afte*T'T" 4+ T> seconds, for example, is

the probability of being dropped during the initial transmission with
probability po, then being dropped again on the second transmissiSiwe have tested several modern OSs and found that there is no universal
with probability p;, and finally connecting on the third transmis-technique for rejecting a client. Microsoft Windows, in particular, ignores
sion attempt with probabilitf1 — p,). Notice that the minimum Poth RST and ICMP packets for this purpose.

293

Rate-Based Random Drop Persistent Drop Client Router 1 Router 2 Server
2 m-1
Drop probability of new requests P p”” Z (1'P) (:‘i;lie 2 (1'P) (7'P) %
Effective timeout probability, p* s pt Rate-based Dropping (1-p)"
1— n+l RTT ;
Expected connection- R a=p" * 1-p™HRTT + Client Router 1 , Router 2 . ot Server
. ” . n - n+ [e] 2 - n+ - n+1ym-
establishment latency, EL, Zlﬁ‘](l—lUTJ‘J*l’ “Tubm_[anTa/mn - (1-p"") liilie. (1-p) (1-p"")
J=0 —
Prob. of (1_prv+1)m
Expected number of 1-p"! il Persistent Dropping success,
retransmissions 1-p 1+np
1 Figure5: Probability of successin network of queues
Effective arrival rate, A T, A+np™ N,
L same client visit and (2) distinguish between new and retransmitted

requests. Unfortunately, both present a design challenge, especially
since we intend for our technique to operate at the packet-level. In
computed using Eq. (5) and are omitted for space consideration. fact, precise implementation requires violation of the protocol lay-
ering, similar to Layer-7 switches (e.g., Foundry, Alteon) to satisfy
3.2 Applicability to Network of Queues requirement (1) and need per-connection state information to satisfy

In most cases, requests must pass through multiple queues as tiggpirement (2). However, one must not forget the original envi-
traverse different links on the network before reaching their desionment that this is intended for: large aggregate traffic causing an
nation. Fortunately, the above results also hold in this scenari6CE: We are, thus, interested in constructing approximate imple-
namely, when new connection requests pass through a network"ggntations that are allowed to be less accurate than an exact imple-
queues in series, each using a PD poljtythe client's connection- Mentation, but significantly improve on existing techniques.
establishment latency and effective arrival rates are minimized. This Th€ basic idea is to use an “appropriate” hash function to group
is illustrated in Figure 5 where we assumed for simplicity that alfequests from the same client and then, based on the mapping, de-
queues have the same drop probabifity We see that for a rate- Cide to drop or allow packets to go through. The controller's log-
based drop strategy, the probability of a single request succeeding!6®l OPeration is organized into two parts: classification and policy
a single attempt i§1 — p)™, wherem is the number of queues that enforcement. The classification splits incoming requests into two

it must pass through. In contrast, the PD poliéyhas a probability Stréams, one representi_ng new tran_smissions for new _client visits
(1 — p™*1)™. To put this in perspective, i = 5, p = 0.05, and and the other representing re_transmltted requests. Policy enfo_r_ce-
n = 4, then the probability of a request succeeding.®& and0.99 ~ Ment then drops new connection requests with an equal probability,
for the uniform rate-based and the PD policy, respectively. UsingZa » @nd drops retransmitted requests with probability 1.

similar development to our single queue analysis, we can prove that! e selection of a suitable hash functid,), is not difficult. In

g" is the optimal drop strategy even when each queue uses a differft: @ we will show shortly, a simple XOR operation on the input

Table 3: Comparison between PD and random dropping.

drop probability. parameters produces the desired uniform hashing [8]. On the other
hand, we found that choice of the input parameters to the hash func-
3.3 Applicability to Persistent Clients tion is the most critical element in our design. Unfortunately, with-

The derivation in Section 3.1 treated clients’ connections as ind@Ut client-side cooperation, packet-level information provides lim-
pendent entities without considering the correlation between a groffd choices in achieving the desired classification. They are summa-
of connections originating from the same client (e.g., client visits diz€d as follows. We abbreviate IP source and destination addresses
sessions as defined in Section 2.3). It is not difficult to verify PD'@nd TCP source and destination ports witte_addr, dest_addr,
optimality in the case of correlated connections. Under the assumfc-port, anddest_port, respectively.
tion that the controller does not distinguish between SYN packet
that belong to an already admitted visit and those that represent ne
visits, we provide here an intuitive sketch of the optimality proof.
ConsiderEL, = E[L| connection succeefsis the conditional
expectation of the connection-establishment latency for successful
connections. This is equivalent to Eq. (6), but excludes the last term
and divides by(1 — p*) to compensate for unaccounted timed-out
connections

1. h(src_addr,dest_addr): Thesrc.addr allows per client clas-
sification and, with the combination dést_addr, allows ap-
proximate user-session classification. Unfortunately, itis rela-
tively coarse-grain classification since clients connecting through
a proxy or a NAT (Network to Address Translation) service
are treated as a single client. In case of high aggregate traffic,
this seems to be an acceptable trade-off. It can be further im-
proved by storing a separate list of high-priority IP addresses

L—p)Ti+ -+ (po-pn—1)(1 =pu)Tn) that contain preferred proxy servers (e.g., AOL, MSN). Pack-

1—p* ' ets originating from these addresses can then be excluded from
dropping as long as the control target is met.

BL. = RTT 4+ 2

Assume that once a connection is established, the average time
to send the request, have it processed by the server, and receive tA. h(src_addr, dest_addr, src_port, dest_port): The combina-

reply is ETs. Estimates forE'Ts are derived in [5, 30] as part of tion of the four elements allows accurate connection-level clas-
determining the expected latency of a TCP connection. We cannow sification even through proxies and NAT services. It, however,
substitute the expression &fL; into Eq. (3) using the relationship loses session semantics, which, as we show, still provides a
ET. = ELs + ET; to obtainEV as a function of per-class drop considerable performance improvement over traditional mech-
probabilities. Similar to the development in Section 2.3, whee= anisms.

p" andp; = 1fori # 0, EV is minimized.
. Since this classification must be performed at very high speeds,
34 Controller Architecture the hash function must be simple, yet still provides uniform hashing.
Implementation of our optimal drop policy in routers and endWe observe that the uniqueness of the source IP address, and when
servers relies on the ability to (1) group requests originating from theombined with the TCP port information, the probability of colli-

294

sion is minimized. We used a simple XOR operation to perform the |Stateless PD State-Based PD
. o .
required mapping: low emmy/drop table
entry
hMz1,22,. .., %) =T1 DT2D - Dl X K(t) modR, (8) oy
))) f retransmit

where K (t) is an appropriately-selected prime number that we use 9 o % >
to randomize the hashing function (to be described shortly) Rnd 0¢ A
is the range of the hash function. We performed a simple simula- update tmestamp
tion, where IP addresses are randomly chosen and long runs of cont drop drop

secutive port numbers are used (since consecutive port numbers are
commonly used by the underlying OS when multiple connectionBigure 6: Stateless and state-based implementation of persistent
are issued). The distribution was almost uniform as we hoped awxdop controller.

expected.

We came up with two schemes to perform the desired classificability of hashing collisions; our experimental results have indicated
tion: one is a stateless implementation and the other stores a snifito = 1.2 is adequate. When the hash table is used beyond its de-

per-connection state. We assume here that a preferred proxy 4N range, the above classification technique can yield too many er-
mentioned in H1 is handled using a separate lookup operation. "S- To protect against such an erroneous behavior, we use dynamic
monitoring to detect and take corrective actions. Basically, the real

3.4.1 StatelessPersistent Dropping (SLPD) drop probability is measured on-line by counting the total number
Upon arrival of a new connection, the hash in H1 or H2 is com@f arrivals and dropped requests. If the measured drop probability is

puted and normalized to a number within the range [0,1]. A threstframatically different from the effective timeout probability, then a

old value, represented by the effective timeout probability, is stateless classmce}tlon can be used or even a uniform drop probabil-

used to drop those packets that have a hash value lesg'ttaamd ity with p = (p*)=+T for all incoming requests. This is a fallback

allow the rest to pass through (Figure 6). Depending on whether Hiehavior, which is used only in extreme cases.

or H2 is used, client- or connection-level persistent dropping can he . .

achieved. The absence of state makes this scheme very simple to%hﬁ Linux Implementation

plement and fast to execute. However, this scheme can be unfair as i¥Ve implemented working prototypes of SLPD and SBPD in Linux

discriminates against a fixed set of clients. To mitigate this problefiKernel 2.4) as filter extensions tgt abl es, Linux’s firewalling

we use the ternk (t) in Eqg. (8) to periodically change the function’s architecture [24]. Using pt abl es, our implementation can be

mapping, hence its dependencetd8]. The time interval between configured as part of the routing path, when our Linux box is con-

changes should be on the order of several minutes to minimize tfigured as a router, or as a front-end, when it is configured as a

error introduced by changing the set of dropped packets. regular server. We defined two new targets jot abl es called
_) SLPD.Fi It andSBPD_Fi | t that are kernel modules. These tar-
3.4.2 State-based Persistent Dropping (SBPD) gets have a configurable effective timeout probabifity,and hash

Especially when connection-level control is desired (H2), storinfinction, H1 or H2, that can be altered at runtime. Their implemen-
a small (soft) state for each connection can further improve the acd@tion follows the exact description in Section 3.4. To activate either
racy of the classification. A hash table is used here to store the tirfiéer, we define a new rule that matches any packet with the SYN flag
at which anewrequest is dropped. Upon its retransmission, the corset and associate either module as its target. This way, new connec-
troller is able to look up the request’s initial drop time and based otion requests are dropped according to our optimal drop policy. As
the age of the retransmission, determine the transmission class. Thentioned in Section 3.4, our implementation dynamically monitors
hash function described in H2 can be used to map the set of possitiié real drop probability. If the number does not match the expected
request headers into a much smaller number of table indices. ~ value, incoming requests are dropped with probabjlity

The operation of SBPD is split into two stages (Figure 6). The
first stage consults the table to see if the request is a new or a - EVALUATION
transmitted one. A table entry stores the time of the first drop time: To evaluate and demonstrate the efficacy of PD, we equipped a

Therefore, any incoming request that is mapped to a used entry) ifux server machine with working implementations of the SLPD
systematically marked as “retransmission” forisecond window

f he initial d : The window | h h based and SBPD controllers (Section 3.5) as well as a rate-based drop
rom the initial drop time. The window length was chosen base O(RBD) controller. The latter mimics traditional mechanisms where

.‘;w“ the maximum timeout value among most 0S |mplementqf uniformly drops all incoming requests with probabilityand is

tons. If the enEry IS :ampty or has an expired time-stamp, the requ&sle as the baseline for comparison [24]. Our main goal is to subject
1S marked as mnew. The second St‘?ge of SBPD “deC|des the_coﬂﬂ_ese controllers to realistic load conditions so that the results we ob-
trol policy. Obviously, a request that is marke‘fj as” r_etransmlssm_rlﬁlin may be applicable to real-world deployment scenarios. We also
IS dropp_ed. *However, one that IS marked as new-1s dropped Wiant to avoid any unnecessary complexity without sacrificing accu-
probabilityp” and the hash table is appropriately updated. Note th cy. The three controllers are compared by studying their effects on
due to space limitation we have omitted several optimizations thaf, performance of clients during a synthesized FCE, which is emu-
reduce the number of leakup and store operations ta the hash tatf fted by generating high client arrival rates to a web server. In each

We also omitted a description of the periodic maintenance that é%enario, we also compare the measured results with the predicted

req‘%"ed to the tabl?' . nes from our analytic models.
Since the resolution of each time-stamp need only be on the order

of seconds, 8 bits are sufficient to represent the time-stamp. The sigq Experimental Setup

of the table is then based on the worst-case scenario of the arriva\Ne employ a simple setup where the server machine (a 2.24 GHz

rate,A\5***, and timeout valuel ;% Pentium 4 with 1 GBytes of RDRAM) runs Apache 1.3 to receive

M = \Pae 5 Az, o o ©) HTTP requ_ests through a high-speed FastEthernet Ii_nk. Clier_1t§ on
)) the other side are generated using Eve, a scalable highly-optimized
wheres > 1 is an over-design factor that further reduces the proljient emulator. Each of our emulated clients was based on the model

295

20 — T 100 40 — T T T 100 14 L A o
SBPD-TCP —+— SBPD-TCP —+— ? g8
SLPD-TCP ---x--- 35 SLPD-TCP -~ b 2t B SBPD-TCP Mean —+— -
o PD Model ---x--- g o PD Model ---x--- £ 8 SBPD-TCP Variance ----
& 15 - RBD Measured & 17 ¢ % 30 | RBD Measured & 1% ¢ 3 a RBD Mean ---%---
> RBD Model —-#-- g7 g > RBD Mode| —-a-- § 2 10r : RBD Varinace -2 |
K Improvement ---e--- 27" 7 32 & 25| Improvement ---o--- i 2 3 d
3 % A s 8 . 5 5 8 .
® 10| 4150 = @ 20 | 45 = % o
o v O o 0
> > 3 S O 6} 4
g g gi15f R g 8
g 8 < 5 4
& s5f 125 § § 10 s & 5 4T TP
> o = a2 VIS
R 5w R § 2 4%]
O~ _ ° - [9]
0 ! ! ! ! ! ! ! L9 0 0 ! ! ! ! ! ! L T 0 = 0 ek gy gy
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Effective timeout probability Effective timeout probability Effective timeout probability

Figure7: Request delay comparison, (left) Delay for Ao = 60 clients/sec and T+ = 20 sec, (center) Delay for Ao = 80 clients/sec and
Tavort = 40 sec, (right) Mean and variance for the delay of successful requests (same configuration as left).

described in Section 2.3, where the distributions for the number &bn, we only present two configurations of source traffic. They are
parallel connections and their inter-arrival times were based on onreant to confirm the efficacy of our new drop policy. We have per-
estimates for IE 6.0 in Table 2. Furthermore, we used IP aliasifgrmed an extensive evaluation while varying the various parameters
to provide each client with a unique IP address, which is necessasyer wide ranges. In all cases, our results were consistent with those
for the H1 hashing metric. The arrival of clients (not their requestg)resented here.
followed a Poisson process with meag, a traditionally-accepted ~ Two metrics are of particular interest to us: (1) thean request
model. Furthermore, each client behaved independently from othdelay, which is computed by averaging the elapsed time before a
clients and, on average, issued 6 (independent) parallel requests.rgguest is completed or timed out, (2) theean and variance of
to four (500 MHz Pentium Il with 512 MBytes of SDRAM) ma- successful-request delayhich is similar to the first metric but only
chines were used to generate the desired client arrivals. Finally, bnoks at successful requests; it also looks at the variance of the delay.
intermediate Linux machine was used as a router to implement oReures 7(left) and (center) show the benefits of using PD. In the cen-
of the three controllers. ter plot, for example, clients experiencing an effective timeout prob-
To eliminate external effects from our measurements, we obserability of 0.1 had about a 50% reduction in their mean request delay
that the client-perceived delay when connecting to a web server(gdue to the reduction in the mean connection-establishment latency)
the total wait time before a request completes and is the summatiatnen SLPD-TCP or SBPD-TCP, instead of RBD, is used. This is
of three mostly independent components: connection-establishmentiramatic reduction as it implies that a traffic controller that uses
latency [), propagation delay, and service delay. As mentione®RBD to uniformly drop incoming requests with a probability of 0.56
earlier, PD only affects the connection-establishment latency. Thusshieves an effective timeout probability of 0.1 and produces 100%
by keeping the other two components constant, we are able to obtédnger connection-establishment delays than the one that uses PD
an unbiased view of the performance of PD. We take two measuréSLPD-TCP or SBPD-TCP). In Figure 7(right) we plotted the delay
to minimize the variation in the other two components. First, wand variance for successful connections only. The figure shows the
made sure that the client-to-server network path is bottleneck-fremain benefit of PD, namely, decoupling the effects of the control pol-
Second, we over-provisioned the server to handle all incoming re&y on the delay of successful requests. The greatest impact can be
guests, and all requests issue the same document (e.g., index.hts#en on the variance of successful requests since PD produces one of
Therefore, if a request passes through the controller, it successfutiyo outcomes: (1) immediately allow a connection to pass through
completes the HTTP request and has a similar service time to the (2) consistently drop it. We also observed that PD reduced the
other requests. Finally, because we need to conduct a large numbariability of the underlying aggregate traffic.
of experiments to cover the wide range of variable parameters, weFigure 7 shows that SLPD-TCP achieves similar performance to
limit each run to 5 minutes. Each experiment was repeated until tt88PD-TCP. The real difference between the two schemes is fair-
95% confidence interval was less than 5% (roughly230 times). ness, which is not reflected in our performance metrics. In SLPD-
Our focus in this section is to evaluate the efficacy of PD at th&CP, packets are dropped based on their header information and the
request level and user-visit level based on the H1 and H2 metricsamly randomness in the scheme is introduced by the prime multi-
Section 3.4, respectively, and to compare stateless and state-basiéet, K (t), in Eq. (8). On the other hand, SBPD-TCP has a built-in
implementations, SLPD and SBPD, respectively. Since PD is irandomness in every packet it chooses to consistently drop. This, in
tended as a low-level control mechanism (and due to space considit opinion, produces better fairness from the client’s viewpoint.
erations), we provide a limited discussion regarding higher-level se- We also verified the accuracy of our analytic models. We observe
mantics such as user-sessions. As previously noted, PD is not larger, but tolerable, errors in our estimates for smaller values of
tended to replace high-level admission control mechanisms, butfd. However, agp™ increasesT ..+ dominates the computation
improve the control of aggregate traffic in routers, especially duringf EL; and thus, improves the accuracy of our prediction. Based

overload. on the presented results, our model still accurately predicts the ex-
. pected delay even though incoming requests are highly dependent.
4.2 Connection-L evel Measurements This phenomenon seems counter-intuitive, but is explained by the

We now focus on characterizing client-perceived delay for ratestrict enforcement of the effective timeout probability. Specifically,
based and persistent dropping (both SLPD and SBPD). In our comegardless of the instantaneous arrival rate, a fixed percentage of re-
parisons, we assume that both stateless and state-based PD cpmests is dropped. Looking back at how the expected déldy,
trollers are using the connection-level hashing metric H2; they aweas derived (Section 3.1), one can observe that oncg thare held
denoted as SLPD-TCP and SBPD-TCP, respectively. In each experbnstant, the delay value becomes independent of the arrival rate. In
ment, we vary the effective timeout probabilipy,, and compare the fact, this type of policy enforcement is implemented by most Active
three drop policies (SLPD, SBPD, and RBD) against each other agieue Management (AQM) techniques where a constant drop prob-
against their analytically-derived counterparts. Due to space limitability is enforced based on the average (not instantaneous) length

296

Mean successful visit delay (sec)

12 T T e T 1 T T T T T 650 T T T T T T T
g 0 " SBPD-TCP —+— ¥ SBPD-TCP —+—
— : 09 "% SLPD-TCP —x-— 1 5 600 = B SLPD-TCP —--— 1
10 F g > osl SLPD-IP % | 8 ol ” B.. SLPD-IP -
i s £0 * RBD & = g RBD &
3 07} - g £ 500 R
8t i g = .
5 06} % R © 450 | _o- g
6| g 41 2 o5t * 1 ¢ 400} 1
2 o4t EN R @ 350 g
4 |-SBPD-TCP —+— p 8 - o
SLPD-TCP ---x--- g 03f *. 1 g 300 - g
SLPD-IP - 5 L -] o i |
2t RBD @ { o 02 L g 20 Sk
[P - 01t * A < 200 | T
O Il Il Il Il Il Il \\\J/ & 0 Il Il \\1 == % sk sk & 150 Il Il Il Il Il Il Il Il)\(
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Effective timeout probability Effective timeout probability Effective timeout probability

Figure 8: User-visit behavior. In all cases, Ao = 60 clients/sec and T.p0-+ = 20 sec, (left) mean successful visit delay (a point with zero
valueimpliesthat no visit was successful), (center) probability of successful visit, (right) effective arrival rate.

of the underlying queues [13]. Furthermore, the effects of depeperspective, our estimate fdrhighlights the relative (not absolute)
dent traffic are apparent in other metrics, such as mean user-visitprovement in using PD over a rate-based drop policy.
delay and probability of a successful visit (to be discussed shortly). o
4.4 Limitationsof the Study

4.3 User-Visit Behavior There are still three specific limitations to our study that are worth

While the mean request delay provides a good indication of thraentioning. First, we have not discussed how a traffic controller
performance of the underlying drop policy, it does not give a conwould adjustp™ based on the measured arrival rates or router queue
plete picture. Looking at the performance metrics that are assoténgths. We believe that PD can be easily integrated into existing
ated with user-visits and the corresponding aggregate traffic bet®®M techniques, which already have built-in adaptation mecha-
reflects what a typical client experiences in real systems. They alasms [6, 13]. Because PD reduces the variability of aggregate traf-
show the effects of dependent traffic more clearly than looking at irfic, it will improve the stability and responsiveness of such mech-
dividual requests by themselves. In the context of user-visits, we uaaisms. Second, we have assumed that clients have unique IP ad-
three metrics to compare the performance of the drop polices: (1) tHeesses. This provided SLPD-IP with a clear advantage over the
mean successful visit delayhich measures the cumulative time forother schemes as it mimicked application-level admission control
a successful visit as described in Eq. (3), excluding the aborted visifmlicies. For this reason, we believe that its performance numbers
(2) the probability of a successful visitvhich reflects the sensitiv- are overstated, but still performs well when controlling large aggre-
ity of dependent traffic to packet drops, and (3) dfiective arrival gate traffic as classification errors can be better tolerated. Finally,
rate, which looks at the change in arrival rate as the drop probabilitwhile our technique seems less effective in controlling or defending
is varied. against DDoS attacks, it is indeed not more vulnerable than tradi-

Figures 8(left) and (center) plot the expected delay and successnal rate-based techniques. The vulnerability of our scheme is only
probability for the various drop policies. They also show the perforapparent in the choice of the hash function. This can be easily over-
mance of a stateless PD that uses a client-level hashing metric (H&¢pme by using more secure hash functions that an adversary cannot
referred to as SLPD-IP. Our analytical predictions for the expecteskploit. All that a DDoS attack can do is to increase the amount of
user-visit delay were consistent with the measured values and ontitaffic, which may force the controller to use a largéwvalue. This
ted to reduce graph clutter. The figure clearly shows the advantaigeno different from traditional control mechanisms.
of PD, especially on the mean visit delay due to its additive nature
(Eq. (3)). We note that while the delay seems to be decreasing 8s REL ATED WORK

p > 0.6, itis only an artifact from having user-visits with fewer par- Several recent studies have focused on characterizing aggregate
allel connections that are actually succeeding. Eventually, all visi(is 9 agyreg

are aborted by the client and are represented by a zero-valued p Eﬁp'.c during FCEs [23.’ 21]: Lookmg_at the broade_:r SCope, earher_
in the figure. Studies can be categorized into empirical characterization or analyti-

Figure 8(center) shows how user visits are sensitive to connectioca-II modeling of TCP traffic. Meagurem_ent studies_ suchas|[1,10,11,
§2, 35, 28], to name a few, have investigated the impact of TCP con-

level and random dropping policies since a visit is successful on X . ;)
if none of its requests times out. This sensitivity is reduced whe estion control on the behavior of underlying traffic (e.g., through-

: ; : o -put, variance, self-similarity). On the other side of the spectrum, the
client-level dropping (SLPD-IP) is performed, which is apparent i} : X
the linear relationship between success probability and the effecti\a}gthors of [15, 30, 31, 34, 5, 1§] presentgd analytical character_lza-
timeout probability. In effect. SLPD-IP is berformina a form of low- tions of the throughput of TCP’s congestion control as a function

P Y- ' P 9 gf RTT and packet loss probability. We view our proposed client

level admission control, which maximizes the performance of th . ; . -
. model as a direct extension to earlier ones, however, with the focus
controller. Unfortunately, SLPD-IP has the least fairness among our - ; . :
the interaction between active traffic controls and the aggregate

PD implementations as it targets entire clients. As mentioned earli(ﬁt’? havior of incoming requests. We have taken a bottom-up approach
unless care was taken to deal with NAT and proxy servers, SLPD- . ning req . P app
where we investigated both the influence of low-level network pro-

may unintentionally block a large number of clients, ocols as well as high-level application mechanism on the behavior
Figure 8(right) shows how the aggregate traffic changes among the : g PP
. e ; . ~_[or persistence) of clients.
different policies. Two important points should be observed. Firs

because the source traffic model is highly dependent, the aggreg tIn general, our analysis is based on a different model of client

traffic, A, decreases as the effective timeout probabifity, is in- e%awor where we introduced the concept of persistent clients to

creased. Our analytical model assumed independent traffic sour: |§§tilér§ir%?a?z)nawéise-?r:acr:fnénzeetrrwilrjssc)rlrlljltsiglr(l)snzhcgl;rsrgzli;gs(-)lgle?scé d
and is, thus, not suited for predicting in this case. Second, for 4 9

any givenp®, we can see the dramatic improvement in using angueueing ((.:BQ) [14], Active Q_L_Jeu_e Management (AQM) [6, .13‘
of the PD policies compared to a rate-based drop policy. From thal’ and Explicit Congestion Notification (ECN) [12] where we aim

297

to improve the performance of the underlying network. Our work[9] A. Feldmann, “Characteristics of TCP Connection Arrivals,” in
complements these solutions by specifying the exact mechanism for Self-Similar Network Traffic and Performance Evaluation (K. Park, W.
minimizing connection-establishment latency in the presence of ac- Williner, eds.) Wiley-Interscience Publication, New York, 2000.

tive packet dropping by routers or end-servers. [10] A.Feldmann, A. Gilbert_, W. Willinger, and T. Kurtz, “The Changing
P pping by or end-servers Nature of Network Traffic: Scaling Phenomen&dmputer

Communication Reviewol. 28, no. 2, April 1998.

6. CONCLUSIONS [11] A.Feldmann, A. C. Gilbert, P. Haung, and W. Willinger, “Dynamics of

We characterized the dynamics of persistent clients in aggregate P Traffic: A Study of the Role of Variability and Impact of Control,”
traffic. In particular, we showed that client’s persistence, which i n Procee?mgs of the AQM SIGCOMM 999.9.9’ Pp- 3,01_313'

, . . 12] S. Floyd, “TCP and Explicit Congestion NotificatiolACM Computer

d_u_e mostly to TCP’s congestion control, has a direct effectonthe sta-" - munication Reviewol. 24, no. 5, pp. 10-23, 1994.
bility and effectiveness of traffic control mechanisms. Based on thes; s Fioyd and V. Jacobsen, “Random Early Detection Gateways for
analysis of real clients, we constructed an accurate model of client's * congestion Avoidance ACM/IEEE Trans. on Networkingol. 1,
persistence and used the model to derive the optimal drop strategy no. 4, pp. 397-417, 1993.
for controlling aggregate traffic. Furthermore, we proved that pefi4] S. Floyd and V. Jacobson, “Link-sharing and Resource Management
sistent dropping yields the lower bound that an AQM technique can Models for Packet Networks[EEE/ACM Transactions on
achieve in reducing the effects of packet drop on client-perceived_ Networking vol. 3, no. 4, pp. 365-386, August 1995.
delay and on the effective arrival rate. We presented two working® S: Floyd. M. Handley, J. Padhye, and J. Widmer, “Equation-Based

implementations of persistent dropping based on hash functions that Egr’:/lgesslg?och/cl)&trlglofo;Lér&ca:fjgﬁsalgggghs, Rroceedings of the

can be deployed in routers or end-servers. ~ [16] G.J.Hahn and S. S. Shapitatistical Models in Engineering John

Persistent dropping can be considered as a low-level admission” wjiley and Sons, Inc., 1976.
control policy. No application-level support is required for the cor{17] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the Performance
rect operation of persistent dropping. In particular, when connection- of HTTP Over Several Transport ProtocollEfEE/ACM Transactions
level classification (H2) is performed, persistent dropping does not on Networkingvol. 5, no. 5, pp. 616-630, November 1996.
violate any end-to-end semantics and, at the same time, achieve f8 C. Hollot, V. Misra, D. Towsley, and W. Gong, "A Control Theoretic
same control targets as the traditional rate-based control. Further- Anaysis of RED,"inProceedings of the IEEE INFOCOM 20@001.
more, the improvement in the connection-establishment latency dc;ég] V. Jacobson, Conge’stlon Avoidance and Control Pioceedings of

. - . L . the ACM SIGCOMM ’'88August 1988.

not interfere with _hlgher-level ad_mlsslon control meqhanlsms. @) 0] H. Jamjoom and K. G. Shin, “Eve: A Scalable Network Client
the other hand, client-level classification (H1) does violate the end- ~ gmyjator” University of Michigan Technical Report, Tech. Rep.
to-end argument, and it is presented here to show the full poten- CSE-TR-478-03, 2003.
tial of an intelligent dropping mechanism in routers. One can argye1] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash Crowds and
that connection-level controls should be avoided in routers and left Denial of Service Attacks: Characterization and Implications for
to the end-servers. We addressed this exact issue by showing that CDNs and Web Sites,” iRroceedings of the 11th International World
in some high-congestion cases, such as FCEs, routers are forcif th Wide Web Conferengélonolulu, Hawaii, May 2002.
drop new connection requests. Our technique provides an opti gfl) Lemon, "Resisting SYN Flood DoS Attacks with a SYN cache,” in

. BSDCon 2002Feb 2002.
way to achieve quick convergence to the control targets with m|nf23] R. Manajan, S. M. Bellovin, S. Floyd, J. loannidis, V. Paxson, and

mal intrusion on successful connections. S. Shenker, “Controlling High Bandwidth Aggregates in the Network,”
in SIGCOMM Computer Comm. Reviewel. 32, no. 3, July 2002.
7. ACKNOWLEDGEMENTS [24] F. Marie, “Netfilter Extensions HOWTO,” http://www.netfilter.org.

We gratefully acknowledge helpful discussions with, useful com[-2 ol ;’r&%%léli’nébgf t?]/éng\gﬁ Z%yggrpﬂﬁénzggeza ! Fl)\lpetévé)égl;n

ments from, and the support of Padmgnabhan Pillai, Haining Warpgs] J. C. Mogul, “The Case for Persistent-Connection HTTP.” in
and Brian Nobel. The work reported in this paper was supported proceedings of the ACM SIGCOMM '95995, pp. 299-313.
in part by the Saudi Ministry of Higher Education and NSF unde[27] J. C. Mogul and K. K. Ramakrishnan, “Eliminating Receive Livelock
Grant CCR-0216977. in an Interrupt-Driven Kernel, Transactions on Computer Systems
vol. 15, no. 3, pp. 217-252, August 1997.
[28] R. Morris and D. Lin, “Variance of Aggregated Web Traffic,” in

8. REFERENCES Proceedings of the IEEE INFOCOM 200@l. 1, 2000, pp. 360—366.
[29] D. P. Olshefski, J. Nieh, and D. Agrawal, “Inferring Client Response
[1] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and Time at the Web Server,” iRroceedings of the ACM SIGMETRICS
R. Katz, “TCP Behavior of a Busy Internet Server: Analysis and '02 ConferenceMarina del Ray, CA, June 2002.
Improvements,Proc. of IEEE INFOCOM '98March 1998. [30] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
[2] P.Barford and M. Crovella, “Generating Representative Web Throughput: A Simple Model and its Empirical Validation,” in
Workloads for Network and Server Performance Evaluationlhin Proceedings of the ACM SIGCOMM '98998, pp. 303-314.
Proceedings of Performance’98/ACM Sigmetrics'®8ay 1998, pp. [31] J. Pahdye and S. Floyd, “On Inferring TCP behavior,Pioceedings
151-160. of the 2001 conference on applications, technologies, architectures,
[3] N.L.Biggs, Discrete Mathematics Oxford University Press, New and protocols for computer communicationsACM Press, 2001.
York, 1989. [32] V. Paxon, “End-to-end Internet Packet Dynamics,Pioceedings of
[4] B. Bradenet al., “Recommendations on Queue Management and the ACM SIGCOMM 971997, pp. 139-152.
Congestion Avoidance in the InterneRFC 2309 1998. [33] J. Postel, “RFC793: Transmission Control Protocifomation
[5] N.Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” in Science InstituteSeptember 1981.
Proc. of the IEEE INFOCOM 20Q@000, pp. 1742-1751. [34] S. Sahu, P. Nain, C. Diot, V. Firoiu, and D. F. Towsley, “On Achievable
[6] W. chang Feng, D. Kandlur, D. Saha, and K. G. Shin, “The BLUE Service Differentiation with Token Bucket Marking for TCP,” in
Active Queue Management Algorithm$EEE/ACM Trans. on Measurement and Modeling of Computer Syste2@80, pp. 23-33.
Networking vol. 10, no. 4, pp. 67—-85, September 2002. [35] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level Analysis
[7] L. Cherkasova and P. Phaal, “Session Based Admission Control: a and Modeling of Network Traffic,” irProceedings of the ACM
Mechanism for Improving Performance of Commercial Web Sites,” in SIGCOMM Internet Measurment Workshdfpvember 2001.
Proceedings of Seventh IWQoSEEE/IFIP event, May 1999. [36] H.Zhang and D. Ferrari, “Rate-Controlled Static Priority Queueing,”
[8] T.H.Cormen, C. E. Leiserson, and R. L. Rivesitroduction to in Proc. of the IEEE INFOCOM 1993an Francisco, 1993, pp.
Algorithms The MIT Press, 1990. 227-236.

298

