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ABSTRACT

Flash crowd events (FCEs) present a real threat to the stability of
routers and end-servers. Such events are characterized by a large and
sustained spike in client arrival rates, usually to the point of service
failure. Traditional rate-based drop policies, such as Random Early
Drop (RED), become ineffective in such situations since clients tend
to be persistent, in the sense that they make multiple retransmission
attempts before aborting their connection. As it is built into TCP’s
congestion control, this persistence is very widespread, making it
a major stumbling block to providing responsive aggregate traffic
controls. This paper focuses on analyzing and building a coherent
model of the effects of client persistence on the controllability of ag-
gregate traffic. Based on this model, we propose a new drop strategy
calledpersistent droppingto regulate the arrival of SYN packets and
achieves three important goals: (1) it allows routers and end-servers
to quickly converge to their control targets without sacrificing fair-
ness, (2) it minimizes the portion of client delay that is attributed
to the applied controls, and (3) it is both easily implementable and
computationally tractable. Using a real implementation of this con-
troller in the Linux kernel, we demonstrate its efficacy, up to 60%
delay reduction for drop probabilities less than 0.5.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Flash
Crowds; C.4 [Performance of Systems]: Modeling Techniques

General Terms

Management, Performance
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Queue Management, Flash Crowd Events, Modeling, Optimization

1. INTRODUCTION
Flash crowd events (FCEs) and distributed denial of service (DDoS)

attacks have received considerable attention from the mass media
and the research community. They are characterized by a large and
sudden increase in demand for both the network and end-server re-
sources. Similar to natural disasters, both phenomena are relatively
infrequent but leave devastating damages behind. Their initial effect
is a dramatic reduction in service quality to clients sharing the net-
work and the server. Even worse, sustained overload can bring net-
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works and especially end-servers to a complete halt. The cause of
this overload need not be intentional nor need be originated by ma-
licious clients or applications. FCEs, unlike DDoS attacks, are gen-
erally caused by a very large number of legitimate users all targeting
the same network or server. Their sheer traffic volume exhausts any
available network and server resources. In addition to high arrival
rate, there is a second cause that is commonly overlooked, namely,
the persistence of individual clients accessing the server. We show
that persistent client behavior, ultimately rooted into TCP congestion
control, can be responsible for increasing the aggregate traffic in an
FCE by two folds. We also describe the internal dynamics of persis-
tent clients with the goal of improving existing router and end-server
controls to better handle client persistence.

This paper focuses on the control of aggregate traffic destined for
web servers, which are the targets of flash crowds. Unlike video
or audio traffic, web servers are generally dominated by short-lived
connections. Our approach differs from recent studies [2, 9, 25, 32],
where aggregate traffic is treated as a black-box and is character-
ized with inter-arrival time, round-trip time, time-scale dynamics,
etc. Instead, we look inside the box to characterize the behavior of
the building blocks of the aggregates, namely, the individual clients.
Similar to [1, 7, 17], we are interested in exploring the interactions
between clients, the network, and the end-server. We observe the
existence of a hierarchy of factors contributing to the behavior of
clients in FCEs. This has led us to a new model — which we call
persistent clients— that is different from traditional models in that
clients do not simply go away when their requests are dropped. In-
stead, they keep trying until they succeed or eventually quit. Based
on this new observation of client persistence, we build a coherent
picture detailing the expected behavior of the entire aggregate. We
found that this unfolds several unexpected behaviors of aggregate
traffic during overload.

Several research efforts have focused on the detection of, and/or
protection from, FCEs and DDoS attacks. In particular, Aggregate-
based Congestion Control (ACC) is introduced to deal with such at-
tacks by limiting the rate of (large) aggregate traffic at the routers to
reduce the impact of the added load on the underlying network and
end-servers [21, 23]. We observed, however, that the reaction of the
underlying traffic to a rate-limiting policy can, and often will, reduce
the effectiveness of the applied control. This can be better explained
by decoupling aggregate traffic into two elements. The first element
describes how existing or on-going connections react to the applied
controls; the second element describes how the arrival of new con-
nections is affected by the applied control. We find that the com-
bination of TCP’s reaction to packet loss (first element) — namely,
retransmitting after timing out — with the arrival of connection re-
quests from new clients (second element) has an additive effect that
is not accounted for by current traffic controllers. To improve the
controllability of FCEs, we advocate the classification of incoming
connection requests (into new SYN packets and retransmitted SYN
packets) and applying specialized controls to each traffic class — a
similar concept to [36].

Through the specialization of control, we are able to focus on new
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connection requests, the main ingredient of an FCE. We are also able
to take into account the persistence of clients accessing the server.
We proposepersistent dropping (PD), an effective control mecha-
nism, which we prove to minimize the client-perceived latency as
well as minimize the effective aggregate traffic (includes new and
retransmitted connection requests) while maintaining the same con-
trol targets as regular rate-control policies. PD randomly chooses a
number of requests based on a target reduction in the effective ag-
gregate traffic arrival rate and systematically drops them on every re-
transmission. PD is well suited for controlling aggregate traffic as it
achieves three goals: (1) it enables routers and end-servers to quickly
converge to their control targets, (2) it also minimizes the portion of
client delay that is attributed to aggregate control by Internet routers
and end-servers while maintaining fairness to all packets, and (3) it
is both easily implementable and computationally tractable. We em-
phasize that PD complements, but does not replace, existing control
mechanisms that are optimized for controlling already-established
TCP connections [6, 13]. We also emphasize that PD does not in-
terfere with end-to-end admission-control policies as it represents an
optimization of existing queue management techniques.

The contributions of this paper are fourfold. First, we analyze
the dynamics of the internal mechanisms of individual clients during
an FCE. Second, we show that the arrival of new users is not the
only cause of FCEs, but also show that the persistence of individual
clients plays an important role, which is further exacerbated by the
allowed parallelism of web browsers. Because requests are originat-
ing from legitimate clients, our measurements emphasize that SYN
packets are the main contributing factor in FCEs; those already-
established connections have limited contributions. This is different
from DDoS attacks, where the adversary has the capability of spoof-
ing any packet that is injected in the network. It is also different
from the traditional view of network traffic where the majority of
packets belong to established connections. Third, we examine the
controllability of aggregate traffic and the shortcomings of existing
control mechanisms in the context of SYN packets being the main
cause of FCEs. Finally, we propose PD, an efficient mechanism for
controlling traffic aggregates.

This paper is organized as follows. We first look at the anatomy
of persistent clients in Section 2, where we focus on the behavior of
real clients during FCEs, isolate the factors that impose real threats
in an FCE, and combine these factors together to create a coherent
model of persistent clients. We, then, propose a PD controller to deal
with persistent clients in Section 3. In Section 4, we experimentally
evaluate some performance issues. The paper ends with related work
and concluding remarks in Sections 5 and 6, respectively.

2. ANATOMY OF PERSISTENT CLIENTS
Many factors contribute to the persistence of clients, whereby the

client keeps trying to access the server (normally at a later time)
even after server overload or network congestion is detected. Some
factors of this persistence are embedded in the applications and pro-
tocols that clients use. These are not design flaws, but are often nec-
essary to the proper operation of clients, e.g., TCP congestion con-
trol. Other factors are due to purely human habits. We isolate five
(non-user related) factors that can affect the persistence of a typical
client’s access to a web server (Figure 1). In the process of analyz-
ing them, they are grouped in two separate categories: network-level
and application-level factors. While we only focus on non-user re-
lated factors, our proposed control mechanisms ultimately reduce the
client-perceived latency; this indirectly reduces the impact of user-
related factors as, for example, users are less inclined to press the
reload button on their web browsers.

2.1 Persistence in Network Protocols
In this subsection, we investigate how the combination of TCP

Figure 1: Non-user related factors affecting FCEs.

congestion control and different queue-management techniques in
routers and end-servers may raise the severity of FCEs. We use a
simple model where a client issues a single Hyper-Text Transfer Pro-
tocol (HTTP) request using a separate TCP connection. This model
allows us to study a single TCP connection in isolation. Conse-
quently, our findings fit well with clients implementing the HTTP
1.0 specification. In Section 2.2, we extend our results to HTTP 1.1
clients, where several HTTP requests can be multiplexed into a sin-
gle connection.

Consider what could happen to our simple client’s request during
an FCE. Before examining the consequences of the request packets
being dropped by routers or end-servers during the various stages
of the request processing, we outline the stages that a successful
request must go through before completion. The first stage of re-
quest processing is the three-way handshake. In this stage, the client
sends a SYN packet to the server by performing anactive open. The
server then performs apassive openby queueing the SYN packet in
a global backlog queue (with possibly per-application-port quotas)
where proper structures (e.g.,skbuff in Linux) are allocated and a
SYN-ACK packet is sent back to the client. At this point, the con-
nection at the server is said to behalf open. In most operating sys-
tems (OSs), SYN packets are processed in the kernel independently
from the corresponding application. Upon receiving the SYN-ACK
packet from the server, the client sends an ACK packet followed
immediately (in most implementations) by the request’s meta-data.
At the server, the client’s ACK causes the half-open connection to
be moved to the listen queue for processing by the application. Data
packets are then exchanged between the server and the client to com-
plete the request; the connection is optionally closed.

During overload, packets are lost due to any of the three types
of queues filling up: router queues, server SYN backlog queues,
and server (or application) listen queues. Packet drops by differ-
ent queues may trigger different reactions from the client as part of
recovery from packet loss. Here we consider loss of packets on the
path from the client to the server. An equivalent behavior occurs on
the reverse direction; it is omitted for space consideration.

2.1.1 Packet Drops at Router Queues

When router queues fill up and packets are dropped, the request
can be in the connection-establishment stage or the connection has
already been established. In the first case, each time a SYN packet
or its corresponding response is lost, an exponentially-increasing re-
transmission timeout (RTO) is used to detect the packet loss and the
SYN packet is retransmitted.1 The RTO values used by different
client OSs are listed in Table 1. Established connections, in the lat-
ter case, detect and recover from packet loss in ways that are more
complex. These have been investigated by several studies, both em-

1Most TCP stack implementations follow Jacobson’s algorithm [19, 33],
where a SYN packet that is not acknowledged within an RTO period is re-
transmitted, but with the previous RTO period doubled. This is repeated until
the connection is established or until the connection times out, at which point
the connection is aborted.
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Table 1: Retransmission behavior for different OSs. The measurement assumes default OS configuration. Some parameters such as
the timeout before the connection is aborted, can be dynamically configured.

pirically and analytically — e.g., in [5, 30, 31].
To better understand the dynamics of FCEs, we extend some of

the results in [5] that pertain to connection establishment. We fol-
low the same modeling assumptions in [5] and build on its esti-
mate of the connection-establishment latency. We, thus, assume that
end-points adhere to a TCP-Reno style congestion control mecha-
nism [19]. However, to draw general conclusions for the entire ag-
gregate, we must also characterize the arrivals of new connection
requests, namely, their interarrival times areindependently and iden-
tically distributed (i.i.d.), and are exponentially distributed. Assum-
ing i.i.d. implies that dropping one request packet does affect the
arrival of future request packets. This matches well the observation
that clients behave independently. It, however, does not consider
the inter-dependency between requests from a single client. This is
considered in Section 3. Based on these two assumptions and el-
ementary queueing theory, one can also show that SYN-ACKs on
the reverse direction have the samei.i.d. distribution. Furthermore,
under a uniform drop policy (i.e., incoming requests are dropped
with an equal probability), the retransmitted requests havei.i.d. and
exponentially-distributed interarrival times.

For a new connection, consider the retransmission epochs of a
dropped SYN packet asTi, wherei = 0; : : : ; n represents the num-
ber of times the corresponding SYN packet has been dropped andn
is the maximum number of attempts before aborting a connection.
Let Tabort be the maximum time a connection waits before abort-
ing. Note thatTn � Tabort. Since FCEs causes congestion on the
path from the client to the server, we also considerp as the drop
probability in the forward direction. Extending the results to include
drops in the reverse direction is trivial and omitted for space consid-
eration. The expected connection-establishment latencyELh can be
expressed as:

ELh =
nX

j=0

[pj(1� p)(Tj +RTT )] + pn+1Tabort; (1)

wherepn+1 is the probability that the connection times out andRTT
is the mean round-trip time. The first term, then, represents expected
latency of successful connections, or(1� pn+1)E[Lhjx succeeds],
which was derived in [5]. By the independence assumption, it can
be easily shown thatELh is also the mean expected connection-
establishment latency of all requests.

Under our network model, we also derive�, the effective or ag-
gregate arrival rate of SYN packets. This aggregate is a collection
of newly-transmitted requests and retransmission of the previously-
dropped ones. It is divided into multiple streams, each represent-
ing the number of transmission attempts ortransmission classof the

corresponding connections. We denote thei.i.d. stream of initial
transmission attempts by�0 (i.e., SYN packets on their first trans-
mission), the stream of first retransmissions by�1, up to�n. Then,
the effective mean arrival rate� is:

� = �0 + �1 + � � �+ �n

= �0 + p�0 + p2�0 + � � �+ pn�0 =
1� pn+1

1� p
�0: (2)

Notice the simple relationship between the arrival rates of the dif-
ferent transmission classes. For example, the arrival rate of the first
retransmission class,�1, is just the arrival rate of the initial trans-
missions,�0, times the drop probabilityp. Based on Eq. (2), a 50%
drop at the router will, in theory, increase the amount of new con-
nection requests by 75%.2 In fact, Eq. (2) shows that a typical rate
controller only causespn+1�0 connections to time out; for the rest,
increasing the number of retransmissions has a substantial impact on
client-perceived delay as shown in Eq. (1). We argue that this prob-
ability, which we call theeffective timeout probability(p�), reflects
the true impact of the control mechanism on the underlying traffic.

The above illustrates that random dropping may not be well-suited
for FCEs, and an alternative technique is needed. In Section 3, we
present a better technique for controlling FCEs with minimal impact
on connection-establishment latency.

2.1.2 Packet Drops at SYN Backlog Queues

When the backlog queue at the server fills up, the server can be
configured to drop incoming SYN packets, which triggers a simi-
lar retransmission behavior as discussed above. The server can also
be configured to send SYN cookies to the client. A SYN cookie is
simply a method for the server to avoid storing any state for half-
open connections. In this case, a challenge is sent to the client and
upon its return, the server can establish the connection as if the orig-
inal SYN packet was queued properly in the backlog queue. The
challenge is encoded in the TCP’s sequence number and, thus, does
not require any client modification. When SYN cookies are lost, the
client times out and retransmits the request as described above. SYN
caches are an alternative method to SYN cookies, which allow the
server to store a large number of SYN packets by simply delaying
the creation of connection data structures until the three-way hand-
shake is completed [22]. Depending on the size of the cache and the
arrival rate, SYN caches can fill up just like SYN backlog or router
queues. Table 1 shows the OSs that support SYN cookies and SYN
caches.

2When all packets are dropped,� = (n+ 1)�0.
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Table 2: Parallelism of different browsers. Values obtained from accessing 250 different links from the top 25 websites. On average,
there was 21.2 unique objects and 71.2 non-unique objects per page (excluding any Java or JavaScript).

Both SYN cookies and SYN caches are effective in handling a
flood of SYN packets, the majority of which are spoofed (or fake).
The mechanism relies on the fact that only a small portion of the
SYN-ACKs will be replied back, after which the TCP connection is
fully established. When requests originate from legitimate clients,
both mechanisms increase the additional work on the end-server as
the resulting fully-established connections (from the clients’ per-
spective) are dropped due to insufficient room in the application lis-
ten queue. As we show shortly, this is true even if SYN packets are
not accepted when the listen queue of the application fills up.

2.1.3 Packet Drops at Application Listen Queues

Once application listen queues fill up, no connections can be es-
tablished and the backlog queue drops incoming SYN requests.3

However, some of the queued SYN packets can complete the three-
way handshake while the listen queue is full. In this case, the OS
typically drops the fully-established connections all together and op-
tionally sends a reset packet back to the client.

This introduces an important consequence of having a separate
SYN backlog queue that deserves careful examination. As explained
earlier, the backlog queue is generally independent of applications’
listen queues to increase the server’s resilience to SYN flood attacks
(Table 1). However, when the listen queue fills up, incoming SYN
packets destined for the corresponding application are dropped even
if there is room in the backlog queue. This is to avoid the situa-
tion where the three-way handshake is completed and the connection
must be dropped due to the lack of room in the listen queue. How-
ever, connections can still get dropped when a burst of SYN packets
arrive and the listen queue is almost full. All SYN packets in the
burst are queued in the backlog queue, but only a small portion of
the fully-established connections are moved to the listen queue, and
the rest are dropped.

Once a connection is dropped, the server may or may not send a
reset packet. As shown in Table 1, not sending a reset packet triggers
further retransmissions by the client. In fact, since RTO is based on
round-trip time (RTT) estimates, the client sends larger data packets
more often than when the SYN packet is dropped and the connection
is not allowed to complete. On the other hand, if a reset packet is sent
back to the client when the connection is dropped, the server cycles
between two phases. The first phase is when established connections
are dropped and reset packets are sent back to the client. The second
phase is when SYN packets are dropped and then retransmitted after
exponentially-increasing timeouts.

Depending on one’s view, connection dropping is either an accept-
able behavior that the server uses to shed load or an unacceptable be-
havior as it incorrectly drops clients’ completed connections. If the
latter view is taken, one can modify the TCP stack to completely

3This behavior was verified by looking at the actual source code of the Linux
and FreeBSD TCP stacks. For other OS implementations, we deduced this
behavior using stress testing of tools.

eliminate this behavior. Our proposed solution allows the listen
queue to temporarily grow beyond its specified limit to accept those
fully-established connections that would otherwise be dropped. Dur-
ing that period, no new connection requests are allowed to be queued
in the backlog queue. The listen queue is then allowed to decrease
until it becomes smaller than the originally-specified limit; at that
point, the backlog queue is allowed to accept new SYN packets.
With this technique, we are able to completely eliminate “illegal” or
undesirable dropping of fully-established connections. When devel-
oping our control mechanism, we assume that TCP stack implemen-
tation has been corrected, either using our approach or an alternative
one, to improve the consistency of the results and to simplify our
analysis.

2.1.4 Packet-level Analysis of FCEs

There still remains the question of whether connection requests
(i.e., SYN packets) or actual data packets are the main cause of
FCEs. Both of [21, 23] have characterized FCEs with a dramatic
increase in the number of clients accessing the server without iden-
tifying the type of packets that cause the overload. Because of insuf-
ficient availability of public traces, we used real emulation to deter-
mine the cause of the overload. We used a collection of ten machines
(500 MHz Pentium III, 512 MBytes RAM, and running Linux Ker-
nel 2.4) all implementing Eve [20], a powerful home-grown client
emulator that is able to emulate approximately 500 totally indepen-
dent clients per machine. We configured our clients to bombard
a single Apache 1.3 server (a 2.24 GHz Pentium 4 with 1 GByte
RDRAM connected to the client machine through a FastEthernet
switch) with a sustained request rate of up to 5000 requests/sec.
We also instrumented the server kernel to report both backlog and
listen queue behavior. This allowed us to observe — at the server
— the cause of the overload and the reaction of the server. As ex-
pected, queues behaved in a manner that is consistent with what we
described earlier and with [1, 27, 29]. Moreover, in our experiments
we did not observe any dramatic surge in reverse traffic (i.e., traf-
fic from the server to the client) especially when forward traffic is
increased well beyond the server’s capacity. In fact, the reverse traf-
fic was always limited by the server’s capacity, and the added load
was mainly in the forward path and was dominated by SYN packets.
This is due to the large numbers of new clients attempting to access
the server without prior knowledge of the network or the server’s
condition. Even though they are sending a small number of pack-
ets (including retransmissions), their sheer volume overwhelmed the
server. In Section 3, we show how to design a controller tailored
to the arrival of new clients and retransmissions of their dropped re-
quests.

2.2 Persistence in Client’s Parallelism
Almost all the web content is organized such that a main object

(or page) is first retrieved and followed by all of its embedded ob-
jects. Web browsers generally issue multiple requests to the em-
bedded objects in parallel to maximize the throughput and minimize
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the time of content retrieval. Even with the availability of persistent
connections in HTTP 1.1, where browsers are encouraged to use a
single connection to take advantage of TCP’s larger window size,4

parallelism is still used by most browsers. Traditionally, the added
aggressiveness of parallelism was analyzed from the perspective of
network bandwidth or server resource sharing [1]. In this subsec-
tion, we look at clients’ parallelism as a factor contributing to the
increase in the severity of FCEs since a single client can issue mul-
tiple independentconnection requests. As shown in Figure 1, there
exists an interplay between the client’s browser implementation and
the server’s content organization (or encoding) that determines the
degree of parallelism, and hence, the aggressiveness of the clients.
On the server side, having many embedded documents forces clients
to issue multiple HTTP requests (not necessarily in parallel). We
have found from our experiments that there are an average of ap-
proximately 21 unique objects embedded in each page. Browsers on
the client’s side are free to request these objects using separate con-
nections in parallel, series, or in a single connection using persistent
connections in HTTP 1.1.

To investigate this issue more thoroughly, we analyzed the behav-
ior of five popular browsers on two platforms, Linux (Kernel 2.4)
and Microsoft Windows 2000. We focused on each browser’s de-
gree of parallelism, how the parallelism changes with different web
content, and how each reacts to packet loss during the retrieval of the
primary or the embedded web content. Ten random links from the
top 25 websites5 were used to test the five browsers. Each browser
was configured to request the same 250 links. An intermediate ma-
chine runningtcpdumpwas used to intercept and record all packets
to and from the server. To improve the consistency of our results, we
cleared the data cache after every visited page. Furthermore, each
browser was configured to fetch the set of links 5 times over various
times of the day. This way, we also minimize the effects of the time
of day on our conclusions. We note, however, that there is a large set
of configurations for each browser. Testing all of them would require
long hours of manual labor. We, thus, used the default values as the
basis for our conclusions.

Table 2 summarizes the parallelism of the different browsers. We
derived these numbers by careful analysis of the generated logs. Our
log analyzer kept track of connection start and end times by iden-
tifying the corresponding SYN, FIN, or reset packets. We were
conservative in making measurements since we considered a con-
nection terminated if it remains idle for 500 msec, which is roughly
5 times the average RTT value. Here we assumed that the imple-
menter did not bother to close the connection before issuing a new
one. The table shows (among other things) the statistical averages
for the number of parallel connections and their interarrival times.
The computed values are based on arrival epochs of new connec-
tions; they are not time averages. That is, each time a new con-
nection is detected, a snapshot of the system is taken and based on
their ensemble, the averages are computed. Table 2 also shows the
mean number of HTTP requests per TCP connection, which is the
number of per-page unique objects divided by the number of issued
HTTP requests. We chose to use the number of unique objects as
we assume browsers perform some intelligent caching. Our reported
numbers are, thus, conservative since, in addition to using the num-
ber of unique objects, they also do not include any additional objects
requested by any embedded Java applets or JavaScripts in the page.

Several conclusions can be drawn directly from the table.

4By using a single connection to request multiple objects, the TCP window,
in theory, grows to match the throughput of using multiple short connections
in parallel [26].
5Website rankings were based on a the December, 2002 statistics from
Nielsen Netratings (www.nielsen-netratings.com).

Figure 2: Internet Explorer 6.0 browser distributions: (top) dis-
tribution of parallel connections and (bottom) distribution of in-
terarrival times. Both are approximated by the Weibull distri-
bution with parameters in Table 2. In the bottom graph, the
distribution converges to 1 after 4500 msec. We truncated the
plot to magnify the important region.

C1. Even with the availability of persistent connections, browsers
tend to use HTTP 1.0-style connections. This can be seen in
values for the average requests per connection where a value
that is close to 1 indicates a single connection is used to re-
quest a single page. This is also confirmed by comparing the
average duration of a connection with the average interarrival
times. Values that are close to each other imply that a browser
is issuing a new connection as soon as an old one finishes.

C2. Browsers are configured with a specific maximum number of
parallel connections. By pipelining their requests (C1), they
try to maintain this maximum value when more objects need
to be obtained.

C3. There is an initial burst of connections after obtaining the main
page. The size of this burst is not the maximum allowed
value described in C2; otherwise, the average interarrival time
should be close to its minimum value. After the initial burst,
browsers tend to space their parallel connections by an order
of hundred milliseconds, roughly, the average time of com-
pleting a single request.

The last two points can be verified further by inspecting the distri-
butions of the number of parallel connections and their interarrival
times. These are shown in Figure 2 as Cumulative Distribution Func-
tions (CDF). We only plotted the distributions for Internet Explorer
(IE) 6.0 because of space limitation. A value on the ordinate (y-
axis) of the top graph, for instance, should be read as the probability
of having a maximum ofx parallel connections, wherex is drawn
from the abscissa (x-axis). Both plots, then, confirm the behaviors in
C2 and C3. We first note that because measurements of the number
of parallel connections are taken at the arrival epochs of new con-
nections, the computed average should approximately be a half of
the allowed maximum when the maximum allowed number of con-
nections is close to the number of embedded objects. For example,
if there are 18 embedded objects and the maximum allowed num-
ber of parallel connections is 15, then we have the following set of
measurements:f1; 2; 3; : : : ; 15; 15; 15; 15g, which yields an aver-
age value of(1 + 2 + � � �+ 15 + 15 + 15 + 15)=18 = 9:17. Here,
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Figure 3: Persistent client model.

once we reached the maximum, the remaining three objects had to
wait for three other connections to complete. This is the observed
parallel behavior in Figure 2. The figure also verifies C3. It shows
that 50% of the connections arrive less than 50 msec apart, but the
bulk are spaced a few seconds apart.

Using standard distribution fitting techniques [16], we are able
(in most cases) to approximate both parallel and interarrival distri-
butions using the Weibull distributions with parameters detailed in
Table 2. By observing the large variations in the distribution param-
eters, we find that no concrete conclusion can be drawn from our
measurements regarding the exact distribution of browser behavior.
Specifically, we observe that different times of the day produce large
variations, which is probably due to changing server and network
loads. As we show in Section 2.3, instead of using analysis of vari-
ance techniques to describe browser behavior under different load
scenarios, we construct a simple model of their internal mechanisms.
This model allows us to draw direct conclusions on the optimal way
of controlling web clients.

Based on Table 2, we see the benefits of persistent connections
in HTTP 1.1. This is shown in the large difference between the av-
erage number connections per page for IE 6.0 and Mozilla 1.2, and
the other three browsers. There is, however, one caveat in using per-
sistent connections: it may cause servers to run out of available file
descriptors much faster than requiring connections to terminate after
each request [21]. Once the application runs out of file descriptors, it
no longer is able to accept additional connections, which causes the
listen queue to fill up. To combat this problem, the server can dy-
namically reduce the keep-alive timeout in HTTP 1.1 as the number
of descriptors approaches the maximum capacity.

Finally, we also tested the reaction of browsers to packet loss. We
instrumented (usingiptables) an intermediate machine to drop
packets after the main object is fetched. Consequently, all browsers
abort the client’s request (after one of the parallel connections times
out) and display an error dialog box.

2.3 Modeling of Persistent Clients
Creating accurate models of web clients is not an easy task. Sev-

eral studies have empirically studied the interaction between the client,
network, and end-server to characterize the dynamics of underlying
traffic [2, 10, 11]. Unfortunately, such studies often lack the clients’
response to different control policies, which is the main ingredient
for constructing effective controllers.

We are faced with the question of whether an effective traffic con-
troller can be built without exact knowledge of client behavior. We
argue that an optimal controller can be realized by approximating
the internal structure of web clients. The model of persistent clients
is presented in Figure 3; it captures the following four important el-

ements.

E1. Individual clients are independent of each other, and a client’s
requests are grouped intovisits. Each visit represents a client
accessing a web page and its entire content. Requests within
a visit are correlated by the completion of the initial page that
contains all the embedded links.

E2. Once the main page is fetched, a batch ofl parallel connec-
tions with probability distributionfm(l) are created to request
the embedded objects with arrival distributionfa(t). We do
not specify the exact distributions forfm(l) or fa(t), but in
our subsequent derivations, they are assumed to be indepen-
dent and have finite means. Moreover, the retransmissions of
lost packets from parallel connections are independent as long
as none of the connections is aborted.

E3. The expected visit completion time,EV , is the sum of the
time it takes to fetch the initial page and the longest finish
time of all parallel connections. Formally, considerp� as the
effective timeout probability,q� = 1 � p� as the probability
of success,m as the expected number of parallel connections,
and
 as the mean interarrival times of the parallel connec-
tions. Also, considerETc as the expected latency for com-
pleting a single request (we consider better estimates forETc
in Section 3.3). Then,

EV = p�Tabort+ (3)

q� [ETc + (1 � (q�)m)(Tabort +	) + (q�)m(ETc +	)] :

The second term in Eq. (3) estimates the expected delay when
the first page is fetched successfully. The term(1 � (q�)m)
represents the probability that at least one of them connec-
tions times out and	 = m
 is the approximate overhead
of launchingm parallel connections. Thus, the last product
term in Eq. (3) is the expected delay for completing the par-
allel requests. It is derived by taking the expectation of their
maximum completion time.

E4. A client may visit multiple pages within a web server before
leaving the server. This is often referred to as auser session.
The expected session time can be estimated in a manner simi-
lar to E3; it is omitted for space consideration.

In the absence of packet loss, our model is consistent with ear-
lier ones (Observed Behavior in Figure 3) where it is assumed that
a client sends a batch of closely-spaced connection requests (active
period) followed by a relatively long period of user think time (inac-
tive period) [2]. Our distributions have similar characteristics to the
ones in [2, 9, 11] with very different distribution parameters. Our
model, however, captures the effects of the applied control, which
we use to construct an optimal controller.

3. CONTROLLABILITY OF PERSISTENT CLIENTS
Client persistence imposes an added challenge to the controllabil-

ity of aggregate traffic. If a router or end-server is operating near or
at full capacity, then any slight increase in load will trigger dropping
of requests. These persistent requests, upon their retransmission,
will set off further drops, creating a vicious cycle of drops caus-
ing future drops. Repeated dropping also dramatically increases the
client-perceived latency as it may require several timeouts before a
client successfully establishes a connection.

A traffic controller that drops incoming requests must, therefore,
deal with its retransmission in the future. To this end, we introduce
persistent dropping, a new drop strategy that chooses a small num-
ber of requests based on a target timeout probability and systemat-
ically drop them on every retransmission. We show that this drop
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Figure 4: Illustrative comparison between rate-based dropping and PD. We view the outgoing link as a smaller pipe than the stream
of incoming requests. We then show how the two strategies drop incoming requests to fit them into the pipe.

policy minimizes the client’s expected response time, the number
of retransmissions, and the bandwidth requirement of the aggregate
traffic. We also show that this technique does not affect the fairness
of the control policy.

3.1 Persistent Dropping
Consider an Active Queue Management (AQM) technique that

drops incoming SYN packets with probabilityp. Here, we do not
consider how other packets are treated, andp is set in accordance
with the underlying AQM technique. For instance, if packets are
dropped in routers using RED, thenp is based on dynamic measure-
ments of queue lengths [13]. We, thus, viewp as the percentage of
packets that must be dropped regardless of how it is chosen. Given a
target drop probabilityp (or equivalently, an effective timeout prob-
ability, p�, as described earlier), our goal is to find the optimal drop
policy that minimizes the effective arrival rate,�, and connection-
establishment latency,ELh. We base our development on the same
network model introduced in Section 2, and still do not consider
the parallelism of individual clients. This will be addressed in Sec-
tion 3.4.

Traditionally, a control policy that drops aggregate traffic with
probability p does not take into account the transmission class of
individual connections. Consider here a different mechanism that
associates a drop probabilitypi with each transmission classi. In or-
der to assign these probabilities, we assume that incoming requests
are classified into their corresponding transmission classes; we show
later how this can be achieved. Let us rewrite the aggregate arrival
rate,�, in Eq. (2) using the per-class drop probabilitiespi’s:

� = �0 + p0�0 + p0p1�0 + � � �+

 
n�1Y
i=0

pi

!
�0: (4)

Notice here that the effective timeout probability isp� =
Qn

i=0 pi.
For a traditional rate control policy, all requests are dropped with an
equal probability (orpi = p for all i), implying thatp� = pn+1

(consistent with the results in Section 2.1).
To minimize the connection-establishment latency of clients, we

start by writing the probability mass function of the connection-
establishment latency using the per-class drop probabilities:

PfLh(x) = tg =

8>><
>>:

(1� p0) if t = T0 +RTTQi�1
j=0 pj(1� pi) if t = Ti +RTT , 1 � i � nQn
j=0 pj if t = Tabort

0 otherwise.
(5)

whereTi is the time of theith retransmission,T0 = 0 is the time
of the initial transmission, andTabort is the time before the con-
nection times out. Intuitively, Eq. (5) establishes the probability of
connecting successfully afterRTT + T2 seconds, for example, is
the probability of being dropped during the initial transmission with
probabilityp0, then being dropped again on the second transmission
with probability p1, and finally connecting on the third transmis-
sion attempt with probability(1 � p2). Notice that the minimum

connection-establishment latency ist = RTT . Based on this, the
expected connection-establishment delay,ELh, can be computed as:

ELh = (1� p0 � � � pn)RTT +

p0(1� p1)T1 + p0p1(1� p2)T2 + � � �+

(p0 � � � pn�1)(1� pn)Tn + (p0 � � � pn)Tabort: (6)

The optimal drop strategy must, thus, minimizeELh with the
constraint of having an effective timeout probability that is equal to
the one obtained by traditional policies, i.e.,

Qn

i=0 pi = p�. It suf-
fices to show that if we setp0 = p� andpi = 1, for i 6= 0, thenELh

is minimized. This can be seen by observing that each term in Eq. (6)
cancels out except for the last term. The minimum connection-
establishment latency is thenELg

�

h = (1 � p�)RTT + p�Tabort,

where g� denotes our optimal policy. Note that sinceELg
�

h no
longer has a delay component for successful connections,g� breaks
the dependency between the delay for successful connections and
packet drop.

The above discussion implies that the optimal policy must decou-
ple connection requests that belong to new connections (i.e., on their
first attempt) from those that are not. Viewed another way, this is a
form of low-level admission control where a new connection request
can either be admitted into the system or denied access. But deny-
ing access at the connection-establishment level can be performed
by either (1) sending back an explicit reject packet, such as a RST
packet, instructing the sender to terminate the initiated connection,
or (2) repeatedly dropping packets on every retransmission attempt.
Unfortunately, the success of the first approach is predicated on the
sender’s cooperation.6 It also requires the router or end-server to
have enough network and processing capacity to respond to each re-
jected SYN packet.

Based on the above discussion, we introducepersistent dropping
(PD) as the optimal drop strategy that choosesp��0 new requests
and systematically drop them on every retransmission. An example
of PD is illustrated in Figure 4, showing how this new technique in-
telligently fills the outgoing link to minimize packet retransmissions.
The fact that this dropping scheme chooses certain connections and
consistently drops them on each retransmission does not imply that
it is biased against these connections. We have shown that a rate-
control drop policy generally causesp��0 = pn+1�0 connections
to time out, which is identical to (but less efficient than) PD. In this
respect, both PD and rate-control policies have the same fairness.
Table 3 compares the performance improvement of PD over a tradi-
tional rate-control policy in terms of mean client-perceived latency,
average number of retransmissions, and aggregate arrival rate for the
same effective timeout probability. In Section 4, we also compare
the variance in the latency of the two schemes — they can be directly

6We have tested several modern OSs and found that there is no universal
technique for rejecting a client. Microsoft Windows, in particular, ignores
both RST and ICMP packets for this purpose.
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Table 3: Comparison between PD and random dropping.

computed using Eq. (5) and are omitted for space consideration.

3.2 Applicability to Network of Queues
In most cases, requests must pass through multiple queues as they

traverse different links on the network before reaching their desti-
nation. Fortunately, the above results also hold in this scenario,
namely, when new connection requests pass through a network of
queues in series, each using a PD policyg�, the client’s connection-
establishment latency and effective arrival rates are minimized. This
is illustrated in Figure 5 where we assumed for simplicity that all
queues have the same drop probabilityp. We see that for a rate-
based drop strategy, the probability of a single request succeeding on
a single attempt is(1� p)m, wherem is the number of queues that
it must pass through. In contrast, the PD policyg� has a probability
(1 � pn+1)m. To put this in perspective, ifm = 5, p = 0:05, and
n = 4, then the probability of a request succeeding is0:77 and0:99
for the uniform rate-based and the PD policy, respectively. Using a
similar development to our single queue analysis, we can prove that
g� is the optimal drop strategy even when each queue uses a different
drop probability.

3.3 Applicability to Persistent Clients
The derivation in Section 3.1 treated clients’ connections as inde-

pendent entities without considering the correlation between a group
of connections originating from the same client (e.g., client visits or
sessions as defined in Section 2.3). It is not difficult to verify PD’s
optimality in the case of correlated connections. Under the assump-
tion that the controller does not distinguish between SYN packets
that belong to an already admitted visit and those that represent new
visits, we provide here an intuitive sketch of the optimality proof.
ConsiderELs = E[Lhj connection succeeds] as the conditional
expectation of the connection-establishment latency for successful
connections. This is equivalent to Eq. (6), but excludes the last term
and divides by(1 � p�) to compensate for unaccounted timed-out
connections

ELs = RTT +
p0(1 � p1)T1 + � � �+ (p0 � � � pn�1)(1 � pn)Tn

1� p�
: (7)

Assume that once a connection is established, the average time
to send the request, have it processed by the server, and receive the
reply isETs. Estimates forETs are derived in [5, 30] as part of
determining the expected latency of a TCP connection. We can now
substitute the expression ofELs into Eq. (3) using the relationship
ETc = ELs + ETs to obtainEV as a function of per-class drop
probabilities. Similar to the development in Section 2.3, whenp0 =
p� andpi = 1 for i 6= 0, EV is minimized.

3.4 Controller Architecture
Implementation of our optimal drop policy in routers and end-

servers relies on the ability to (1) group requests originating from the

Figure 5: Probability of success in network of queues

same client visit and (2) distinguish between new and retransmitted
requests. Unfortunately, both present a design challenge, especially
since we intend for our technique to operate at the packet-level. In
fact, precise implementation requires violation of the protocol lay-
ering, similar to Layer-7 switches (e.g., Foundry, Alteon) to satisfy
requirement (1) and need per-connection state information to satisfy
requirement (2). However, one must not forget the original envi-
ronment that this is intended for: large aggregate traffic causing an
FCE. We are, thus, interested in constructing approximate imple-
mentations that are allowed to be less accurate than an exact imple-
mentation, but significantly improve on existing techniques.

The basic idea is to use an “appropriate” hash function to group
requests from the same client and then, based on the mapping, de-
cide to drop or allow packets to go through. The controller’s log-
ical operation is organized into two parts: classification and policy
enforcement. The classification splits incoming requests into two
streams, one representing new transmissions for new client visits
and the other representing retransmitted requests. Policy enforce-
ment then drops new connection requests with an equal probability,
p�, and drops retransmitted requests with probability 1.

The selection of a suitable hash function,h(:), is not difficult. In
fact, as we will show shortly, a simple XOR operation on the input
parameters produces the desired uniform hashing [8]. On the other
hand, we found that choice of the input parameters to the hash func-
tion is the most critical element in our design. Unfortunately, with-
out client-side cooperation, packet-level information provides lim-
ited choices in achieving the desired classification. They are summa-
rized as follows. We abbreviate IP source and destination addresses
and TCP source and destination ports withsrc addr, dest addr,
src port, anddest port, respectively.

H1. h(src addr; dest addr): Thesrc addr allows per client clas-
sification and, with the combination ofdest addr, allows ap-
proximate user-session classification. Unfortunately, it is rela-
tively coarse-grain classification since clients connecting through
a proxy or a NAT (Network to Address Translation) service
are treated as a single client. In case of high aggregate traffic,
this seems to be an acceptable trade-off. It can be further im-
proved by storing a separate list of high-priority IP addresses
that contain preferred proxy servers (e.g., AOL, MSN). Pack-
ets originating from these addresses can then be excluded from
dropping as long as the control target is met.

H2. h(src addr; dest addr; src port; dest port): The combina-
tion of the four elements allows accurate connection-level clas-
sification even through proxies and NAT services. It, however,
loses session semantics, which, as we show, still provides a
considerable performance improvement over traditional mech-
anisms.

Since this classification must be performed at very high speeds,
the hash function must be simple, yet still provides uniform hashing.
We observe that the uniqueness of the source IP address, and when
combined with the TCP port information, the probability of colli-

294



sion is minimized. We used a simple XOR operation to perform the
required mapping:

h(x1; x2; : : : ; xk) = x1 � x2 � � � � � xk �K(t) modR; (8)

whereK(t) is an appropriately-selected prime number that we use
to randomize the hashing function (to be described shortly) andR
is the range of the hash function. We performed a simple simula-
tion, where IP addresses are randomly chosen and long runs of con-
secutive port numbers are used (since consecutive port numbers are
commonly used by the underlying OS when multiple connections
are issued). The distribution was almost uniform as we hoped and
expected.

We came up with two schemes to perform the desired classifica-
tion: one is a stateless implementation and the other stores a small
per-connection state. We assume here that a preferred proxy list
mentioned in H1 is handled using a separate lookup operation.

3.4.1 Stateless Persistent Dropping (SLPD)

Upon arrival of a new connection, the hash in H1 or H2 is com-
puted and normalized to a number within the range [0,1]. A thresh-
old value, represented by the effective timeout probability,p�, is
used to drop those packets that have a hash value less thanp� and
allow the rest to pass through (Figure 6). Depending on whether H1
or H2 is used, client- or connection-level persistent dropping can be
achieved. The absence of state makes this scheme very simple to im-
plement and fast to execute. However, this scheme can be unfair as it
discriminates against a fixed set of clients. To mitigate this problem
we use the termK(t) in Eq. (8) to periodically change the function’s
mapping, hence its dependence ont [3]. The time interval between
changes should be on the order of several minutes to minimize the
error introduced by changing the set of dropped packets.

3.4.2 State-based Persistent Dropping (SBPD)

Especially when connection-level control is desired (H2), storing
a small (soft) state for each connection can further improve the accu-
racy of the classification. A hash table is used here to store the time
at which anewrequest is dropped. Upon its retransmission, the con-
troller is able to look up the request’s initial drop time and based on
the age of the retransmission, determine the transmission class. The
hash function described in H2 can be used to map the set of possible
request headers into a much smaller number of table indices.

The operation of SBPD is split into two stages (Figure 6). The
first stage consults the table to see if the request is a new or a re-
transmitted one. A table entry stores the time of the first drop time.
Therefore, any incoming request that is mapped to a used entry is
systematically marked as “retransmission” for a75 second window
from the initial drop time. The window length was chosen based on
Tmax
abort, the maximum timeout value among most OS implementa-

tions. If the entry is empty or has an expired time-stamp, the request
is marked as “new.” The second stage of SBPD decides the con-
trol policy. Obviously, a request that is marked as “retransmission”
is dropped. However, one that is marked as “new” is dropped with
probabilityp� and the hash table is appropriately updated. Note that
due to space limitation we have omitted several optimizations that
reduce the number of lookup and store operations to the hash table.
We also omitted a description of the periodic maintenance that is
required to the table.

Since the resolution of each time-stamp need only be on the order
of seconds, 8 bits are sufficient to represent the time-stamp. The size
of the table is then based on the worst-case scenario of the arrival
rate,�max

0 , and timeout value,Tmax
abort:

M = �max
0 � Tmax

abort � �; (9)

where� � 1 is an over-design factor that further reduces the prob-

Figure 6: Stateless and state-based implementation of persistent
drop controller.

ability of hashing collisions; our experimental results have indicated
that� = 1:2 is adequate. When the hash table is used beyond its de-
sign range, the above classification technique can yield too many er-
rors. To protect against such an erroneous behavior, we use dynamic
monitoring to detect and take corrective actions. Basically, the real
drop probability is measured on-line by counting the total number
of arrivals and dropped requests. If the measured drop probability is
dramatically different from the effective timeout probability, then a
stateless classification can be used or even a uniform drop probabil-

ity with p = (p�)
1

n+1 for all incoming requests. This is a fallback
behavior, which is used only in extreme cases.

3.5 Linux Implementation
We implemented working prototypes of SLPD and SBPD in Linux

(Kernel 2.4) as filter extensions toiptables, Linux’s firewalling
architecture [24]. Usingiptables, our implementation can be
configured as part of the routing path, when our Linux box is con-
figured as a router, or as a front-end, when it is configured as a
regular server. We defined two new targets iniptables called
SLPD Filt andSBPD Filt that are kernel modules. These tar-
gets have a configurable effective timeout probability,p�, and hash
function, H1 or H2, that can be altered at runtime. Their implemen-
tation follows the exact description in Section 3.4. To activate either
filter, we define a new rule that matches any packet with the SYN flag
set and associate either module as its target. This way, new connec-
tion requests are dropped according to our optimal drop policy. As
mentioned in Section 3.4, our implementation dynamically monitors
the real drop probability. If the number does not match the expected
value, incoming requests are dropped with probabilityp.

4. EVALUATION
To evaluate and demonstrate the efficacy of PD, we equipped a

Linux server machine with working implementations of the SLPD
and SBPD controllers (Section 3.5) as well as a rate-based drop
(RBD) controller. The latter mimics traditional mechanisms where
it uniformly drops all incoming requests with probabilityp and is
used as the baseline for comparison [24]. Our main goal is to subject
these controllers to realistic load conditions so that the results we ob-
tain may be applicable to real-world deployment scenarios. We also
want to avoid any unnecessary complexity without sacrificing accu-
racy. The three controllers are compared by studying their effects on
the performance of clients during a synthesized FCE, which is emu-
lated by generating high client arrival rates to a web server. In each
scenario, we also compare the measured results with the predicted
ones from our analytic models.

4.1 Experimental Setup
We employ a simple setup where the server machine (a 2.24 GHz

Pentium 4 with 1 GBytes of RDRAM) runs Apache 1.3 to receive
HTTP requests through a high-speed FastEthernet link. Clients on
the other side are generated using Eve, a scalable highly-optimized
client emulator. Each of our emulated clients was based on the model
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Figure 7: Request delay comparison, (left) Delay for �0 = 60 clients/sec and Tabort = 20 sec, (center) Delay for �0 = 80 clients/sec and
Tabort = 40 sec, (right) Mean and variance for the delay of successful requests (same configuration as left).

described in Section 2.3, where the distributions for the number of
parallel connections and their inter-arrival times were based on our
estimates for IE 6.0 in Table 2. Furthermore, we used IP aliasing
to provide each client with a unique IP address, which is necessary
for the H1 hashing metric. The arrival of clients (not their requests)
followed a Poisson process with mean�0, a traditionally-accepted
model. Furthermore, each client behaved independently from other
clients and, on average, issued 6 (independent) parallel requests. Up
to four (500 MHz Pentium III with 512 MBytes of SDRAM) ma-
chines were used to generate the desired client arrivals. Finally, an
intermediate Linux machine was used as a router to implement one
of the three controllers.

To eliminate external effects from our measurements, we observe
that the client-perceived delay when connecting to a web server is
the total wait time before a request completes and is the summation
of three mostly independent components: connection-establishment
latency (Lh), propagation delay, and service delay. As mentioned
earlier, PD only affects the connection-establishment latency. Thus,
by keeping the other two components constant, we are able to obtain
an unbiased view of the performance of PD. We take two measures
to minimize the variation in the other two components. First, we
made sure that the client-to-server network path is bottleneck-free.
Second, we over-provisioned the server to handle all incoming re-
quests, and all requests issue the same document (e.g., index.html).
Therefore, if a request passes through the controller, it successfully
completes the HTTP request and has a similar service time to the
other requests. Finally, because we need to conduct a large number
of experiments to cover the wide range of variable parameters, we
limit each run to 5 minutes. Each experiment was repeated until the
95% confidence interval was less than 5% (roughly 25� 30 times).

Our focus in this section is to evaluate the efficacy of PD at the
request level and user-visit level based on the H1 and H2 metrics in
Section 3.4, respectively, and to compare stateless and state-based
implementations, SLPD and SBPD, respectively. Since PD is in-
tended as a low-level control mechanism (and due to space consid-
erations), we provide a limited discussion regarding higher-level se-
mantics such as user-sessions. As previously noted, PD is not in-
tended to replace high-level admission control mechanisms, but to
improve the control of aggregate traffic in routers, especially during
overload.

4.2 Connection-Level Measurements
We now focus on characterizing client-perceived delay for rate-

based and persistent dropping (both SLPD and SBPD). In our com-
parisons, we assume that both stateless and state-based PD con-
trollers are using the connection-level hashing metric H2; they are
denoted as SLPD-TCP and SBPD-TCP, respectively. In each experi-
ment, we vary the effective timeout probability,p�, and compare the
three drop policies (SLPD, SBPD, and RBD) against each other and
against their analytically-derived counterparts. Due to space limita-

tion, we only present two configurations of source traffic. They are
meant to confirm the efficacy of our new drop policy. We have per-
formed an extensive evaluation while varying the various parameters
over wide ranges. In all cases, our results were consistent with those
presented here.

Two metrics are of particular interest to us: (1) themean request
delay, which is computed by averaging the elapsed time before a
request is completed or timed out, (2) themean and variance of
successful-request delay, which is similar to the first metric but only
looks at successful requests; it also looks at the variance of the delay.
Figures 7(left) and (center) show the benefits of using PD. In the cen-
ter plot, for example, clients experiencing an effective timeout prob-
ability of 0.1 had about a 50% reduction in their mean request delay
(due to the reduction in the mean connection-establishment latency)
when SLPD-TCP or SBPD-TCP, instead of RBD, is used. This is
a dramatic reduction as it implies that a traffic controller that uses
RBD to uniformly drop incoming requests with a probability of 0.56
achieves an effective timeout probability of 0.1 and produces 100%
longer connection-establishment delays than the one that uses PD
(SLPD-TCP or SBPD-TCP). In Figure 7(right) we plotted the delay
and variance for successful connections only. The figure shows the
main benefit of PD, namely, decoupling the effects of the control pol-
icy on the delay of successful requests. The greatest impact can be
seen on the variance of successful requests since PD produces one of
two outcomes: (1) immediately allow a connection to pass through
or (2) consistently drop it. We also observed that PD reduced the
variability of the underlying aggregate traffic.

Figure 7 shows that SLPD-TCP achieves similar performance to
SBPD-TCP. The real difference between the two schemes is fair-
ness, which is not reflected in our performance metrics. In SLPD-
TCP, packets are dropped based on their header information and the
only randomness in the scheme is introduced by the prime multi-
plier,K(t), in Eq. (8). On the other hand, SBPD-TCP has a built-in
randomness in every packet it chooses to consistently drop. This, in
our opinion, produces better fairness from the client’s viewpoint.

We also verified the accuracy of our analytic models. We observe
larger, but tolerable, errors in our estimates for smaller values of
p�. However, asp� increases,Tabort dominates the computation
of ELh and thus, improves the accuracy of our prediction. Based
on the presented results, our model still accurately predicts the ex-
pected delay even though incoming requests are highly dependent.
This phenomenon seems counter-intuitive, but is explained by the
strict enforcement of the effective timeout probability. Specifically,
regardless of the instantaneous arrival rate, a fixed percentage of re-
quests is dropped. Looking back at how the expected delay,ELh,
was derived (Section 3.1), one can observe that once thepi’s are held
constant, the delay value becomes independent of the arrival rate. In
fact, this type of policy enforcement is implemented by most Active
Queue Management (AQM) techniques where a constant drop prob-
ability is enforced based on the average (not instantaneous) length
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Figure 8: User-visit behavior. In all cases, �0 = 60 clients/sec and Tabort = 20 sec, (left) mean successful visit delay (a point with zero
value implies that no visit was successful), (center) probability of successful visit, (right) effective arrival rate.

of the underlying queues [13]. Furthermore, the effects of depen-
dent traffic are apparent in other metrics, such as mean user-visit
delay and probability of a successful visit (to be discussed shortly).

4.3 User-Visit Behavior
While the mean request delay provides a good indication of the

performance of the underlying drop policy, it does not give a com-
plete picture. Looking at the performance metrics that are associ-
ated with user-visits and the corresponding aggregate traffic better
reflects what a typical client experiences in real systems. They also
show the effects of dependent traffic more clearly than looking at in-
dividual requests by themselves. In the context of user-visits, we use
three metrics to compare the performance of the drop polices: (1) the
mean successful visit delay, which measures the cumulative time for
a successful visit as described in Eq. (3), excluding the aborted visits,
(2) theprobability of a successful visit, which reflects the sensitiv-
ity of dependent traffic to packet drops, and (3) theeffective arrival
rate, which looks at the change in arrival rate as the drop probability
is varied.

Figures 8(left) and (center) plot the expected delay and success
probability for the various drop policies. They also show the perfor-
mance of a stateless PD that uses a client-level hashing metric (H1),
referred to as SLPD-IP. Our analytical predictions for the expected
user-visit delay were consistent with the measured values and omit-
ted to reduce graph clutter. The figure clearly shows the advantage
of PD, especially on the mean visit delay due to its additive nature
(Eq. (3)). We note that while the delay seems to be decreasing as
p� > 0:6, it is only an artifact from having user-visits with fewer par-
allel connections that are actually succeeding. Eventually, all visits
are aborted by the client and are represented by a zero-valued point
in the figure.

Figure 8(center) shows how user visits are sensitive to connection-
level and random dropping policies since a visit is successful only
if none of its requests times out. This sensitivity is reduced when
client-level dropping (SLPD-IP) is performed, which is apparent in
the linear relationship between success probability and the effective
timeout probability. In effect, SLPD-IP is performing a form of low-
level admission control, which maximizes the performance of the
controller. Unfortunately, SLPD-IP has the least fairness among our
PD implementations as it targets entire clients. As mentioned earlier,
unless care was taken to deal with NAT and proxy servers, SLPD-IP
may unintentionally block a large number of clients.

Figure 8(right) shows how the aggregate traffic changes among the
different policies. Two important points should be observed. First,
because the source traffic model is highly dependent, the aggregate
traffic, �, decreases as the effective timeout probability,p�, is in-
creased. Our analytical model assumed independent traffic sources
and is, thus, not suited for predicting� in this case. Second, for
any givenp�, we can see the dramatic improvement in using any
of the PD policies compared to a rate-based drop policy. From that

perspective, our estimate for� highlights the relative (not absolute)
improvement in using PD over a rate-based drop policy.

4.4 Limitations of the Study
There are still three specific limitations to our study that are worth

mentioning. First, we have not discussed how a traffic controller
would adjustp� based on the measured arrival rates or router queue
lengths. We believe that PD can be easily integrated into existing
AQM techniques, which already have built-in adaptation mecha-
nisms [6, 13]. Because PD reduces the variability of aggregate traf-
fic, it will improve the stability and responsiveness of such mech-
anisms. Second, we have assumed that clients have unique IP ad-
dresses. This provided SLPD-IP with a clear advantage over the
other schemes as it mimicked application-level admission control
policies. For this reason, we believe that its performance numbers
are overstated, but still performs well when controlling large aggre-
gate traffic as classification errors can be better tolerated. Finally,
while our technique seems less effective in controlling or defending
against DDoS attacks, it is indeed not more vulnerable than tradi-
tional rate-based techniques. The vulnerability of our scheme is only
apparent in the choice of the hash function. This can be easily over-
come by using more secure hash functions that an adversary cannot
exploit. All that a DDoS attack can do is to increase the amount of
traffic, which may force the controller to use a largerp� value. This
is no different from traditional control mechanisms.

5. RELATED WORK
Several recent studies have focused on characterizing aggregate

traffic during FCEs [23, 21]. Looking at the broader scope, earlier
studies can be categorized into empirical characterization or analyti-
cal modeling of TCP traffic. Measurement studies such as [1, 10, 11,
32, 35, 28], to name a few, have investigated the impact of TCP con-
gestion control on the behavior of underlying traffic (e.g., through-
put, variance, self-similarity). On the other side of the spectrum, the
authors of [15, 30, 31, 34, 5, 18] presented analytical characteriza-
tions of the throughput of TCP’s congestion control as a function
of RTT and packet loss probability. We view our proposed client
model as a direct extension to earlier ones, however, with the focus
on the interaction between active traffic controls and the aggregate
behavior of incoming requests. We have taken a bottom-up approach
where we investigated both the influence of low-level network pro-
tocols as well as high-level application mechanism on the behavior
(or persistence) of clients.

In general, our analysis is based on a different model of client
behavior where we introduced the concept of persistent clients to
capture the dynamics of client retransmissions. Our main objec-
tive is similar to queue-management solutions such as Class-Based
Queueing (CBQ) [14], Active Queue Management (AQM) [6, 13,
4], and Explicit Congestion Notification (ECN) [12] where we aim
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to improve the performance of the underlying network. Our work
complements these solutions by specifying the exact mechanism for
minimizing connection-establishment latency in the presence of ac-
tive packet dropping by routers or end-servers.

6. CONCLUSIONS
We characterized the dynamics of persistent clients in aggregate

traffic. In particular, we showed that client’s persistence, which is
due mostly to TCP’s congestion control, has a direct effect on the sta-
bility and effectiveness of traffic control mechanisms. Based on the
analysis of real clients, we constructed an accurate model of client’s
persistence and used the model to derive the optimal drop strategy
for controlling aggregate traffic. Furthermore, we proved that per-
sistent dropping yields the lower bound that an AQM technique can
achieve in reducing the effects of packet drop on client-perceived
delay and on the effective arrival rate. We presented two working
implementations of persistent dropping based on hash functions that
can be deployed in routers or end-servers.

Persistent dropping can be considered as a low-level admission
control policy. No application-level support is required for the cor-
rect operation of persistent dropping. In particular, when connection-
level classification (H2) is performed, persistent dropping does not
violate any end-to-end semantics and, at the same time, achieve the
same control targets as the traditional rate-based control. Further-
more, the improvement in the connection-establishment latency does
not interfere with higher-level admission control mechanisms. On
the other hand, client-level classification (H1) does violate the end-
to-end argument, and it is presented here to show the full poten-
tial of an intelligent dropping mechanism in routers. One can argue
that connection-level controls should be avoided in routers and left
to the end-servers. We addressed this exact issue by showing that
in some high-congestion cases, such as FCEs, routers are forced to
drop new connection requests. Our technique provides an optimal
way to achieve quick convergence to the control targets with mini-
mal intrusion on successful connections.
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