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Abstract
System operators play a critical role in maintaining server dependability yet lack powerful tools to 
help them do so. To help address this unfulfilled need, we describe Operator Undo, a tool that pro-
vides a forgiving operations environment by allowing operators to recover from their own mistakes, 
from unanticipated software problems, and from intentional or accidental data corruption. Operator 
Undo starts by intercepting and logging user interactions with a network service before they enter the 
system, creating a record of user intent. During an undo cycle, all system hard state is physically 
rewound, allowing the operator to perform arbitrary repairs; after repairs are complete, lost user data 
is reintegrated into the repaired system by replaying the logged user interactions while tracking and 
compensating for any resulting externally-visible inconsistencies. We describe the design and imple-
mentation of an application-neutral framework for Operator Undo, and detail the process by which 
we instantiated the framework in the form of an undo-capable e-mail store supporting SMTP mail 
delivery and IMAP mail retrieval. Our proof-of-concept e-mail implementation imposes only a small 
performance overhead, and can store days or weeks of recovery log on a single disk.

1  Introduction
Dependability is one of the greatest challenges facing 
the designers and implementors of today’s enterprise 
and Internet services, yet even as industry and research-
ers strive to build more dependable hardware and soft-
ware [11] [22], dependability today is still largely 
delivered or lost by the human beings who operate and 
administer service installations. Human operators are 
entrusted with the power and responsibility to configure 
service systems and keep them running despite frequent 
upgrades and unexpected failure, but, like any humans, 
they are prone to human error and thus can themselves 
be a significant impediment to dependability [4].

Despite their critical role in maintaining depend-
ability, system operators are confronted with an unfor-
giving environment offering little support for carrying 
out that role. Configuration, upgrades, diagnosis, repair, 
and recovery at each layer of the system are typically 
performed with an ad-hoc collection of independent 
tools. Mistakes can have catastrophic consequences, 
including loss or corruption of user data, and thus there 
is little ability to explore and experiment with different 
potential solutions. Furthermore, in today’s complex, 
tightly-coupled, rapidly-changing systems, operators 
face precisely those dependability problems that are 
most likely to result in mistakes: unfamiliar situations 
with complex interactions and underspecified symptoms 
[24]. It should come as no surprise, then, that human 
operator error is pegged as the root cause of roughly 
20% to 50% of system outages [10] [18] [20].

Consider, as an example, what problems an opera-
tor might face in the day-to-day administration of a cor-
porate or ISP e-mail store. She might be asked to add a 
new virtual host to the system’s configuration; what if, 
upon doing so, she inadvertently alters the configuration 
so that mail to existing accounts starts to bounce? 
Maybe she knows what she did wrong and can go fix it, 
but even if so, e-mail may be lost in the interim. And if 
the problem is harder to track down, the system could 
operate improperly for hours or days, much as happened 
with Microsoft’s DNS servers during a widely-publi-
cized 24-hour outage that was ultimately tracked down 
to an inadvertent operator configuration mistake [14].

Or what if our administrator is asked to set up a 
spam filter on the e-mail store, and she configures it 
incorrectly the first time around? Again, mail could be 
lost for a lengthy period while the problem is tracked 
down and resolved. Or consider the case where the oper-
ator installs a software upgrade/patch only to find that it 
performs poorly—or worse, corrupts data—when 
deployed at full scale. Maybe the system could be 
restored from backup, but what about the intervening 
data that are then lost?

Now, imagine that our operator has a tool available 
to her that provides a system-wide version of the Undo 
functionality that we have all grown accustomed to in 
our word processors and productivity applications. In 
each of the above scenarios, she could use Undo to 
restore the system back in time to a point before things 
went wrong. She could then make repairs, retry the pro-



cedure that went wrong the first time, and, with an 
appropriately-designed Undo system, roll the system 
forward again, replaying all of the e-mail deliveries and 
user mailbox operations that were lost or handled incor-
rectly the first time around.

Unfortunately, this notion of undo, so common in 
today’s productivity applications, is virtually unheard of 
in the administration and operations environment. We 
are trying to change that through our research. In this 
paper, we present the design and implementation of a 
proof-of-concept Undo system for network-delivered 
service applications. Our first target application for 
Undo is an e-mail store system that receives mail via 
SMTP and provides retrieval access via IMAP. We 
chose e-mail because it is a widely-deployed, increas-
ingly-mission-critical service; studies report that up to 
45% of critical business information is stored in e-mail 
[19], and that loss of e-mail access can result in up to a 
35% decrease in worker productivity [21]. However, 
despite our initial focus on e-mail, much of our undo 
system is designed to be service-neutral, and should 
apply directly to other systems providing network-deliv-
ered services.

In the remainder of this paper, we first present an 
overview of our model for Operator Undo in Section 2. 
In Section 3, we explore a fleshed-out design for a ser-
vice-neutral undo manager that implements our undo 
model. Section 4 describes the integration of the generic 
undo design with the specific application of an e-mail 
message store. We analyze the feasibility of providing 
Operator Undo for e-mail in terms of resource and time 
overhead in Section 5, then wrap up with related work in 
Section 6 and future work and conclusions in Section 7.

2  The Three R’s Model of Operator Undo
An undo facility is the ideal counterpoint to the depend-
ability problems faced by system operators. It provides a 
forgiving environment by allowing operators to recover 
from their mistakes, to handle unexpected situations by 
exploring and experimenting with alternative solutions 
to problems, and by reducing the stress and cognitive 
strain that arise when every action may be catastrophic. 
A further benefit is that an undo system can be used by 
operators as a recovery mechanism for non-human-insti-
gated problems. Just as the system can be “undone” to 
remove the effects of an operator error, it can be wound 
back to cancel out corruption due to software bugs, to 
reverse unanticipated effects of a patch or upgrade, and 
perhaps even to remove the damage done by a malicious 
hacker or virus attack.

In previous work, we outlined a model for Operator 
Undo that provides these benefits and sketched the 
beginnings of a design for a service-neutral undo man-

ager [3]. We recap that work here then proceed to flesh 
it out into a practical design and a real implementation.

Our model for Operator Undo is based on three fun-
damental steps that we refer to as the “Three R’s”: 
Rewind, Repair, and Replay. In the Rewind step, all 
system state (OS through application) is physically 
rolled back in time to a point before any catastrophic 
damage occurred. In the Repair step, the operator alters 
the rolled-back system to prevent the problem from 
reoccurring. Note that repairs are not constrained by our 
model and can consist of arbitrary changes to the system 
or to the rewound part of the timeline. Finally, in the 
Replay step, the repaired system is rolled forward to the 
present by replaying portions of the previously-rewound 
timeline in the context of the repaired system.

The essence of Three-R’s Undo, and the property 
that distinguishes it from more traditional approaches 
like backup/restore, is that it preserves the system time-
line: it restores lost updates and incoming data on replay 
in a manner that retains their intent and not the (possibly
incorrect) results of their original processing. In all the 
scenarios discussed in Section 1, Three-R’s Undo would 
have restored lost incoming mail and user mailbox 
updates, re-executing them on the repaired system 
where they could be processed correctly. It is this restor-
ative ability that gives Three-R’s Undo its power as a 
tool for the system operator.

2.1 Three-R’s design decisions
There are a few essential design decisions captured in 
the Three-R’s undo model as we have described it. First 
is the choice to perform Rewind physically and Replay 
logically. In this approach, “undo” is implemented by 
the single operation of restoring a previous snapshot of a 
system’s hard state, and “redo” is implemented by re-
executing a recorded sequence of user-level operations. 
Physical rewind provides the greatest flexibility in 
recovering from problems because the undo system 
makes no assumptions about the semantics of state or 
the possible corruptions it might encounter. Alternate 
rewind schemes involving logical rollback would 
require such knowledge, and risk the possibility of cor-
rupt state escaping rewind due to bugs or unanticipated 
failure modes. Furthermore, by rolling back all state, we 
do not need to worry about corrupt state escaping the 
rewind roll-back and persisting to cause problems dur-
ing replay. 

In contrast, logical replay is mandatory if the undo 
system is to integrate changes made during repair with 
the system’s original timeline. Whereas physical replay 
would obliterate any fixes made during repair as it 
rolled the original, corrupted version of state forward 
over the repairs, logical replay preserves the intent of 
user operations without reference to the original cor-



rupted state and while still respecting repairs. While log-
ical replay threatens to increase the undo system’s 
complexity and hence the possibility of dependability-
affecting bugs, we construct the undo system so that the 
code used for replay is exercised as part of normal sys-
tem operation, thereby flushing out any bugs before the 
replay code must be relied upon during an emergency.

Another key design decision for the Three-R’s is 
that Repair be as unconstrained as possible to allow the 
operator full flexibility in designing solutions to repair 
system problems. Often the most confounding and 
error-prone problems are the ones that have never been 
seen before. Constraining the Three-R’s undo system to 
a well known set of actions would render it ineffective 
in exactly those scenarios where it is needed the most.

Finally, note that these design decisions, particu-
larly the choices of physical rewind and unconstrained 
repair, reflect a fault model that makes minimal assump-
tions about the correctness of the undoable application 
service. While this fault model may limit the ability to 
formally analyze the undo process, it is the key to practi-
cal recovery from problems that have altered the proper 
operation of the system in unknown ways. These are 
exactly the classes of problems a system operator is 
likely to encounter when the system is subject to errone-
ous operator intervention, software bugs, and faulty 
patches or upgrades.

2.2 Challenges in the Three-R’s model
Given the design decisions we have made, there are two 
key challenges in the Three-R’s model. The first is time-
line management: to provide the time-travel-like behav-
ior of the Three-R’s, an operator-undo system must 
record the system’s timeline so that it can be edited dur-
ing Repair and re-executed during Replay. In doing so, 
the undo system must accurately capture the intent of all 
state changes made by the system’s end users in such a 
way that they can be later replayed while still respecting 
the alterations made to the system during Repair. Fur-
thermore, the recorded timeline must be causally consis-
tent with the actual execution of the system: all non-
commuting operations must be recorded in the same 
order they were originally executed.

The second key challenge in the Three-R’s model is 
to keep the system consistent from the point of view of 
an external observer. As in the time travel paradoxes in 
popular science fiction stories, Three-R’s undo can 
result in a system that appears inconsistent across time 
to an external observer. This occurs when alterations 
made during Repair cause state that had already been 
seen by the observer before Rewind to take on new val-
ues during Replay. For example, a repair that affects an 
e-mail server’s spam filter could cause previously
viewed e-mail messages to change or be removed, caus-

ing the system to appear inconsistent to the observer of 
those e-mail messages. Note that inconsistencies in state 
not already seen by an external observer are accept-
able—even desirable—as they represent the positive 
effects of repairs; it is only when the inconsistencies are 
in previously-viewed state that they must be managed.

3  Design of a Generic Undo System
While our discussion in this paper focuses on providing 
Operator Undo for an e-mail environment, a primary 
goal while developing the architecture and implementa-
tion of Operator Undo was to produce a tool that would 
work with as many enterprise- and Internet-service 
applications as possible. While some parts of an opera-
tor undo implementation are necessarily service-specific 
(the model of acceptable external consistency, for exam-
ple), much of the mechanism can be built to be reusable 
and service-neutral. This is an important consideration 
for a system targeted at increasing dependability, as any 
complexity added by the undo system increases the like-
lihood of dependability problems due to software bugs. 
If the complicated undo mechanisms are built once in a 
generic manner and then reused as undo is added to each 
new service, bugs in the undo mechanisms will get 
flushed out quickly, resulting in a more robust system 
than if the undo mechanisms were built anew each time.

3.1 Undo system architecture
To this end, our undo system design follows the struc-
ture illustrated in Figure 1. The service application—
such as an e-mail store server—and its hosting operating 
system are left virtually unmodified; the undo system 
interposes itself both above and below the service. This 
wrapper-based approach supports the fault model dis-

Figure 1: Undo system architecture. The heart of the undo 
system is the undo manager, which coordinates the system 
timeline. The proxy and time-travel storage layer wrap the 
service application, capturing and replaying user requests 
from above and providing physical rewind from below.
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cussed in Section 2.1 by keeping the undo system iso-
lated from problems and changes in the service itself.

Below the service application’s operating system, a 
time-travel storage layer provides the ability to physi-
cally roll the system’s hard state back to a prior point in 
time. Above the service application, interposed as a 
proxy between the application and its users, the undo 
system can intercept the incoming user request stream to 
record the system timeline and can inject its own 
requests to effect replay. The proxy and time-travel stor-
age layer are coordinated by the undo manager, which 
maintains a history of user interactions comprising the 
system timeline. The only interface between the undo 
manager and the service application itself is a callback 
used to quiesce the application while taking storage 
checkpoints or rewinding.

For simplicity, we make a few assumptions about 
the service application. We assume that it includes inter-
nal recovery mechanisms that allow it to reconstruct its 
internal state from a storage checkpoint, and that it 
flushes permanent state changes resulting from user 
interactions to stable storage before responding to the 
user. These assumptions allow us to coordinate the time-
travel storage and timeline log without further hooks 
into the application; having such hooks would allow us 
to relax the assumptions at the cost of tighter integra-
tion.

The use of a proxy-based approach (rather than an 
approach where the service and undo manager interact 
directly) biases our implementation toward services in 
which users interact with the service via a narrow, well-
defined interface, or protocol. Certainly, an e-mail ser-
vice fits this model, with its use of protocols like IMAP 
and SMTP. And most Internet services are based on 
open protocols, while many enterprise services are 
being developed on middleware that uses XML/SOAP-
based protocols for communication. In cases where the 
user accesses the service via a web front-end and not via 
a well-defined protocol, the Undo proxy can be inserted 
at the interface between the web tier and the application/
middleware tier.

Despite limiting the range of services that can be 
easily adapted to support undo, the proxy-based 
approach has significant benefits. First, for applications 
with standard protocols like e-mail, a protocol-specific 
proxy can be developed once and then reused across ser-
vice implementations, again helping to address the fear 
that the proxy may introduce extra complexity and 
hence bugs. Along the same lines, using a protocol-spe-
cific proxy rather than integrating undo functionality 
into the application allows repairs to consist of sweep-
ing changes to the system—such as upgrading or replac-
ing the OS or application—while still allowing replay, 
as long as the protocols themselves have not changed.

Finally, notice that the service in Figure 1 is 
depicted as a single monolithic block, with a single 
entry point for user requests. In this simple version of 
the undo system design, the entire service is rolled back 
and forward in time during the Three-R’s undo cycle. 
While this is how we have developed our initial proof-
of-concept implementation, we believe the architecture 
can be extended to support a distributed proxy and clus-
tered service architecture. The extension is straightfor-
ward in the case where each service node handles an 
independent subset of the system’s users, but may 
require the use of more sophisticated techniques from 
the distributed checkpointing and dependency manage-
ment domains when shared state is involved.

3.2 Verbs: the undo manager interface
The only service-specific component in the architecture 
of Figure 1 is the proxy that interposes on the service’s 
user-request stream. Clearly, the proxy itself will be 
application-specific, as it must understand the protocols 
it is proxying. But the proxy communicates with the 
undo manager, a component that itself has no knowl-
edge of the service or its semantics, so it must translate 
user requests into and out of a form that can be handled 
generically by the undo manager. At the same time, the 
undo manager must be able to reason about those trans-
lated requests in order to address the challenges of time-
line management and external consistency discussed 
above in Section 2.2.

The answer to this seemingly contradictory set of 
requirements lies in verbs, the fundamental construct 
used to represent events in the system timeline. A verb 
is an encapsulation of a user interaction with the sys-
tem—a record of an event that causes state in the service 
to be changed or externalized (exposed to an external 
observer). To achieve the separation of application-spe-
cific proxy and application-independent undo manager, 
verbs are transparent to the proxy while semi-opaque to 
the undo manager: a verb contains all the application-
specific information needed to execute or re-execute its 
corresponding user interaction, but to the undo manager 
appears as only a generic data type with interfaces 
exposing just enough information to manage the verb’s 
recording and execution. 

To decouple the record of user interactions from the 
specific behavior of the application service in process-
ing those interactions, verbs record the intent of user 
interactions as expressed at the protocol level, rather 
than recording the effects of those interactions on state 
or the contents of state itself. For example, when a user 
deletes an e-mail message, a verb is created that speci-
fies the deletion intent and a name that uniquely identi-
fies the target message. As part of recording intent, 
verbs must capture any system context required to spec-



ify the behavior of the verb; for example, converting 
times specified relative to the present into absolute 
times. In this sense, the task of defining verbs involves 
similar processes as the task of defining conformance 
wrappers for Byzantine replication, as defined by Rod-
rigues et al [25]. Note that designing verbs to capture 
intent achieves the critical goal identified in Section 2.1
of allowing the Undo system to tolerate faulty applica-
tion behavior during normal (non-Undo) operation, and 
makes it possible to replay verbs in the context of a 
repaired system.

Verbs are used in the undo system during all phases 
of operation. During normal operation of the service, the 
proxy intercepts end-user interactions that change or 
externalize state, packages them into verbs, and ships 
them to the undo manager for processing. The undo 
manager uses the verb interfaces to generate a causally 
consistent ordering of the verbs it receives, sends the 
verbs back to the proxy for execution on the service sys-
tem, and records the sequence of executed verbs in an 
on disk log. This verb log forms the recorded timeline of 
the system. During the Repair phase, the timeline may 
be edited to remove, replace, or add verbs, or may be 
left unaltered if repairs are done directly to the service 
itself. During the Replay phase, the undo manager 
attempts to re-execute the appropriate portion of the 
timeline by shipping logged verbs back to the proxy for 
execution on the service system. As it does this, it uses 
verb interfaces to determine if external inconsistencies 
are being created, and if so, invokes other verb inter-
faces to perform application-specific compensation. 
Note that the same code is used to re-execute the verbs 
during replay as to execute them during normal opera-
tion, helping to ensure that the replay code is bug-free 
and dependable. The flow of verbs during normal opera-
tion and during Replay are illustrated in Figure 2.

3.2.1 Verb interfaces
Section 2.2 introduced two key challenges in building 
Three-R’s-undo: timeline management and external 
inconsistency management. To address these challenges, 
verbs define a set of interfaces that provide the undo 
manager with a window into the application-specific 
semantics of verb execution, thus exposing enough 
information to allow the undo manager to carry out its 
management tasks. These interfaces fall into two 
groups, discussed in turn below.

Sequencing interfaces. The first set of verb interfaces 
is used to generate a recorded timeline that is consistent 
with the actual execution of the system, thereby address-
ing the challenge of timeline management. It consists of 
three procedures that all verbs must define: a commuta-
tivity test, an independence test, and a preferred-order-

ing test. All three tests take another verb as an argument; 
the first tests if the two verbs produce the same results 
regardless of execution order, the second tests if the 
verbs can be safely executed in parallel, and the third 
returns a preferred execution ordering of the two verbs 
in the case where they do not commute. Note that these 
tests are similar to those defined by actions in the 
IceCube optimistic replication system, although in that 
case they are used for log merging and reordering rather 
than execution control [23].

The sequencing tests are used by the undo manager 
to generate a consistent timeline log when faced with 
multiple verbs arriving concurrently from multiple 
users. Because verbs are generated as they arrive at the 
proxy, whereas their corresponding user interactions are 
only sequenced for execution in the service application, 
it is possible that the proxy sees overlapping interactions 
arrive in a different order than that in which they are 
eventually executed. Using the sequencing tests, how-
ever, the undo manager can guarantee that it sees the 
same execution ordering as will be chosen by the ser-
vice application: it can simply stall each incoming verb 
until all in-flight non-commuting/non-independent 
verbs have completed execution, using a scoreboard-
like data structure to manage the out-of-order execution.

While this approach does involve some serializa-
tion of arriving user interactions, it executes as many as 
possible in parallel, serializing only when there is a non-
commutative dependency between concurrently-arriv-
ing interactions. It produces a timeline that, when 
replayed serially, will result in a system state consistent 
with that produced by the original execution. Further-
more, using the same independence and commutativity 

Figure 2: Illustration of verb flow. During normal operation, 
the verb flow follows the solid black arrows, with verbs cre-
ated in the proxy and looped through the undo manager for 
scheduling and logging. During replay, verb flow follows the 
heavy dashed arrow, with verbs being reconstructed from the 
timeline log and re-executed via the proxy.
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properties, the timeline can be replayed with the same 
degree of parallelism as the original execution.

Consistency-management interfaces. The second set 
of verb interfaces is used to manage external inconsis-
tency. This set consists of three procedures that all verbs 
must define: first, a consistency predicate that compares 
a record of a verb’s original external output to the output 
produced during replay; second, a compensation func-
tion that is invoked with an encoded representation of 
the inconsistency implied by the failure of the consis-
tency predicate; and finally a squash function used to 
alter verb execution when it participates in a chain of 
dependent inconsistent verbs.

The consistency predicate is used to detect exter-
nally visible inconsistencies resulting from the undo 
cycle. Verbs that externalize output record a copy (or 
hash) of that output when they are originally executed 
and again during replay. The consistency predicate is 
applied by the undo manager after the externalizing verb 
is replayed, and compares the two sets of output to 
determine if they are acceptably consistent; this test may 
be simply an equality test, or may be more sophisticated 
if the application allows relaxed external consistency.

If the consistency predicate fails, the undo manager 
invokes the second interface, the compensation proce-
dure, which can take whatever application-defined 
action is necessary to handle the inconsistency. Com-
pensation may consist of ignoring the inconsistency, 
performing some action to mitigate it (such as creating a 
missing piece of state), or explaining the inconsistency 
to the user, among other possibilities.

One final concern involves handling user-induced 
dependencies between verbs that produce external 
inconsistencies and later verbs in the timeline. For 
example, in an e-mail system, a user might choose to 
delete a message based on reading its content. If during 
a later undo cycle that (externalized) content is changed, 
the user’s decision to delete the message might be 
invalid. Given the limited amount of insight into user 
intent available to the undo system, a conservative 
approach to handling such scenarios is necessary. The 
approach we chose is to have the undo manager invoke 
the third interface, the squash procedure, on all later 
verbs that do not commute with a verb that externalizes 
state. Squashing, like compensation, is application-
defined, but typically consists of cancelling the verb’s 
original action, informing the user, and leaving it up to 
them to reconstruct their original intent. Typically, only 
verbs that destroy or overwrite state will choose to alter 
their execution when squashed. This policy minimizes 
the amount of user cleanup needed should a long chain 
of dependent verbs appear, while ensuring that no poten-
tially-valuable state is lost.

Discussion. The verb interfaces for sequencing and 
external consistency management bear more than a 
passing resemblance to similar interfaces used to man-
age consistency in weakly-connected optimistically-rep-
licated storage systems such as Bayou [30], IceCube 
[12], and Coda [28]. The similarity is not surprising: the 
problem of replaying user verbs after the repair phase of 
Three-R’s Undo is somewhat analogous to the task of 
using an operation log to update an out-of-sync replica 
in an optimistically-replicated storage system, and our 
approach is modeled after approaches in that domain.

The key difference in the domain of Three-R’s undo 
is that, unlike in replica systems, not every inconsis-
tency matters—in fact, most inconsistencies that arise 
are likely due to the positive impact of repairs, repre-
senting earlier misbehaviors that are now corrected, and 
should be silently preserved. This insight motivated the 
choice of only testing for consistency of external output, 
rather than using preconditions to test every verb for 
inconsistency before executing it, as is done in systems 
like Bayou [30]. We do share Bayou’s notion of applica-
tion-defined compensations; they are just applied in dif-
ferent situations in our system, namely only at the point 
at which the effects of an inconsistency cross the exter-
nal boundary of the system.

Another key difference from replica systems is the 
use of post-execution consistency checks in Undo, 
rather than pre-execution checks. The reason for this is 
that, in Undo, inconsistencies arise only during replay, 
not normal operation, and thus can be safely detected 
after the fact. The built-in rewind functionality can be 
used to unwind execution to properly compensate for a 
detected inconsistency, if necessary. Using only post-
execution checks simplifies our design, as it is much 
easier to compare a verb’s actual output for consistency 
than to predict whether its inputs will produce a consis-
tent result, especially given our lack of assumptions 
about the service’s correctness.

3.2.2 Handling failed verbs
Special handling is required when verb execution fails
during normal execution. If the verb’s corresponding 
operation reports its status back to the end user synchro-
nously, we do not record the verb as part of the system 
timeline, and thus the corresponding operation will not 
be retried upon replay. While this may seem counter to 
the goals of an Undo system, the problem with record-
ing and later replaying synchronous failed verbs is that 
the subsequent timeline—the user’s choice of future 
requests—is informed by the failure, and may not make 
sense if the failure is converted to a success. For exam-
ple, if the user attempts to create a mail folder with an 
illegal name, he or she will see the failure and will likely 
go and try to create another folder using a valid name. If 



Verb Protocol Changes 
state?

Externalizes 
state? Async? Description

Deliver SMTP Delivers a message to the mail store via SMTP
Append IMAP Appends a message to a specific IMAP folder
Fetch IMAP Retrieves headers, messages, or flags from a folder
Store IMAP Sets flags on a message (e.g., Seen, Deleted)
Copy IMAP Copies messages to another IMAP folder
List IMAP Lists extant IMAP folders
Status IMAP Reports folder status (e.g., message count)
Select IMAP Opens an IMAP folder for use by later commands
Expunge IMAP Purges all messages with Deleted flag set from a folder
Close IMAP Performs a silent expunge then deselects the folder
Create IMAP Creates a new IMAP folder or hierarchy
Rename IMAP Renames an IMAP folder or hierarchy
Delete IMAP Deletes an IMAP folder or hierarchy
during a later undo cycle the system is changed to 
accept the illegal name, it makes no sense to create the 
original illegally-named folder, as the user has already 
reacted to that failure and altered course accordingly.

On the other hand, if the verb that fails during nor-
mal operation corresponds to an asynchronous opera-
tion, we have a great deal more flexibility. By delaying 
the reporting of failure to the user, we create a window 
during which it is possible to invoke undo, fix the prob-
lem that caused the verb to be rejected, and then suc-
cessfully re-execute the verb, without affecting the 
user’s future choice of timeline. This allows us to handle 
situations such as when an e-mail system is misconfig-
ured to reject e-mail: by delaying bounces or making 
them tentative, we can provide a window of time during 
which the configuration can be fixed transparently to the 
senders of the originally-rejected mail (we discuss this 
particular scenario further in Section 4.1.2). Of course, 
once a failed asynchronous verb’s results have been 
reported, we must treat it like a synchronous verb and 
refuse to replay it. To make this scheme work, we 
require that verbs identify themselves as synchronous or 
asynchronous, and, if asynchronous, specify the time 
window between execution and status visibility.

The other context in which failed verbs become an 
issue is during replay, when an originally-successful 
verb fails on re-execution. This case is much simpler 
than the ones just discussed; we treat the verb’s failure 
status as simply another piece of externalized state, and 
apply the same mechanisms described in Section 3.2.1
for handling inconsistency in externalized data.

4  Implementing Undo in an E-mail Store
Now we turn to our implementation of the just-
described architecture for an e-mail store service, which 
we define as a service representing a leaf node in the 

global e-mail network, receiving e-mail for its own local 
users via SMTP [13] and making it available for reading 
via IMAP [5]. We focus on what we had to do to adapt 
the generic architecture for e-mail and the interesting 
issues we encountered while realizing the implementa-
tion. We will not dwell on components whose imple-
mentation required just a straightforward translation of 
the above design into code, like the undo manager itself.

Our implementation, written in Java to leverage its 
dependability-increasing language features, wraps an 
unmodified, existing e-mail store. It comprises about 
25K lines of Java code, split about evenly between the 
generic and e-mail-specific components. The e-mail 
specific part took about two man-months to implement.

4.1 Verbs for e-mail
We defined a set of 13 verbs for our undoable e-mail 
store that together capture the important state-altering or 
state-externalizing interactions in the IMAP and SMTP 
protocols; they are listed in Table 1. 

Note that some of the verbs listed, such as Select, 
do not alter or externalize state but are defined so that 
they can be properly sequenced by the undo manager as 
described in Section 3.2.1. Notice also that all of the 
IMAP verbs are synchronous, as expected given that 
IMAP is a request-response protocol, whereas the 
SMTP Deliver verb is asynchronous, reflecting the 
asynchronous nature of mail transport. Finally, note that 
while our set of verbs covers only the most commonly-
used e-mail functionality for simplicity, it could be 
extended to encompass some of the more obscure IMAP 
functionality (such as subscription management) and to 
capture basic administrative tasks that are performed 
through interfaces outside of IMAP or SMTP, notably 
account creation, deletion, and configuration.

Table 1:  Verbs defined for undoable e-mail store



Each e-mail verb is implemented as a Java class 
that implements a common Verb interface; the Verb
interface is defined by the undo manager and declares 
an API that is a straightforward mapping of the routines 
described in Section 3.2.1 into Java function declara-
tions. All verbs contain a tag, a container data structure 
that wraps the information needed to execute the verb 
and to check its external consistency, including a record 
of whether its execution succeeded or failed. Other than 
the verb’s Java type, the tag is the only part of the verb 
that is recorded as part of the system’s timeline, so it has 
to be sufficient to reconstruct the verb during replay. 

4.1.1 Managing context
One of the challenges in defining verbs for existing pro-
tocols like IMAP and SMTP is being able to capture all 
the necessary context needed to successfully replay the 
verbs. For SMTP, this is straightforward: we simply 
capture the parameters passed in to each SMTP com-
mand and store them in the corresponding verb’s tag. 

Applying the same approach to IMAP proved more 
problematic. In IMAP, operations name state (folders 
and messages) using names that are only meaningful in 
a particular system context. In particular, messages are 
named either by sequence numbers that change any time 
a message is added to or removed from a folder, or by 
so-called “unique” IDs that are only unique to a particu-
lar instance of a folder and can be unilaterally invali-
dated at any point by the IMAP server. Similarly, folders 
are named by hierarchical names that change any time a 
folder’s parent is renamed.

In order to be able to replay IMAP verbs in situa-
tions where repairs have changed the system context, we 
needed to ensure that the verbs specified only absolute 
names that would still be meaningful after repair. To 
accomplish this, we defined the notion of an UndoID, a 
time-invariant name independent of system context and 
capable of being translated into a current IMAP name
for verb execution; the proxy is responsible for convert-
ing UndoIDs to and from IMAP names based on the 
current system context.

In the case of e-mail messages, UndoIDs are allo-
cated and inserted into a reserved message header field 
whenever a message is injected into the mail store 
(either by an SMTP Deliver verb or an IMAP Append 
verb). Then, when creating a verb out of any IMAP 
command that referred to specific messages, we trans-
late the IMAP names into UndoIDs by fetching the
UndoID directly from the message headers. To replay a 
verb, we translate the UndoIDs back to IMAP names by 
scanning the folder once to retrieve the UndoID-to-
IMAP-ID translations, which are then cached for the 
duration of the Replay cycle.

The case of folders is more difficult, since there is 
no place to embed the UndoID in the folder name. To 
solve this problem, we built a module that we call the 
UIDFactory. It maintains a mapping of UndoIDs to 
names in a persistent BerkeleyDB database, and is syn-
chronized with the undo manager so that names are 
invalidated and restored appropriately when the system 
is rolled back and forward in time. The UIDFactory is 
designed to be general and reusable, treating names as 
opaque Java objects. In our e-mail system, the UIDFac-
tory maps UndoIDs to IMAP folder names consisting of 
an ASCII string for the name of the folder plus the 
UndoID of the folder’s parent.

4.1.2 External consistency model
The first step in implementing the inconsistency man-
agement architecture of Section 3.2 for e-mail is to 
define a model of acceptable external consistency. In 
doing so, we make a distinction between the transport 
(SMTP) and retrieval (IMAP) phases of e-mail process-
ing. The transport phase allows for a much more relaxed 
consistency model than the retrieval phase, since even 
without an undo system, e-mail transport can result in 
delayed or out-of-order messages. On the retrieval side, 
consistency has to be stronger, as users are not used to 
seeing messages or folders change, appear, or disappear 
from their Inbox without warning. However, even 
though users are not used to such inconsistencies, we 
believe that they will accept them if they are sufficiently 
explained—there is already evidence for this in the 
numerous mail filters that delete or alter suspected 
virus- or spam-containing messages, replacing the origi-
nal message with an explanatory placeholder.

On the retrieval side, we define externalized state to 
include the output of message fetches (i.e., the text of e-
mail messages, including attachments), the output of 
message list commands (i.e., the standard e-mail head-
ers, including To, From, Subject, and Cc, but not Date), 
the output of folder list commands (i.e., the currently 
extant folders in a user’s mail store), and the execution 
status of any state-altering interactive IMAP commands. 
We declare this state to be inconsistent upon replay if 
any objects (messages or folders) that were visible orig-
inally are missing or altered on replay or if state-altering 
commands fail. We discount ordering differences and 
ignore newly-found objects that were not present during 
original execution, as such discrepancies are typically 
masked by sorting in the user’s e-mail client.

For the most part, we compensate for detected 
external inconsistencies on the retrieval side by insert-
ing explanatory messages into the user’s mailbox, apol-
ogizing for the inconsistencies, explaining what they 
are, and saying why they were necessary. When new 
folders or messages are being added to the system, we 



can be more clever. For example, when the target folder 
for a message Append verb is found to be missing, we 
compensate by creating that folder in a special 
Lost&Found folder in the user’s mail store with the 
same UndoID as the missing folder. By reusing the 
UndoID, further replayed operations directed at the 
missing folder go to its newly created surrogate.

From the undo system’s perspective, the transport 
side of e-mail consists only of the SMTP Deliver verb. 
As SMTP delivery is asynchronous and only reports 
back to the sender on failure, the one tricky consistency 
problem is when a formerly-failed message delivery 
succeeds on replay. If the failure has already been 
reported to the sender via a standard bounce message, 
the undo system must not deliver the message during 
replay, as it does not know what actions the sender took 
in response to the bounce. However, by delaying the 
delivery of the final bounce message (typically, by 4 
hours), we create a window in which the operator can 
use Undo to fix mistakes that would cause mail to 
bounce erroneously. To avoid aggravating users who are 
used to getting instant feedback on misaddressed e-
mails, a failed SMTP Deliver verb sends an informa-
tional “bounce” immediately, informing the original 
sender that the delivery attempt failed but will be retried 
for the (typically 4-hour) length of the undo window. 
Note that any inconsistencies in message content, han-
dling, or recipients are not externalized until message 
retrieval, so they are handled at that point.

All of the consistency checks and compensations 
described above are implemented through the Verb
API in conjunction with the verb tag. When a verb is 
executed, it updates the tag with a record of the external-
ized state and the verb’s execution status. To reduce the 
amount of data that must be stored in the timeline, most 
e-mail verbs record only hashes of their output in the 
verb tag. Verbs define check routines that compare the 
tags from the original and replay executions, and com-
pensation routines that perform verb-specific compensa-
tions such as generating explanatory messages.

4.1.3 Commutativity and independence
As required by the Verb interface, all of our e-mail 
verbs define methods for determining if one verb com-
mutes with or is independent of another. These determi-
nations are made by examining the verb types and the 
contents of their tags, and can often be made simply. For 
example, any two SMTP verbs are independent of and 
commute with one another, since message ordering is 
not considered in our consistency model for e-mail. 
Similarly, any two IMAP verbs belonging to different 
IMAP users are independent and commutative, since 
each user’s mail store is independent of all others. To 
facilitate this determination, IMAP verbs store their 

associated username in the verb tag. SMTP and IMAP 
verbs commute with one another unless the IMAP verb 
is a Fetch for a user’s Inbox; in this case we conserva-
tively mark the verbs as non-commutative since, due to 
the existence of aliases and mailing lists, it is impossible 
to determine from the proxy level who is the actual 
recipient of an arriving SMTP message.

Given these rules, the only remaining case is of two 
IMAP verbs for the same user. Here, the tests have to be 
more extensive, examining the input parameters in the 
two verbs’ tags to determine if they commute. For 
example, an Expunge and a Fetch do not commute if 
they share the same target folder, nor do a Store and a 
Copy if they share the same target messages. However, 
Append and Store do commute if they have different tar-
get message UndoIDs, as do Append and Fetch.

4.2 E-mail proxy
The e-mail proxy is responsible for intercepting all 
SMTP and IMAP traffic directed at the mail server, con-
verting it into the verbs described above, and interacting 
with the undo manager. The proxy is one of the simpler 
components of the undo system. It accepts connections 
on the IMAP and SMTP ports and dispatches threads to 
handle each incoming connection. Each connection is 
handled by a separate thread, which runs in a loop, 
decoding each incoming SMTP or IMAP interaction, 
packaging it into a verb, and invoking the undo manager 
to sequence, execute, and record the verb. For IMAP 
connections, the proxy never interacts directly with the 
server; it merely opens connections that are used by the 
verbs themselves during original or replay execution.

The SMTP case is more complicated, however. 
Because we want to be able to use Undo to recover from 
configuration errors that cause mail to be erroneously 
rejected, we must create verbs for all delivered mes-
sages even if they would normally be rejected. Thus the 
SMTP proxy acts more as a server than a proxy, com-
pleting a transaction with the client before packaging it 
into a verb and sending it to the real server. By doing so, 
however, the proxy opens itself up to denial-of-service 
attacks: an external attacker can generate streams of 
invalid SMTP requests (such as relaying requests), clut-
tering up the timeline log and burning extra resources to 
handle the later failures when those requests are exe-
cuted against the real server. In our prototype, we err on 
the side of caution by validating recipient addresses 
against the real server before accepting a transaction 
from the client, rejecting any syntactically-invalid recip-
ients or relay requests, while allowing otherwise-
rejected recipients. This decision reflects a tradeoff 
between attack vulnerability and the system’s ability to 
recover from configuration errors affecting address vali-
dation, and is probably a decision best left to site policy.



4.3 Time-travel storage layer
At the base of the undoable e-mail system is the time-
travel storage layer, which provides stable storage for 
the e-mail store’s hard state as well as the ability to 
physically restore previous versions of that state. The 
storage layer is designed to be application-neutral, and 
has neither knowledge of the e-mail store nor any cus-
tomizations to e-mail semantics.

Ideally, a time-travel storage layer would provide 
the ability to restore state backward to any arbitrary 
point in time; to restore state forward in time to cancel 
the effects of a previous rollback (essential in providing 
the ability to undo an undo); and to accomplish these 
time-travel operations instantaneously. Unfortunately, 
we could find no storage layer offering all of these prop-
erties, so we were forced to improvise. We started out 
with a Network Appliance filer whose WAFL file sys-
tem and SnapRestore feature provide snapshots that can 
be created and restored almost instantaneously. Two 
limitations had to be addressed: its 31-snapshot limit, 
and the fact that restoring an old snapshot annihilates 
any later ones, preventing forward time travel.

We began by building a Java wrapper that hides the 
telnet/console-based command-line interface to the 
filer’s snapshot management tools. The wrapper tracks 
the filer’s active snapshots and provides an API for cre-
ating, deleting, restoring, and listing them. Also, during 
normal operation, the wrapper periodically takes snap-
shots at multiple configurable granularities (e.g., every 
10 minutes, every hour, every day, every week), aging 
out old ones according to an algorithm that preserves a 
specified minimum number of snapshots at each granu-
larity while maximizing the number of snapshots in the 
most recent past. With our default granularities, the 31 
available snapshots span up to a month of time, with up 
to 20 snapshots concentrated in the past day.

To address the lack of forward time-travel, we 
added a routine to the wrapper that copies an old snap-
shot forward to the present, effectively overwriting the 
current state of the system with an older snapshot of 
state, but without destroying any intervening snapshots. 
By leveraging the filer’s ability to forward-restore a sin-
gle file from a snapshot in constant time, this copy-for-
ward routine runs in time proportional to the number of 
files in the file system, independent of their size. Given 
this ability, we implement reverse time-travel by first 
taking a recovery snapshot, then copying the desired old 
snapshot to the present. To do forward time-travel after 
that, we need merely restore the recovery snapshot, 
which takes the system back to the point before the old 
snapshot was made current.

Finally, to address the limited number of snapshots, 
we designed the undo manager to implement Rewind by 
first restoring to the nearest snapshot prior to the rewind 

target, then using the existing Replay code to roll the 
system forward to the exact target time point. Given this 
approach, extra snapshots become a performance opti-
mization rather than a functionality issue.

4.4 Undo manager
Our implementation of the undo manager is a reason-
ably straightforward translation of its description in Sec-
tion 3 into Java code. The undo manager stores the 
system timeline as a linear append-only log of verbs. 
The log is implemented as a BerkeleyDB ‘recno’-style 
database, with each verb assigned a sequential log 
sequence number (LSN). The LSN is the fundamental 
internal representation of time to the undo manager, and 
all “time-travel” operations like rewinding and replay-
ing operate in terms of LSNs, although versions of all 
external interfaces are provided that take real dates and 
times rather than LSNs.

The undo manager mediates execution of verbs dur-
ing normal operation much as described in Section 3.2. 
One special case bears mention: when verbs arrive for 
execution during an in-progress undo cycle, the execu-
tion process has to proceed differently. The undo man-
ager cannot allow the verb’s operation to modify the 
state of the service system, since the verb is effectively 
in a different timeline than the system. However, we do 
not want the undo system to lose delivered e-mail dur-
ing an undo cycle. Similarly, we want to retain the abil-
ity for users to at least inspect their mailbox state, even 
if it is temporarily inconsistent and immutable (although 
this is again likely a site policy choice). Our solution is 
to defer execution of asynchronous verbs (like SMTP 
deliveries) until the undo cycle completes—being asyn-
chronous, they can tolerate the delay—and to execute 
synchronous verbs in a read-only mode. If a synchro-
nous verb cannot be executed read-only, the execution 
fails and ideally reports an explanatory message back to 
the user. Synchronous verbs executed read-only are still 
added to the end of the timeline log, as they can exter-
nalize state even if they cannot change it.

5  Analysis of Overhead and Performance
With an implementation in place, we set up some simple 
experiments to gauge the overhead of adding our proof-
of-concept Undo implementation to an existing e-mail 
store and to evaluate its performance. Since Three-R’s 
undo is targeted at reducing human operator stress and 
improving overall system dependability, a true evalua-
tion of Undo would require a dependability benchmark 
incorporating human subjects as described in [2]; such a 
study is beyond the scope of this paper, although we are 
in the process of performing one as future work.



5.1 Setup
We deployed a setup consisting of four machines: a mail 
store server, the undo proxy, a workload generator, and a 
time-travel storage server. Details of the machine con-
figurations are given in Table 2. All machines were con-
nected by switched gigabit Ethernet. The filer was 
configured with two volumes, a 250GB time-travel vol-
ume with a 40% snapshot reserve, and a 203GB log vol-
ume with the standard 15% reserve. The proxy was 
configured to store its timeline logs on the filer’s log 
volume, accessed via NFS. The mail server was config-
ured with 10,000 user accounts, with all of their storage 
(home directories and mailspools) placed on the filer’s 
time-travel storage volume and accessed via NFS.

Our measurement workload was provided by a 
modified version of the SPECmail2001 e-mail bench-
mark [29]. SPECmail simulates the workload seen by a 
typical ISP mail server with a mixture of well-connected 
and dialup users. We modified the SPECmail bench-

mark to use IMAP instead of POP for retrieving mail 
and added code to export detailed timings for each e-
mail session along with the benchmark’s usual summary 
statistics; we also modified the benchmark to direct all 
mail to the mail store rather than to remote users, as we 
were only interested in mail store behavior. The bench-
mark was set up with its standard workload for 10,000 
users at 100% load, a configuration that is intended to 
generate a workload equivalent to what a 10,000-user 
ISP would see during its daily load peak. In our experi-
ments, this translated to an average of 95 SMTP connec-
tions and 102 IMAP connections per minute. Each 
benchmark run consisted of a 30 minute measurement 
interval preceded by a 3-minute warm-up.

5.2 Results: overhead
We begin by comparing the user-visible latency with 
and without the undo system in place. Figures 3(a) and 
(b) plot the cumulative distributions of the IMAP and 
SMTP session lengths measured both from the unmodi-
fied e-mail store server and from the undo-enabled ver-
sion of the same. In the latter case, the undo system was 
actively proxying connections and recording the system 
timeline. Note that here, a session is defined as a single 
complete set of client interactions with the mail server, 
from login to logout.

Looking at the session-length distributions, we see 
that the Undo system does not significantly alter the 
shapes of the distributions, essentially just shifting them 
to the right. This shift represents the overhead added by 
the proxying, verb-generation, and verb-scheduling 
code. While the overhead imposed by Undo is not negli-
gible, ranging from 62ms for a null SMTP session to 
484ms for the median IMAP session, it is still relatively 
small compared to the threshold at which human users 
begin to perceive unacceptable sluggishness, typically 
pegged at about one second [16]. Furthermore, this 
latency is spread across an entire session and not a sin-
gle interaction. For longer sessions (typically, those that 

Machine Configuration

Mail store 
server

Type: IBM Netfinity 5500 M20
CPU: 4x500MHz Pentium-III Xeon
DRAM: 2GB
OS: Debian 3.0 Linux, 2.4.18SMP kernel
Software: Sendmail 8.12.3 SMTP server, 

UW-IMAP 2001.315 IMAP server

Undo 
proxy

Type: Dell OptiPlex GX400
CPU: 1x1.3GHz Pentium-IV
DRAM: 512MB
OS: Debian 3.0 Linux, 2.4.18SMP kernel
Software: Sun Java2 SDK version 1.4.0_01

Workload 
generator

Type: IBM Intellistation E Pro
CPU: 1x667MHz Pentium-III
DRAM: 256MB
OS: Windows 2000 SP3
Software: Sun Java2 SDK version 1.4.1

Time-
travel 
storage 
server

Type: Network Appliance Filer F760
DRAM: 1GB
OS: Data OnTAP 6.2.1
Disk: 14x72GB 10kRPM FC-AL, 1TB total

Table 2: Machine configurations for overhead experiments

Figure 3: Overhead and Performance of Undo. The leftmost two graphs show cumulative distributions of session length for 
mail retrieval via IMAP (a) and mail delivery via SMTP (b), with and without the undo system in place. The rightmost graph (c) 
shows the performance of replay, represented as speedup over the original execution of the benchmark run.
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retrieve large amounts of data), the undo-induced over-
head is essentially insignificant.

Next, we consider the storage overhead of provid-
ing Undo, which consists of the timeline log and the 
database of mail folder name mappings (as discussed in 
Section 4.1.1). We measured the amount of log data 
accumulated during the measurement interval of the 
undo-enabled benchmark run described above, which 
consisted of 30 minutes of peak-load traffic for 10,000 
users. In that time, the undo system generated 206.5MB 
of timeline log. Closer analysis showed that a bug in the 
Java serialization code was contributing an enormous 
amount of overhead by writing large swaths of garbage 
data to the log. With this overhead factored out, the 
undo system generates an estimated 96.2MB of uncom-
pressed timeline log over the 30 minute interval, 71% of 
which consists of copies of incoming e-mail. This result 
extrapolates to 0.45GB of timeline log per 1,000 simu-
lated users per day. Translating to a more concrete refer-
ence, a single 120GB disk could hold just under 250,000 
user-days of log data, enough to record 3½ weeks of 
timeline for a 10,000-user ISP. Adding log compression 
may help further reduce the storage overhead of undo.

The name database size is relatively static and pro-
portional to the number of total mail folders in the sys-
tem. For our 10,000 users each of whom only had an 
Inbox, the corresponding name database required 
12.3MB of disk space, indicating that a 120GB disk 
could hold the names for over 93 million e-mail folders.

5.3 Results: performance
We next look at the performance of the Three-R’s cycle 
itself. We measured this by starting with the system at 
the end-state of a 30-minute SPECmail benchmark run 
for various numbers of simulated users, and recorded 
the time it took to rewind the system back to a storage 
checkpoint taken at the start of the benchmark run, then 
to replay it forward to the end of the run.

With the forward-time-travel workaround of Sec-
tion 4.3 in place, it took on average 590 seconds, or 
9m50s, to rewind the 10,000-user system (average of 
three runs, standard deviation <1%). The bulk of this 
time was spent copying files from the old snapshot into 
the active system, and so this time is heavily dependent 
on the number of files in the file system; our experi-
ments show it to scale roughly linearly with the number 
of simulated SPECmail users. In contrast, using the Net-
work Appliance filer’s built-in snapshot restore capabil-
ities, an old snapshot can be (non-undoably) restored in 
a constant 8 seconds on average (10% std. deviation 
over 12 runs), independent of the number of simulated 
users. This is the order of magnitude rewind time that 
would be achievable in practice, given the proper inter-
faces into the filer to support undoable snapshot restore.

Turning to replay, Figure 3(c) plots the time to 
replay the logged verbs from a SPECmail benchmark 
run represented as a speedup over the original 30-
minute run-length, for several different numbers of sim-
ulated users. Across all experiments, the system was 
able to sustain an average replay rate of approximately 
8.8 verbs/sec, enough to surpass by a factor of 1.3x the 
maximum original verb arrival rate of 6.7 verbs/sec for 
10,000 simulated users, and by much larger factors for 
lighter workloads with fewer users. While this replay 
performance brings the possibility of Operator Undo 
into the realm of feasibility, it is still somewhat disap-
pointing. Analysis shows that the measured replay per-
formance is primarily due to the overhead of 
establishing, authenticating, and tearing down SMTP 
and IMAP connections for each replayed verb. Signifi-
cant improvements in replay speed could be realized 
through more optimized connection management, and 
likewise if these protocols provided a “batch mode” that 
allowed a trusted entity (like the undo system) to reuse a 
single authenticated connection to replay the interleaved 
interactions of multiple users.

6  Related Work
Our Three-R’s Undo approach draws on a host of well-
studied techniques—service proxying, operation log-
ging and replay, replica consistency management, time-
line history management, and checkpoint recovery, to 
name a few—and creates a novel synthesis of them in 
the form of a tool for creating a forgiving environment 
for system operators. In particular, our system uniquely 
combines the ability to integrate repairs into a logged 
operation history, common in collaborative productivity 
application frameworks, with the system-wide applica-
bility of traditional system checkpointing or backup/
restore techniques.

It is this ability to restore history after repairs that 
differentiates our undo system from other log/replay-
based recovery environments like transactional database 
systems [17] and transparent log-based rollback-recov-
ery systems [1] [9] [15]. In these other systems, replay is 
only possible if the system context has not changed 
since the log was recorded, for they provide no mecha-
nism to handle replayed events that fail or produce dif-
ferent externally-visible results than during their 
original execution. In transaction systems, for example, 
transactions are assumed to be permanent once commit-
ted, and cannot change their results or commit status as 
part of recovery. In log-based rollback recovery, once 
state escapes to the external world, rollback beyond that 
escape point is simply disallowed. In contrast, our 
Three-R’s approach allows the trajectory of replay to 
differ from the original execution, detecting significant 
differences and compensating for externally-visible 



inconsistencies. This detection and compensation is 
made possible by our verbs: not only do they provide a 
framework for specifying consistency and compensa-
tion, but they provide a higher-level record of user intent 
than transactions or message logs, making intelligent 
compensation more feasible.

As we have already discussed in Section 3.2.1, the 
challenge of retroactively integrating repairs into a 
logged operation history bears a great deal of similarity 
to the problem of reconciliation in optimistic replication 
systems such as Bayou, IceCube, or Coda [12] [28] [30]. 
But it also has an even more direct counterpart in work 
on timeline management for collaborative productivity 
applications, an area which has explored sophisticated 
undo models supporting highly-malleable views of time. 
Probably the best example of work in this area is 
Edwards and Mynatt’s Timewarp system [8], a frame-
work for collaborative productivity applications that 
maintains histories of all user actions over shared state.
In Timewarp, users can rewind their state, alter their his-
tories, and replay changes at will. Timewarp defines a 
framework for detecting and managing inconsistencies 
that arise from retroactively-inserted changes to the 
timeline, much as we do to handle inconsistencies 
resulting from Repair, but Timewarp’s approach 
requires that all alterations to the past timeline consist of 
insertions or deletions of predefined actions in the oper-
ation log, as it identifies inconsistencies by detecting 
conflicts between the well-known actions [7]. In con-
trast, our design point of allowing unconstrained repair 
limits the applicability of the Timewarp approach, and 
hence we detect inconsistency by directly examining
externalized state. Along similar lines, Timewarp per-
forms undo (Rewind) logically, whereas we must per-
form it physically as we cannot trust that operations 
were processed correctly during original execution.

Our Three-R’s Undo approach supports recovery 
from system-wide problems, not just errors within an 
application. Again, this property on its own is available 
in many other systems. Users of desktop PCs can pur-
chase software tools such as Roxio’s GoBack [26] or 
IBM/XPoint’s Rapid Restore [32] that provide the abil-
ity to examine past system states, physically roll-back 
an entire machine, including the OS, to a past state, and 
even roll-forward again later. Virtual machine systems 
such as VMware [31] provide the ability to log system 
operation so it can be rolled-back and replayed; Dunlap 
et al.’s ReVirt system demonstrates a particularly clever 
use of the technique for intrusion analysis [6]. But 
unlike our Operator Undo model, these systems provide 
either Repair or Replay, but never both—if changes or 
repairs are made to a rolled-back system, replay either 
wipes out those changes or is prohibited altogether.

In terms of our actual implementation of an undo-
able e-mail system, probably the most relevant prior 
work is a commercial product, the Network Appliance 
SnapManager for Exchange, which is a system that inte-
grates the snapshot capabilities of Network Appliance 
filers with Exchange’s built-in mail logging [19]; simi-
lar functionality is provided by other systems that build 
e-mail atop a database system. In the case of a system 
failure, the SnapManager system allows an operator to 
restore a previously-archived snapshot of the mail sys-
tem, then replay forward using the Exchange transaction 
logs. While this system is similar in approach to our 
Three-R’s-undoable e-mail store, there are two funda-
mental differences. First, the SnapManager system does 
not detect and compensate for external inconsistencies. 
Second, operation logs in the SnapManager/Exchange 
system are recorded deep within the Exchange system, 
long after the user’s protocol interactions have been pro-
cessed. If the Exchange server is misconfigured or 
buggy, these logs may be incomplete or corrupted, and 
will almost certainly not contain a record of mail deliv-
eries incorrectly rejected by the system. In contrast, our 
external proxy-based logging takes place before the e-
mail server even interprets the mail protocols, allowing 
recovery from failures or configuration problems at all 
levels of the mail server, and not binding the logs to a 
specific server implementation (hence allowing server 
upgrades as part of Repair). While our approach is still 
susceptible to bugs in the proxy, the likelihood of those 
bugs is reduced by the relative simplicity of the proxy 
and the fact that the proxy executes operations directly 
from the same verb objects as are stored in the timeline 
log, quickly flushing out bugs during normal operation.

Finally, while we have focused entirely on the mail 
store and its operator, there has been work on develop-
ing undo-like functionality for the user side of e-mail. 
Here, the challenge is not recovery from system opera-
tor error or software bugs, but dealing with user errors 
like accidental mailbox deletion. We think that many of 
our Three-R’s undo techniques would make sense at this 
level of the system, and are thinking about ways to 
extend our approach to provide undo to both operators 
and end-users, but unlike some brave researchers [27], 
we do not intend to tackle the most challenging of end-
user problems: unsending e-mail on the Internet.

7  Conclusions and Future Work
Dependable systems will not be achieved until we 
address the challenges facing the human operators who 
exert such a crucial influence on dependability. Our 
model of an operator-targeted system-wide undo facility 
is a first step toward creating a forgiving environment 
for system operators so that they may better respond to 
system problems. It reduces the impact of mistakes, 



allowing for inevitable human error and making trial-
and-error solutions feasible, and provides a last-resort 
tool for guaranteed recovery from developing software 
problems or data corruption. 

Our proof-of-concept implementation of undo for 
e-mail proves the concept feasible and demonstrates that 
even an unoptimized implementation imposes reason-
able overheads in terms of space and time. That said, 
there are several future directions we are pursuing to 
increase the functionality of Operator Undo and to bet-
ter understand its influence on dependability. First, we 
are considering extensions to the basic undo model that 
would allow for more complex undo timelines support-
ing multiple branches of history. We are also working to 
extend the model to support multiple hierarchical levels 
of undo, allowing undo to be simultaneously exposed at 
per-user, per-machine, and per-cluster granularities. We 
would like to see implementations of Three-R’s-style 
undo in more applications than just e-mail; we are con-
sidering the design of an undoable auction service, and 
would welcome company in exploring other applica-
tions. Finally, we feel it is important to understand how 
a tool like Undo affects the behavior of system operators 
and how those behavioral changes impact dependabil-
ity; to that end, we are developing dependability bench-
marks that incorporate human operators as participants.

Source code
Source code for our undo framework and e-mail proxy is 
available at http://roc.cs.berkeley.edu/undo/.
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