
Undo for Operators: Building an Undoable E-mail Store
Aaron B. Brown and David A. Patterson

University of California, Berkeley, EECS Computer Science Division
387 Soda Hall #1776, Berkeley, CA, 94720-1776, USA

{abrown,patterson}@cs.berkeley.edu

Abstract
System operators play a critical role in maintaining server dependability yet lack powerful tools to
help them do so. To help address this unfulfilled need, we describe Operator Undo, a tool that pro-
vides a forgiving operations environment by allowing operators to recover from their own mistakes,
from unanticipated software problems, and from intentional or accidental data corruption. Operator
Undo starts by intercepting and logging user interactions with a network service before they enter the
system, creating a record of user intent. During an undo cycle, all system hard state is physically
rewound, allowing the operator to perform arbitrary repairs; after repairs are complete, lost user data
is reintegrated into the repaired system by replaying the logged user interactions while tracking and
compensating for any resulting externally-visible inconsistencies. We describe the design and imple-
mentation of an application-neutral framework for Operator Undo, and detail the process by which
we instantiated the framework in the form of an undo-capable e-mail store supporting SMTP mail
delivery and IMAP mail retrieval. Our proof-of-concept e-mail implementation imposes only a small
performance overhead, and can store days or weeks of recovery log on a single disk.

1 Introduction
Dependability is one of the greatest challenges facing
the designers and implementors of today’s enterprise
and Internet services, yet even as industry and research-
ers strive to build more dependable hardware and soft-
ware [11] [22], dependability today is still largely
delivered or lost by the human beings who operate and
administer service installations. Human operators are
entrusted with the power and responsibility to configure
service systems and keep them running despite frequent
upgrades and unexpected failure, but, like any humans,
they are prone to human error and thus can themselves
be a significant impediment to dependability [4].

Despite their critical role in maintaining depend-
ability, system operators are confronted with an unfor-
giving environment offering little support for carrying
out that role. Configuration, upgrades, diagnosis, repair,
and recovery at each layer of the system are typically
performed with an ad-hoc collection of independent
tools. Mistakes can have catastrophic consequences,
including loss or corruption of user data, and thus there
is little ability to explore and experiment with different
potential solutions. Furthermore, in today’s complex,
tightly-coupled, rapidly-changing systems, operators
face precisely those dependability problems that are
most likely to result in mistakes: unfamiliar situations
with complex interactions and underspecified symptoms
[24]. It should come as no surprise, then, that human
operator error is pegged as the root cause of roughly
20% to 50% of system outages [10] [18] [20].

Consider, as an example, what problems an opera-
tor might face in the day-to-day administration of a cor-
porate or ISP e-mail store. She might be asked to add a
new virtual host to the system’s configuration; what if,
upon doing so, she inadvertently alters the configuration
so that mail to existing accounts starts to bounce?
Maybe she knows what she did wrong and can go fix it,
but even if so, e-mail may be lost in the interim. And if
the problem is harder to track down, the system could
operate improperly for hours or days, much as happened
with Microsoft’s DNS servers during a widely-publi-
cized 24-hour outage that was ultimately tracked down
to an inadvertent operator configuration mistake [14].

Or what if our administrator is asked to set up a
spam filter on the e-mail store, and she configures it
incorrectly the first time around? Again, mail could be
lost for a lengthy period while the problem is tracked
down and resolved. Or consider the case where the oper-
ator installs a software upgrade/patch only to find that it
performs poorly—or worse, corrupts data—when
deployed at full scale. Maybe the system could be
restored from backup, but what about the intervening
data that are then lost?

Now, imagine that our operator has a tool available
to her that provides a system-wide version of the Undo
functionality that we have all grown accustomed to in
our word processors and productivity applications. In
each of the above scenarios, she could use Undo to
restore the system back in time to a point before things
went wrong. She could then make repairs, retry the pro-

cedure that went wrong the first time, and, with an
appropriately-designed Undo system, roll the system
forward again, replaying all of the e-mail deliveries and
user mailbox operations that were lost or handled incor-
rectly the first time around.

Unfortunately, this notion of undo, so common in
today’s productivity applications, is virtually unheard of
in the administration and operations environment. We
are trying to change that through our research. In this
paper, we present the design and implementation of a
proof-of-concept Undo system for network-delivered
service applications. Our first target application for
Undo is an e-mail store system that receives mail via
SMTP and provides retrieval access via IMAP. We
chose e-mail because it is a widely-deployed, increas-
ingly-mission-critical service; studies report that up to
45% of critical business information is stored in e-mail
[19], and that loss of e-mail access can result in up to a
35% decrease in worker productivity [21]. However,
despite our initial focus on e-mail, much of our undo
system is designed to be service-neutral, and should
apply directly to other systems providing network-deliv-
ered services.

In the remainder of this paper, we first present an
overview of our model for Operator Undo in Section 2.
In Section 3, we explore a fleshed-out design for a ser-
vice-neutral undo manager that implements our undo
model. Section 4 describes the integration of the generic
undo design with the specific application of an e-mail
message store. We analyze the feasibility of providing
Operator Undo for e-mail in terms of resource and time
overhead in Section 5, then wrap up with related work in
Section 6 and future work and conclusions in Section 7.

2 The Three R’s Model of Operator Undo
An undo facility is the ideal counterpoint to the depend-
ability problems faced by system operators. It provides a
forgiving environment by allowing operators to recover
from their mistakes, to handle unexpected situations by
exploring and experimenting with alternative solutions
to problems, and by reducing the stress and cognitive
strain that arise when every action may be catastrophic.
A further benefit is that an undo system can be used by
operators as a recovery mechanism for non-human-insti-
gated problems. Just as the system can be “undone” to
remove the effects of an operator error, it can be wound
back to cancel out corruption due to software bugs, to
reverse unanticipated effects of a patch or upgrade, and
perhaps even to remove the damage done by a malicious
hacker or virus attack.

In previous work, we outlined a model for Operator
Undo that provides these benefits and sketched the
beginnings of a design for a service-neutral undo man-

ager [3]. We recap that work here then proceed to flesh
it out into a practical design and a real implementation.

Our model for Operator Undo is based on three fun-
damental steps that we refer to as the “Three R’s”:
Rewind, Repair, and Replay. In the Rewind step, all
system state (OS through application) is physically
rolled back in time to a point before any catastrophic
damage occurred. In the Repair step, the operator alters
the rolled-back system to prevent the problem from
reoccurring. Note that repairs are not constrained by our
model and can consist of arbitrary changes to the system
or to the rewound part of the timeline. Finally, in the
Replay step, the repaired system is rolled forward to the
present by replaying portions of the previously-rewound
timeline in the context of the repaired system.

The essence of Three-R’s Undo, and the property
that distinguishes it from more traditional approaches
like backup/restore, is that it preserves the system time-
line: it restores lost updates and incoming data on replay
in a manner that retains their intent and not the (possibly
incorrect) results of their original processing. In all the
scenarios discussed in Section 1, Three-R’s Undo would
have restored lost incoming mail and user mailbox
updates, re-executing them on the repaired system
where they could be processed correctly. It is this restor-
ative ability that gives Three-R’s Undo its power as a
tool for the system operator.

2.1 Three-R’s design decisions
There are a few essential design decisions captured in
the Three-R’s undo model as we have described it. First
is the choice to perform Rewind physically and Replay
logically. In this approach, “undo” is implemented by
the single operation of restoring a previous snapshot of a
system’s hard state, and “redo” is implemented by re-
executing a recorded sequence of user-level operations.
Physical rewind provides the greatest flexibility in
recovering from problems because the undo system
makes no assumptions about the semantics of state or
the possible corruptions it might encounter. Alternate
rewind schemes involving logical rollback would
require such knowledge, and risk the possibility of cor-
rupt state escaping rewind due to bugs or unanticipated
failure modes. Furthermore, by rolling back all state, we
do not need to worry about corrupt state escaping the
rewind roll-back and persisting to cause problems dur-
ing replay.

In contrast, logical replay is mandatory if the undo
system is to integrate changes made during repair with
the system’s original timeline. Whereas physical replay
would obliterate any fixes made during repair as it
rolled the original, corrupted version of state forward
over the repairs, logical replay preserves the intent of
user operations without reference to the original cor-

rupted state and while still respecting repairs. While log-
ical replay threatens to increase the undo system’s
complexity and hence the possibility of dependability-
affecting bugs, we construct the undo system so that the
code used for replay is exercised as part of normal sys-
tem operation, thereby flushing out any bugs before the
replay code must be relied upon during an emergency.

Another key design decision for the Three-R’s is
that Repair be as unconstrained as possible to allow the
operator full flexibility in designing solutions to repair
system problems. Often the most confounding and
error-prone problems are the ones that have never been
seen before. Constraining the Three-R’s undo system to
a well known set of actions would render it ineffective
in exactly those scenarios where it is needed the most.

Finally, note that these design decisions, particu-
larly the choices of physical rewind and unconstrained
repair, reflect a fault model that makes minimal assump-
tions about the correctness of the undoable application
service. While this fault model may limit the ability to
formally analyze the undo process, it is the key to practi-
cal recovery from problems that have altered the proper
operation of the system in unknown ways. These are
exactly the classes of problems a system operator is
likely to encounter when the system is subject to errone-
ous operator intervention, software bugs, and faulty
patches or upgrades.

2.2 Challenges in the Three-R’s model
Given the design decisions we have made, there are two
key challenges in the Three-R’s model. The first is time-
line management: to provide the time-travel-like behav-
ior of the Three-R’s, an operator-undo system must
record the system’s timeline so that it can be edited dur-
ing Repair and re-executed during Replay. In doing so,
the undo system must accurately capture the intent of all
state changes made by the system’s end users in such a
way that they can be later replayed while still respecting
the alterations made to the system during Repair. Fur-
thermore, the recorded timeline must be causally consis-
tent with the actual execution of the system: all non-
commuting operations must be recorded in the same
order they were originally executed.

The second key challenge in the Three-R’s model is
to keep the system consistent from the point of view of
an external observer. As in the time travel paradoxes in
popular science fiction stories, Three-R’s undo can
result in a system that appears inconsistent across time
to an external observer. This occurs when alterations
made during Repair cause state that had already been
seen by the observer before Rewind to take on new val-
ues during Replay. For example, a repair that affects an
e-mail server’s spam filter could cause previously
viewed e-mail messages to change or be removed, caus-

ing the system to appear inconsistent to the observer of
those e-mail messages. Note that inconsistencies in state
not already seen by an external observer are accept-
able—even desirable—as they represent the positive
effects of repairs; it is only when the inconsistencies are
in previously-viewed state that they must be managed.

3 Design of a Generic Undo System
While our discussion in this paper focuses on providing
Operator Undo for an e-mail environment, a primary
goal while developing the architecture and implementa-
tion of Operator Undo was to produce a tool that would
work with as many enterprise- and Internet-service
applications as possible. While some parts of an opera-
tor undo implementation are necessarily service-specific
(the model of acceptable external consistency, for exam-
ple), much of the mechanism can be built to be reusable
and service-neutral. This is an important consideration
for a system targeted at increasing dependability, as any
complexity added by the undo system increases the like-
lihood of dependability problems due to software bugs.
If the complicated undo mechanisms are built once in a
generic manner and then reused as undo is added to each
new service, bugs in the undo mechanisms will get
flushed out quickly, resulting in a more robust system
than if the undo mechanisms were built anew each time.

3.1 Undo system architecture
To this end, our undo system design follows the struc-
ture illustrated in Figure 1. The service application—
such as an e-mail store server—and its hosting operating
system are left virtually unmodified; the undo system
interposes itself both above and below the service. This
wrapper-based approach supports the fault model dis-

Figure 1: Undo system architecture. The heart of the undo
system is the undo manager, which coordinates the system
timeline. The proxy and time-travel storage layer wrap the
service application, capturing and replaying user requests
from above and providing physical rewind from below.

Service
Application

Includes:
- user state
- application
- OS

Time-travel
Storage

Undo
Manager

Verbs

co
nt
ro
l Timeline

Log

Control
UIUser

Undo Proxy

Service
Application

Includes:
- user state
- application
- OS

Time-travel
Storage

Time-travel
Storage

Undo
Manager

Undo
Manager

Undo
Manager

Verbs

co
nt
ro
l Timeline

Log
Timeline

Log

Control
UI

Control
UIUser

Undo Proxy

cussed in Section 2.1 by keeping the undo system iso-
lated from problems and changes in the service itself.

Below the service application’s operating system, a
time-travel storage layer provides the ability to physi-
cally roll the system’s hard state back to a prior point in
time. Above the service application, interposed as a
proxy between the application and its users, the undo
system can intercept the incoming user request stream to
record the system timeline and can inject its own
requests to effect replay. The proxy and time-travel stor-
age layer are coordinated by the undo manager, which
maintains a history of user interactions comprising the
system timeline. The only interface between the undo
manager and the service application itself is a callback
used to quiesce the application while taking storage
checkpoints or rewinding.

For simplicity, we make a few assumptions about
the service application. We assume that it includes inter-
nal recovery mechanisms that allow it to reconstruct its
internal state from a storage checkpoint, and that it
flushes permanent state changes resulting from user
interactions to stable storage before responding to the
user. These assumptions allow us to coordinate the time-
travel storage and timeline log without further hooks
into the application; having such hooks would allow us
to relax the assumptions at the cost of tighter integra-
tion.

The use of a proxy-based approach (rather than an
approach where the service and undo manager interact
directly) biases our implementation toward services in
which users interact with the service via a narrow, well-
defined interface, or protocol. Certainly, an e-mail ser-
vice fits this model, with its use of protocols like IMAP
and SMTP. And most Internet services are based on
open protocols, while many enterprise services are
being developed on middleware that uses XML/SOAP-
based protocols for communication. In cases where the
user accesses the service via a web front-end and not via
a well-defined protocol, the Undo proxy can be inserted
at the interface between the web tier and the application/
middleware tier.

Despite limiting the range of services that can be
easily adapted to support undo, the proxy-based
approach has significant benefits. First, for applications
with standard protocols like e-mail, a protocol-specific
proxy can be developed once and then reused across ser-
vice implementations, again helping to address the fear
that the proxy may introduce extra complexity and
hence bugs. Along the same lines, using a protocol-spe-
cific proxy rather than integrating undo functionality
into the application allows repairs to consist of sweep-
ing changes to the system—such as upgrading or replac-
ing the OS or application—while still allowing replay,
as long as the protocols themselves have not changed.

Finally, notice that the service in Figure 1 is
depicted as a single monolithic block, with a single
entry point for user requests. In this simple version of
the undo system design, the entire service is rolled back
and forward in time during the Three-R’s undo cycle.
While this is how we have developed our initial proof-
of-concept implementation, we believe the architecture
can be extended to support a distributed proxy and clus-
tered service architecture. The extension is straightfor-
ward in the case where each service node handles an
independent subset of the system’s users, but may
require the use of more sophisticated techniques from
the distributed checkpointing and dependency manage-
ment domains when shared state is involved.

3.2 Verbs: the undo manager interface
The only service-specific component in the architecture
of Figure 1 is the proxy that interposes on the service’s
user-request stream. Clearly, the proxy itself will be
application-specific, as it must understand the protocols
it is proxying. But the proxy communicates with the
undo manager, a component that itself has no knowl-
edge of the service or its semantics, so it must translate
user requests into and out of a form that can be handled
generically by the undo manager. At the same time, the
undo manager must be able to reason about those trans-
lated requests in order to address the challenges of time-
line management and external consistency discussed
above in Section 2.2.

The answer to this seemingly contradictory set of
requirements lies in verbs, the fundamental construct
used to represent events in the system timeline. A verb
is an encapsulation of a user interaction with the sys-
tem—a record of an event that causes state in the service
to be changed or externalized (exposed to an external
observer). To achieve the separation of application-spe-
cific proxy and application-independent undo manager,
verbs are transparent to the proxy while semi-opaque to
the undo manager: a verb contains all the application-
specific information needed to execute or re-execute its
corresponding user interaction, but to the undo manager
appears as only a generic data type with interfaces
exposing just enough information to manage the verb’s
recording and execution.

To decouple the record of user interactions from the
specific behavior of the application service in process-
ing those interactions, verbs record the intent of user
interactions as expressed at the protocol level, rather
than recording the effects of those interactions on state
or the contents of state itself. For example, when a user
deletes an e-mail message, a verb is created that speci-
fies the deletion intent and a name that uniquely identi-
fies the target message. As part of recording intent,
verbs must capture any system context required to spec-

ify the behavior of the verb; for example, converting
times specified relative to the present into absolute
times. In this sense, the task of defining verbs involves
similar processes as the task of defining conformance
wrappers for Byzantine replication, as defined by Rod-
rigues et al [25]. Note that designing verbs to capture
intent achieves the critical goal identified in Section 2.1
of allowing the Undo system to tolerate faulty applica-
tion behavior during normal (non-Undo) operation, and
makes it possible to replay verbs in the context of a
repaired system.

Verbs are used in the undo system during all phases
of operation. During normal operation of the service, the
proxy intercepts end-user interactions that change or
externalize state, packages them into verbs, and ships
them to the undo manager for processing. The undo
manager uses the verb interfaces to generate a causally
consistent ordering of the verbs it receives, sends the
verbs back to the proxy for execution on the service sys-
tem, and records the sequence of executed verbs in an
on disk log. This verb log forms the recorded timeline of
the system. During the Repair phase, the timeline may
be edited to remove, replace, or add verbs, or may be
left unaltered if repairs are done directly to the service
itself. During the Replay phase, the undo manager
attempts to re-execute the appropriate portion of the
timeline by shipping logged verbs back to the proxy for
execution on the service system. As it does this, it uses
verb interfaces to determine if external inconsistencies
are being created, and if so, invokes other verb inter-
faces to perform application-specific compensation.
Note that the same code is used to re-execute the verbs
during replay as to execute them during normal opera-
tion, helping to ensure that the replay code is bug-free
and dependable. The flow of verbs during normal opera-
tion and during Replay are illustrated in Figure 2.

3.2.1 Verb interfaces
Section 2.2 introduced two key challenges in building
Three-R’s-undo: timeline management and external
inconsistency management. To address these challenges,
verbs define a set of interfaces that provide the undo
manager with a window into the application-specific
semantics of verb execution, thus exposing enough
information to allow the undo manager to carry out its
management tasks. These interfaces fall into two
groups, discussed in turn below.

Sequencing interfaces. The first set of verb interfaces
is used to generate a recorded timeline that is consistent
with the actual execution of the system, thereby address-
ing the challenge of timeline management. It consists of
three procedures that all verbs must define: a commuta-
tivity test, an independence test, and a preferred-order-

ing test. All three tests take another verb as an argument;
the first tests if the two verbs produce the same results
regardless of execution order, the second tests if the
verbs can be safely executed in parallel, and the third
returns a preferred execution ordering of the two verbs
in the case where they do not commute. Note that these
tests are similar to those defined by actions in the
IceCube optimistic replication system, although in that
case they are used for log merging and reordering rather
than execution control [23].

The sequencing tests are used by the undo manager
to generate a consistent timeline log when faced with
multiple verbs arriving concurrently from multiple
users. Because verbs are generated as they arrive at the
proxy, whereas their corresponding user interactions are
only sequenced for execution in the service application,
it is possible that the proxy sees overlapping interactions
arrive in a different order than that in which they are
eventually executed. Using the sequencing tests, how-
ever, the undo manager can guarantee that it sees the
same execution ordering as will be chosen by the ser-
vice application: it can simply stall each incoming verb
until all in-flight non-commuting/non-independent
verbs have completed execution, using a scoreboard-
like data structure to manage the out-of-order execution.

While this approach does involve some serializa-
tion of arriving user interactions, it executes as many as
possible in parallel, serializing only when there is a non-
commutative dependency between concurrently-arriv-
ing interactions. It produces a timeline that, when
replayed serially, will result in a system state consistent
with that produced by the original execution. Further-
more, using the same independence and commutativity

Figure 2: Illustration of verb flow. During normal operation,
the verb flow follows the solid black arrows, with verbs cre-
ated in the proxy and looped through the undo manager for
scheduling and logging. During replay, verb flow follows the
heavy dashed arrow, with verbs being reconstructed from the
timeline log and re-executed via the proxy.

Service
Application

Includes:
- user state
- application
- OS

Time-travel
Storage

Undo
Manager

Verbs

co
nt
ro
l Timeline

Log

Control
UIUser

Undo Proxy

Service
Application

Includes:
- user state
- application
- OS

Time-travel
Storage

Undo
Manager

Verbs

co
nt
ro
l Timeline

Log

Control
UIUser

Undo Proxy

Service
Application

Includes:
- user state
- application
- OS

Time-travel
Storage

Undo
Manager

Verbs

co
nt
ro
l Timeline

Log

Control
UIUser

Undo Proxy

properties, the timeline can be replayed with the same
degree of parallelism as the original execution.

Consistency-management interfaces. The second set
of verb interfaces is used to manage external inconsis-
tency. This set consists of three procedures that all verbs
must define: first, a consistency predicate that compares
a record of a verb’s original external output to the output
produced during replay; second, a compensation func-
tion that is invoked with an encoded representation of
the inconsistency implied by the failure of the consis-
tency predicate; and finally a squash function used to
alter verb execution when it participates in a chain of
dependent inconsistent verbs.

The consistency predicate is used to detect exter-
nally visible inconsistencies resulting from the undo
cycle. Verbs that externalize output record a copy (or
hash) of that output when they are originally executed
and again during replay. The consistency predicate is
applied by the undo manager after the externalizing verb
is replayed, and compares the two sets of output to
determine if they are acceptably consistent; this test may
be simply an equality test, or may be more sophisticated
if the application allows relaxed external consistency.

If the consistency predicate fails, the undo manager
invokes the second interface, the compensation proce-
dure, which can take whatever application-defined
action is necessary to handle the inconsistency. Com-
pensation may consist of ignoring the inconsistency,
performing some action to mitigate it (such as creating a
missing piece of state), or explaining the inconsistency
to the user, among other possibilities.

One final concern involves handling user-induced
dependencies between verbs that produce external
inconsistencies and later verbs in the timeline. For
example, in an e-mail system, a user might choose to
delete a message based on reading its content. If during
a later undo cycle that (externalized) content is changed,
the user’s decision to delete the message might be
invalid. Given the limited amount of insight into user
intent available to the undo system, a conservative
approach to handling such scenarios is necessary. The
approach we chose is to have the undo manager invoke
the third interface, the squash procedure, on all later
verbs that do not commute with a verb that externalizes
state. Squashing, like compensation, is application-
defined, but typically consists of cancelling the verb’s
original action, informing the user, and leaving it up to
them to reconstruct their original intent. Typically, only
verbs that destroy or overwrite state will choose to alter
their execution when squashed. This policy minimizes
the amount of user cleanup needed should a long chain
of dependent verbs appear, while ensuring that no poten-
tially-valuable state is lost.

Discussion. The verb interfaces for sequencing and
external consistency management bear more than a
passing resemblance to similar interfaces used to man-
age consistency in weakly-connected optimistically-rep-
licated storage systems such as Bayou [30], IceCube
[12], and Coda [28]. The similarity is not surprising: the
problem of replaying user verbs after the repair phase of
Three-R’s Undo is somewhat analogous to the task of
using an operation log to update an out-of-sync replica
in an optimistically-replicated storage system, and our
approach is modeled after approaches in that domain.

The key difference in the domain of Three-R’s undo
is that, unlike in replica systems, not every inconsis-
tency matters—in fact, most inconsistencies that arise
are likely due to the positive impact of repairs, repre-
senting earlier misbehaviors that are now corrected, and
should be silently preserved. This insight motivated the
choice of only testing for consistency of external output,
rather than using preconditions to test every verb for
inconsistency before executing it, as is done in systems
like Bayou [30]. We do share Bayou’s notion of applica-
tion-defined compensations; they are just applied in dif-
ferent situations in our system, namely only at the point
at which the effects of an inconsistency cross the exter-
nal boundary of the system.

Another key difference from replica systems is the
use of post-execution consistency checks in Undo,
rather than pre-execution checks. The reason for this is
that, in Undo, inconsistencies arise only during replay,
not normal operation, and thus can be safely detected
after the fact. The built-in rewind functionality can be
used to unwind execution to properly compensate for a
detected inconsistency, if necessary. Using only post-
execution checks simplifies our design, as it is much
easier to compare a verb’s actual output for consistency
than to predict whether its inputs will produce a consis-
tent result, especially given our lack of assumptions
about the service’s correctness.

3.2.2 Handling failed verbs
Special handling is required when verb execution fails
during normal execution. If the verb’s corresponding
operation reports its status back to the end user synchro-
nously, we do not record the verb as part of the system
timeline, and thus the corresponding operation will not
be retried upon replay. While this may seem counter to
the goals of an Undo system, the problem with record-
ing and later replaying synchronous failed verbs is that
the subsequent timeline—the user’s choice of future
requests—is informed by the failure, and may not make
sense if the failure is converted to a success. For exam-
ple, if the user attempts to create a mail folder with an
illegal name, he or she will see the failure and will likely
go and try to create another folder using a valid name. If

Verb Protocol Changes
state?

Externalizes
state? Async? Description

Deliver SMTP Delivers a message to the mail store via SMTP
Append IMAP Appends a message to a specific IMAP folder
Fetch IMAP Retrieves headers, messages, or flags from a folder
Store IMAP Sets flags on a message (e.g., Seen, Deleted)
Copy IMAP Copies messages to another IMAP folder
List IMAP Lists extant IMAP folders
Status IMAP Reports folder status (e.g., message count)
Select IMAP Opens an IMAP folder for use by later commands
Expunge IMAP Purges all messages with Deleted flag set from a folder
Close IMAP Performs a silent expunge then deselects the folder
Create IMAP Creates a new IMAP folder or hierarchy
Rename IMAP Renames an IMAP folder or hierarchy
Delete IMAP Deletes an IMAP folder or hierarchy
during a later undo cycle the system is changed to
accept the illegal name, it makes no sense to create the
original illegally-named folder, as the user has already
reacted to that failure and altered course accordingly.

On the other hand, if the verb that fails during nor-
mal operation corresponds to an asynchronous opera-
tion, we have a great deal more flexibility. By delaying
the reporting of failure to the user, we create a window
during which it is possible to invoke undo, fix the prob-
lem that caused the verb to be rejected, and then suc-
cessfully re-execute the verb, without affecting the
user’s future choice of timeline. This allows us to handle
situations such as when an e-mail system is misconfig-
ured to reject e-mail: by delaying bounces or making
them tentative, we can provide a window of time during
which the configuration can be fixed transparently to the
senders of the originally-rejected mail (we discuss this
particular scenario further in Section 4.1.2). Of course,
once a failed asynchronous verb’s results have been
reported, we must treat it like a synchronous verb and
refuse to replay it. To make this scheme work, we
require that verbs identify themselves as synchronous or
asynchronous, and, if asynchronous, specify the time
window between execution and status visibility.

The other context in which failed verbs become an
issue is during replay, when an originally-successful
verb fails on re-execution. This case is much simpler
than the ones just discussed; we treat the verb’s failure
status as simply another piece of externalized state, and
apply the same mechanisms described in Section 3.2.1
for handling inconsistency in externalized data.

4 Implementing Undo in an E-mail Store
Now we turn to our implementation of the just-
described architecture for an e-mail store service, which
we define as a service representing a leaf node in the

global e-mail network, receiving e-mail for its own local
users via SMTP [13] and making it available for reading
via IMAP [5]. We focus on what we had to do to adapt
the generic architecture for e-mail and the interesting
issues we encountered while realizing the implementa-
tion. We will not dwell on components whose imple-
mentation required just a straightforward translation of
the above design into code, like the undo manager itself.

Our implementation, written in Java to leverage its
dependability-increasing language features, wraps an
unmodified, existing e-mail store. It comprises about
25K lines of Java code, split about evenly between the
generic and e-mail-specific components. The e-mail
specific part took about two man-months to implement.

4.1 Verbs for e-mail
We defined a set of 13 verbs for our undoable e-mail
store that together capture the important state-altering or
state-externalizing interactions in the IMAP and SMTP
protocols; they are listed in Table 1.

Note that some of the verbs listed, such as Select,
do not alter or externalize state but are defined so that
they can be properly sequenced by the undo manager as
described in Section 3.2.1. Notice also that all of the
IMAP verbs are synchronous, as expected given that
IMAP is a request-response protocol, whereas the
SMTP Deliver verb is asynchronous, reflecting the
asynchronous nature of mail transport. Finally, note that
while our set of verbs covers only the most commonly-
used e-mail functionality for simplicity, it could be
extended to encompass some of the more obscure IMAP
functionality (such as subscription management) and to
capture basic administrative tasks that are performed
through interfaces outside of IMAP or SMTP, notably
account creation, deletion, and configuration.

Table 1: Verbs defined for undoable e-mail store

Each e-mail verb is implemented as a Java class
that implements a common Verb interface; the Verb
interface is defined by the undo manager and declares
an API that is a straightforward mapping of the routines
described in Section 3.2.1 into Java function declara-
tions. All verbs contain a tag, a container data structure
that wraps the information needed to execute the verb
and to check its external consistency, including a record
of whether its execution succeeded or failed. Other than
the verb’s Java type, the tag is the only part of the verb
that is recorded as part of the system’s timeline, so it has
to be sufficient to reconstruct the verb during replay.

4.1.1 Managing context
One of the challenges in defining verbs for existing pro-
tocols like IMAP and SMTP is being able to capture all
the necessary context needed to successfully replay the
verbs. For SMTP, this is straightforward: we simply
capture the parameters passed in to each SMTP com-
mand and store them in the corresponding verb’s tag.

Applying the same approach to IMAP proved more
problematic. In IMAP, operations name state (folders
and messages) using names that are only meaningful in
a particular system context. In particular, messages are
named either by sequence numbers that change any time
a message is added to or removed from a folder, or by
so-called “unique” IDs that are only unique to a particu-
lar instance of a folder and can be unilaterally invali-
dated at any point by the IMAP server. Similarly, folders
are named by hierarchical names that change any time a
folder’s parent is renamed.

In order to be able to replay IMAP verbs in situa-
tions where repairs have changed the system context, we
needed to ensure that the verbs specified only absolute
names that would still be meaningful after repair. To
accomplish this, we defined the notion of an UndoID, a
time-invariant name independent of system context and
capable of being translated into a current IMAP name
for verb execution; the proxy is responsible for convert-
ing UndoIDs to and from IMAP names based on the
current system context.

In the case of e-mail messages, UndoIDs are allo-
cated and inserted into a reserved message header field
whenever a message is injected into the mail store
(either by an SMTP Deliver verb or an IMAP Append
verb). Then, when creating a verb out of any IMAP
command that referred to specific messages, we trans-
late the IMAP names into UndoIDs by fetching the
UndoID directly from the message headers. To replay a
verb, we translate the UndoIDs back to IMAP names by
scanning the folder once to retrieve the UndoID-to-
IMAP-ID translations, which are then cached for the
duration of the Replay cycle.

The case of folders is more difficult, since there is
no place to embed the UndoID in the folder name. To
solve this problem, we built a module that we call the
UIDFactory. It maintains a mapping of UndoIDs to
names in a persistent BerkeleyDB database, and is syn-
chronized with the undo manager so that names are
invalidated and restored appropriately when the system
is rolled back and forward in time. The UIDFactory is
designed to be general and reusable, treating names as
opaque Java objects. In our e-mail system, the UIDFac-
tory maps UndoIDs to IMAP folder names consisting of
an ASCII string for the name of the folder plus the
UndoID of the folder’s parent.

4.1.2 External consistency model
The first step in implementing the inconsistency man-
agement architecture of Section 3.2 for e-mail is to
define a model of acceptable external consistency. In
doing so, we make a distinction between the transport
(SMTP) and retrieval (IMAP) phases of e-mail process-
ing. The transport phase allows for a much more relaxed
consistency model than the retrieval phase, since even
without an undo system, e-mail transport can result in
delayed or out-of-order messages. On the retrieval side,
consistency has to be stronger, as users are not used to
seeing messages or folders change, appear, or disappear
from their Inbox without warning. However, even
though users are not used to such inconsistencies, we
believe that they will accept them if they are sufficiently
explained—there is already evidence for this in the
numerous mail filters that delete or alter suspected
virus- or spam-containing messages, replacing the origi-
nal message with an explanatory placeholder.

On the retrieval side, we define externalized state to
include the output of message fetches (i.e., the text of e-
mail messages, including attachments), the output of
message list commands (i.e., the standard e-mail head-
ers, including To, From, Subject, and Cc, but not Date),
the output of folder list commands (i.e., the currently
extant folders in a user’s mail store), and the execution
status of any state-altering interactive IMAP commands.
We declare this state to be inconsistent upon replay if
any objects (messages or folders) that were visible orig-
inally are missing or altered on replay or if state-altering
commands fail. We discount ordering differences and
ignore newly-found objects that were not present during
original execution, as such discrepancies are typically
masked by sorting in the user’s e-mail client.

For the most part, we compensate for detected
external inconsistencies on the retrieval side by insert-
ing explanatory messages into the user’s mailbox, apol-
ogizing for the inconsistencies, explaining what they
are, and saying why they were necessary. When new
folders or messages are being added to the system, we

can be more clever. For example, when the target folder
for a message Append verb is found to be missing, we
compensate by creating that folder in a special
Lost&Found folder in the user’s mail store with the
same UndoID as the missing folder. By reusing the
UndoID, further replayed operations directed at the
missing folder go to its newly created surrogate.

From the undo system’s perspective, the transport
side of e-mail consists only of the SMTP Deliver verb.
As SMTP delivery is asynchronous and only reports
back to the sender on failure, the one tricky consistency
problem is when a formerly-failed message delivery
succeeds on replay. If the failure has already been
reported to the sender via a standard bounce message,
the undo system must not deliver the message during
replay, as it does not know what actions the sender took
in response to the bounce. However, by delaying the
delivery of the final bounce message (typically, by 4
hours), we create a window in which the operator can
use Undo to fix mistakes that would cause mail to
bounce erroneously. To avoid aggravating users who are
used to getting instant feedback on misaddressed e-
mails, a failed SMTP Deliver verb sends an informa-
tional “bounce” immediately, informing the original
sender that the delivery attempt failed but will be retried
for the (typically 4-hour) length of the undo window.
Note that any inconsistencies in message content, han-
dling, or recipients are not externalized until message
retrieval, so they are handled at that point.

All of the consistency checks and compensations
described above are implemented through the Verb
API in conjunction with the verb tag. When a verb is
executed, it updates the tag with a record of the external-
ized state and the verb’s execution status. To reduce the
amount of data that must be stored in the timeline, most
e-mail verbs record only hashes of their output in the
verb tag. Verbs define check routines that compare the
tags from the original and replay executions, and com-
pensation routines that perform verb-specific compensa-
tions such as generating explanatory messages.

4.1.3 Commutativity and independence
As required by the Verb interface, all of our e-mail
verbs define methods for determining if one verb com-
mutes with or is independent of another. These determi-
nations are made by examining the verb types and the
contents of their tags, and can often be made simply. For
example, any two SMTP verbs are independent of and
commute with one another, since message ordering is
not considered in our consistency model for e-mail.
Similarly, any two IMAP verbs belonging to different
IMAP users are independent and commutative, since
each user’s mail store is independent of all others. To
facilitate this determination, IMAP verbs store their

associated username in the verb tag. SMTP and IMAP
verbs commute with one another unless the IMAP verb
is a Fetch for a user’s Inbox; in this case we conserva-
tively mark the verbs as non-commutative since, due to
the existence of aliases and mailing lists, it is impossible
to determine from the proxy level who is the actual
recipient of an arriving SMTP message.

Given these rules, the only remaining case is of two
IMAP verbs for the same user. Here, the tests have to be
more extensive, examining the input parameters in the
two verbs’ tags to determine if they commute. For
example, an Expunge and a Fetch do not commute if
they share the same target folder, nor do a Store and a
Copy if they share the same target messages. However,
Append and Store do commute if they have different tar-
get message UndoIDs, as do Append and Fetch.

4.2 E-mail proxy
The e-mail proxy is responsible for intercepting all
SMTP and IMAP traffic directed at the mail server, con-
verting it into the verbs described above, and interacting
with the undo manager. The proxy is one of the simpler
components of the undo system. It accepts connections
on the IMAP and SMTP ports and dispatches threads to
handle each incoming connection. Each connection is
handled by a separate thread, which runs in a loop,
decoding each incoming SMTP or IMAP interaction,
packaging it into a verb, and invoking the undo manager
to sequence, execute, and record the verb. For IMAP
connections, the proxy never interacts directly with the
server; it merely opens connections that are used by the
verbs themselves during original or replay execution.

The SMTP case is more complicated, however.
Because we want to be able to use Undo to recover from
configuration errors that cause mail to be erroneously
rejected, we must create verbs for all delivered mes-
sages even if they would normally be rejected. Thus the
SMTP proxy acts more as a server than a proxy, com-
pleting a transaction with the client before packaging it
into a verb and sending it to the real server. By doing so,
however, the proxy opens itself up to denial-of-service
attacks: an external attacker can generate streams of
invalid SMTP requests (such as relaying requests), clut-
tering up the timeline log and burning extra resources to
handle the later failures when those requests are exe-
cuted against the real server. In our prototype, we err on
the side of caution by validating recipient addresses
against the real server before accepting a transaction
from the client, rejecting any syntactically-invalid recip-
ients or relay requests, while allowing otherwise-
rejected recipients. This decision reflects a tradeoff
between attack vulnerability and the system’s ability to
recover from configuration errors affecting address vali-
dation, and is probably a decision best left to site policy.

4.3 Time-travel storage layer
At the base of the undoable e-mail system is the time-
travel storage layer, which provides stable storage for
the e-mail store’s hard state as well as the ability to
physically restore previous versions of that state. The
storage layer is designed to be application-neutral, and
has neither knowledge of the e-mail store nor any cus-
tomizations to e-mail semantics.

Ideally, a time-travel storage layer would provide
the ability to restore state backward to any arbitrary
point in time; to restore state forward in time to cancel
the effects of a previous rollback (essential in providing
the ability to undo an undo); and to accomplish these
time-travel operations instantaneously. Unfortunately,
we could find no storage layer offering all of these prop-
erties, so we were forced to improvise. We started out
with a Network Appliance filer whose WAFL file sys-
tem and SnapRestore feature provide snapshots that can
be created and restored almost instantaneously. Two
limitations had to be addressed: its 31-snapshot limit,
and the fact that restoring an old snapshot annihilates
any later ones, preventing forward time travel.

We began by building a Java wrapper that hides the
telnet/console-based command-line interface to the
filer’s snapshot management tools. The wrapper tracks
the filer’s active snapshots and provides an API for cre-
ating, deleting, restoring, and listing them. Also, during
normal operation, the wrapper periodically takes snap-
shots at multiple configurable granularities (e.g., every
10 minutes, every hour, every day, every week), aging
out old ones according to an algorithm that preserves a
specified minimum number of snapshots at each granu-
larity while maximizing the number of snapshots in the
most recent past. With our default granularities, the 31
available snapshots span up to a month of time, with up
to 20 snapshots concentrated in the past day.

To address the lack of forward time-travel, we
added a routine to the wrapper that copies an old snap-
shot forward to the present, effectively overwriting the
current state of the system with an older snapshot of
state, but without destroying any intervening snapshots.
By leveraging the filer’s ability to forward-restore a sin-
gle file from a snapshot in constant time, this copy-for-
ward routine runs in time proportional to the number of
files in the file system, independent of their size. Given
this ability, we implement reverse time-travel by first
taking a recovery snapshot, then copying the desired old
snapshot to the present. To do forward time-travel after
that, we need merely restore the recovery snapshot,
which takes the system back to the point before the old
snapshot was made current.

Finally, to address the limited number of snapshots,
we designed the undo manager to implement Rewind by
first restoring to the nearest snapshot prior to the rewind

target, then using the existing Replay code to roll the
system forward to the exact target time point. Given this
approach, extra snapshots become a performance opti-
mization rather than a functionality issue.

4.4 Undo manager
Our implementation of the undo manager is a reason-
ably straightforward translation of its description in Sec-
tion 3 into Java code. The undo manager stores the
system timeline as a linear append-only log of verbs.
The log is implemented as a BerkeleyDB ‘recno’-style
database, with each verb assigned a sequential log
sequence number (LSN). The LSN is the fundamental
internal representation of time to the undo manager, and
all “time-travel” operations like rewinding and replay-
ing operate in terms of LSNs, although versions of all
external interfaces are provided that take real dates and
times rather than LSNs.

The undo manager mediates execution of verbs dur-
ing normal operation much as described in Section 3.2.
One special case bears mention: when verbs arrive for
execution during an in-progress undo cycle, the execu-
tion process has to proceed differently. The undo man-
ager cannot allow the verb’s operation to modify the
state of the service system, since the verb is effectively
in a different timeline than the system. However, we do
not want the undo system to lose delivered e-mail dur-
ing an undo cycle. Similarly, we want to retain the abil-
ity for users to at least inspect their mailbox state, even
if it is temporarily inconsistent and immutable (although
this is again likely a site policy choice). Our solution is
to defer execution of asynchronous verbs (like SMTP
deliveries) until the undo cycle completes—being asyn-
chronous, they can tolerate the delay—and to execute
synchronous verbs in a read-only mode. If a synchro-
nous verb cannot be executed read-only, the execution
fails and ideally reports an explanatory message back to
the user. Synchronous verbs executed read-only are still
added to the end of the timeline log, as they can exter-
nalize state even if they cannot change it.

5 Analysis of Overhead and Performance
With an implementation in place, we set up some simple
experiments to gauge the overhead of adding our proof-
of-concept Undo implementation to an existing e-mail
store and to evaluate its performance. Since Three-R’s
undo is targeted at reducing human operator stress and
improving overall system dependability, a true evalua-
tion of Undo would require a dependability benchmark
incorporating human subjects as described in [2]; such a
study is beyond the scope of this paper, although we are
in the process of performing one as future work.

5.1 Setup
We deployed a setup consisting of four machines: a mail
store server, the undo proxy, a workload generator, and a
time-travel storage server. Details of the machine con-
figurations are given in Table 2. All machines were con-
nected by switched gigabit Ethernet. The filer was
configured with two volumes, a 250GB time-travel vol-
ume with a 40% snapshot reserve, and a 203GB log vol-
ume with the standard 15% reserve. The proxy was
configured to store its timeline logs on the filer’s log
volume, accessed via NFS. The mail server was config-
ured with 10,000 user accounts, with all of their storage
(home directories and mailspools) placed on the filer’s
time-travel storage volume and accessed via NFS.

Our measurement workload was provided by a
modified version of the SPECmail2001 e-mail bench-
mark [29]. SPECmail simulates the workload seen by a
typical ISP mail server with a mixture of well-connected
and dialup users. We modified the SPECmail bench-

mark to use IMAP instead of POP for retrieving mail
and added code to export detailed timings for each e-
mail session along with the benchmark’s usual summary
statistics; we also modified the benchmark to direct all
mail to the mail store rather than to remote users, as we
were only interested in mail store behavior. The bench-
mark was set up with its standard workload for 10,000
users at 100% load, a configuration that is intended to
generate a workload equivalent to what a 10,000-user
ISP would see during its daily load peak. In our experi-
ments, this translated to an average of 95 SMTP connec-
tions and 102 IMAP connections per minute. Each
benchmark run consisted of a 30 minute measurement
interval preceded by a 3-minute warm-up.

5.2 Results: overhead
We begin by comparing the user-visible latency with
and without the undo system in place. Figures 3(a) and
(b) plot the cumulative distributions of the IMAP and
SMTP session lengths measured both from the unmodi-
fied e-mail store server and from the undo-enabled ver-
sion of the same. In the latter case, the undo system was
actively proxying connections and recording the system
timeline. Note that here, a session is defined as a single
complete set of client interactions with the mail server,
from login to logout.

Looking at the session-length distributions, we see
that the Undo system does not significantly alter the
shapes of the distributions, essentially just shifting them
to the right. This shift represents the overhead added by
the proxying, verb-generation, and verb-scheduling
code. While the overhead imposed by Undo is not negli-
gible, ranging from 62ms for a null SMTP session to
484ms for the median IMAP session, it is still relatively
small compared to the threshold at which human users
begin to perceive unacceptable sluggishness, typically
pegged at about one second [16]. Furthermore, this
latency is spread across an entire session and not a sin-
gle interaction. For longer sessions (typically, those that

Machine Configuration

Mail store
server

Type: IBM Netfinity 5500 M20
CPU: 4x500MHz Pentium-III Xeon
DRAM: 2GB
OS: Debian 3.0 Linux, 2.4.18SMP kernel
Software: Sendmail 8.12.3 SMTP server,

UW-IMAP 2001.315 IMAP server

Undo
proxy

Type: Dell OptiPlex GX400
CPU: 1x1.3GHz Pentium-IV
DRAM: 512MB
OS: Debian 3.0 Linux, 2.4.18SMP kernel
Software: Sun Java2 SDK version 1.4.0_01

Workload
generator

Type: IBM Intellistation E Pro
CPU: 1x667MHz Pentium-III
DRAM: 256MB
OS: Windows 2000 SP3
Software: Sun Java2 SDK version 1.4.1

Time-
travel
storage
server

Type: Network Appliance Filer F760
DRAM: 1GB
OS: Data OnTAP 6.2.1
Disk: 14x72GB 10kRPM FC-AL, 1TB total

Table 2: Machine configurations for overhead experiments

Figure 3: Overhead and Performance of Undo. The leftmost two graphs show cumulative distributions of session length for
mail retrieval via IMAP (a) and mail delivery via SMTP (b), with and without the undo system in place. The rightmost graph (c)
shows the performance of replay, represented as speedup over the original execution of the benchmark run.

IMAP Session Length (seconds)
0.1 1 10 100

Pe
rc

en
ta

ge
 o

f I
M

A
P

Se
ss

io
ns

0

20

40

60

80

100

Without Undo
With Undo

SMTP Session Length (seconds)
0.1 1 10 100

Pe
rc

en
ta

ge
 o

f S
M

TP
 S

es
si

on
s

0

20

40

60

80

100

Without Undo
With Undo

Users

R
ep

la
y

Sp
ee

du
p

0

5

10

15

20

25

30

1.3x
2.6x

10,0005,0001,000
1.0x

12.8x

29.2x

500

(a) (b) (c)

Median overhead: 484ms

Null
overhead:
360ms

Median overhead: 141ms

Null
overhead:
62ms

retrieve large amounts of data), the undo-induced over-
head is essentially insignificant.

Next, we consider the storage overhead of provid-
ing Undo, which consists of the timeline log and the
database of mail folder name mappings (as discussed in
Section 4.1.1). We measured the amount of log data
accumulated during the measurement interval of the
undo-enabled benchmark run described above, which
consisted of 30 minutes of peak-load traffic for 10,000
users. In that time, the undo system generated 206.5MB
of timeline log. Closer analysis showed that a bug in the
Java serialization code was contributing an enormous
amount of overhead by writing large swaths of garbage
data to the log. With this overhead factored out, the
undo system generates an estimated 96.2MB of uncom-
pressed timeline log over the 30 minute interval, 71% of
which consists of copies of incoming e-mail. This result
extrapolates to 0.45GB of timeline log per 1,000 simu-
lated users per day. Translating to a more concrete refer-
ence, a single 120GB disk could hold just under 250,000
user-days of log data, enough to record 3½ weeks of
timeline for a 10,000-user ISP. Adding log compression
may help further reduce the storage overhead of undo.

The name database size is relatively static and pro-
portional to the number of total mail folders in the sys-
tem. For our 10,000 users each of whom only had an
Inbox, the corresponding name database required
12.3MB of disk space, indicating that a 120GB disk
could hold the names for over 93 million e-mail folders.

5.3 Results: performance
We next look at the performance of the Three-R’s cycle
itself. We measured this by starting with the system at
the end-state of a 30-minute SPECmail benchmark run
for various numbers of simulated users, and recorded
the time it took to rewind the system back to a storage
checkpoint taken at the start of the benchmark run, then
to replay it forward to the end of the run.

With the forward-time-travel workaround of Sec-
tion 4.3 in place, it took on average 590 seconds, or
9m50s, to rewind the 10,000-user system (average of
three runs, standard deviation <1%). The bulk of this
time was spent copying files from the old snapshot into
the active system, and so this time is heavily dependent
on the number of files in the file system; our experi-
ments show it to scale roughly linearly with the number
of simulated SPECmail users. In contrast, using the Net-
work Appliance filer’s built-in snapshot restore capabil-
ities, an old snapshot can be (non-undoably) restored in
a constant 8 seconds on average (10% std. deviation
over 12 runs), independent of the number of simulated
users. This is the order of magnitude rewind time that
would be achievable in practice, given the proper inter-
faces into the filer to support undoable snapshot restore.

Turning to replay, Figure 3(c) plots the time to
replay the logged verbs from a SPECmail benchmark
run represented as a speedup over the original 30-
minute run-length, for several different numbers of sim-
ulated users. Across all experiments, the system was
able to sustain an average replay rate of approximately
8.8 verbs/sec, enough to surpass by a factor of 1.3x the
maximum original verb arrival rate of 6.7 verbs/sec for
10,000 simulated users, and by much larger factors for
lighter workloads with fewer users. While this replay
performance brings the possibility of Operator Undo
into the realm of feasibility, it is still somewhat disap-
pointing. Analysis shows that the measured replay per-
formance is primarily due to the overhead of
establishing, authenticating, and tearing down SMTP
and IMAP connections for each replayed verb. Signifi-
cant improvements in replay speed could be realized
through more optimized connection management, and
likewise if these protocols provided a “batch mode” that
allowed a trusted entity (like the undo system) to reuse a
single authenticated connection to replay the interleaved
interactions of multiple users.

6 Related Work
Our Three-R’s Undo approach draws on a host of well-
studied techniques—service proxying, operation log-
ging and replay, replica consistency management, time-
line history management, and checkpoint recovery, to
name a few—and creates a novel synthesis of them in
the form of a tool for creating a forgiving environment
for system operators. In particular, our system uniquely
combines the ability to integrate repairs into a logged
operation history, common in collaborative productivity
application frameworks, with the system-wide applica-
bility of traditional system checkpointing or backup/
restore techniques.

It is this ability to restore history after repairs that
differentiates our undo system from other log/replay-
based recovery environments like transactional database
systems [17] and transparent log-based rollback-recov-
ery systems [1] [9] [15]. In these other systems, replay is
only possible if the system context has not changed
since the log was recorded, for they provide no mecha-
nism to handle replayed events that fail or produce dif-
ferent externally-visible results than during their
original execution. In transaction systems, for example,
transactions are assumed to be permanent once commit-
ted, and cannot change their results or commit status as
part of recovery. In log-based rollback recovery, once
state escapes to the external world, rollback beyond that
escape point is simply disallowed. In contrast, our
Three-R’s approach allows the trajectory of replay to
differ from the original execution, detecting significant
differences and compensating for externally-visible

inconsistencies. This detection and compensation is
made possible by our verbs: not only do they provide a
framework for specifying consistency and compensa-
tion, but they provide a higher-level record of user intent
than transactions or message logs, making intelligent
compensation more feasible.

As we have already discussed in Section 3.2.1, the
challenge of retroactively integrating repairs into a
logged operation history bears a great deal of similarity
to the problem of reconciliation in optimistic replication
systems such as Bayou, IceCube, or Coda [12] [28] [30].
But it also has an even more direct counterpart in work
on timeline management for collaborative productivity
applications, an area which has explored sophisticated
undo models supporting highly-malleable views of time.
Probably the best example of work in this area is
Edwards and Mynatt’s Timewarp system [8], a frame-
work for collaborative productivity applications that
maintains histories of all user actions over shared state.
In Timewarp, users can rewind their state, alter their his-
tories, and replay changes at will. Timewarp defines a
framework for detecting and managing inconsistencies
that arise from retroactively-inserted changes to the
timeline, much as we do to handle inconsistencies
resulting from Repair, but Timewarp’s approach
requires that all alterations to the past timeline consist of
insertions or deletions of predefined actions in the oper-
ation log, as it identifies inconsistencies by detecting
conflicts between the well-known actions [7]. In con-
trast, our design point of allowing unconstrained repair
limits the applicability of the Timewarp approach, and
hence we detect inconsistency by directly examining
externalized state. Along similar lines, Timewarp per-
forms undo (Rewind) logically, whereas we must per-
form it physically as we cannot trust that operations
were processed correctly during original execution.

Our Three-R’s Undo approach supports recovery
from system-wide problems, not just errors within an
application. Again, this property on its own is available
in many other systems. Users of desktop PCs can pur-
chase software tools such as Roxio’s GoBack [26] or
IBM/XPoint’s Rapid Restore [32] that provide the abil-
ity to examine past system states, physically roll-back
an entire machine, including the OS, to a past state, and
even roll-forward again later. Virtual machine systems
such as VMware [31] provide the ability to log system
operation so it can be rolled-back and replayed; Dunlap
et al.’s ReVirt system demonstrates a particularly clever
use of the technique for intrusion analysis [6]. But
unlike our Operator Undo model, these systems provide
either Repair or Replay, but never both—if changes or
repairs are made to a rolled-back system, replay either
wipes out those changes or is prohibited altogether.

In terms of our actual implementation of an undo-
able e-mail system, probably the most relevant prior
work is a commercial product, the Network Appliance
SnapManager for Exchange, which is a system that inte-
grates the snapshot capabilities of Network Appliance
filers with Exchange’s built-in mail logging [19]; simi-
lar functionality is provided by other systems that build
e-mail atop a database system. In the case of a system
failure, the SnapManager system allows an operator to
restore a previously-archived snapshot of the mail sys-
tem, then replay forward using the Exchange transaction
logs. While this system is similar in approach to our
Three-R’s-undoable e-mail store, there are two funda-
mental differences. First, the SnapManager system does
not detect and compensate for external inconsistencies.
Second, operation logs in the SnapManager/Exchange
system are recorded deep within the Exchange system,
long after the user’s protocol interactions have been pro-
cessed. If the Exchange server is misconfigured or
buggy, these logs may be incomplete or corrupted, and
will almost certainly not contain a record of mail deliv-
eries incorrectly rejected by the system. In contrast, our
external proxy-based logging takes place before the e-
mail server even interprets the mail protocols, allowing
recovery from failures or configuration problems at all
levels of the mail server, and not binding the logs to a
specific server implementation (hence allowing server
upgrades as part of Repair). While our approach is still
susceptible to bugs in the proxy, the likelihood of those
bugs is reduced by the relative simplicity of the proxy
and the fact that the proxy executes operations directly
from the same verb objects as are stored in the timeline
log, quickly flushing out bugs during normal operation.

Finally, while we have focused entirely on the mail
store and its operator, there has been work on develop-
ing undo-like functionality for the user side of e-mail.
Here, the challenge is not recovery from system opera-
tor error or software bugs, but dealing with user errors
like accidental mailbox deletion. We think that many of
our Three-R’s undo techniques would make sense at this
level of the system, and are thinking about ways to
extend our approach to provide undo to both operators
and end-users, but unlike some brave researchers [27],
we do not intend to tackle the most challenging of end-
user problems: unsending e-mail on the Internet.

7 Conclusions and Future Work
Dependable systems will not be achieved until we
address the challenges facing the human operators who
exert such a crucial influence on dependability. Our
model of an operator-targeted system-wide undo facility
is a first step toward creating a forgiving environment
for system operators so that they may better respond to
system problems. It reduces the impact of mistakes,

allowing for inevitable human error and making trial-
and-error solutions feasible, and provides a last-resort
tool for guaranteed recovery from developing software
problems or data corruption.

Our proof-of-concept implementation of undo for
e-mail proves the concept feasible and demonstrates that
even an unoptimized implementation imposes reason-
able overheads in terms of space and time. That said,
there are several future directions we are pursuing to
increase the functionality of Operator Undo and to bet-
ter understand its influence on dependability. First, we
are considering extensions to the basic undo model that
would allow for more complex undo timelines support-
ing multiple branches of history. We are also working to
extend the model to support multiple hierarchical levels
of undo, allowing undo to be simultaneously exposed at
per-user, per-machine, and per-cluster granularities. We
would like to see implementations of Three-R’s-style
undo in more applications than just e-mail; we are con-
sidering the design of an undoable auction service, and
would welcome company in exploring other applica-
tions. Finally, we feel it is important to understand how
a tool like Undo affects the behavior of system operators
and how those behavioral changes impact dependabil-
ity; to that end, we are developing dependability bench-
marks that incorporate human operators as participants.

Source code
Source code for our undo framework and e-mail proxy is
available at http://roc.cs.berkeley.edu/undo/.

Acknowledgements
This work was supported in part by DARPA under contract
DABT63-96-C-0056, the NSF under grant CCR-0085899 and
infrastructure grant EIA-9802069, and the California State
MICRO Program. The first author was supported by an IBM
Graduate Fellowship. Special thanks go to Network Appliance
for their generous donation of the filer used in our experi-
ments, to Mike Howard for always having an experimental
testbed or two up his sleeve, and to our shepherd, Brian Noble,
and our anonymous reviewers for their feedback and insight.

References
[1] A. Borg, W. Blau et al. Fault Tolerance Under UNIX. ACM

TOCS, 7(1):1–24, February 1989.
[2] A. Brown, L. C. Chung, and D. A. Patterson. Including the

Human Factor in Dependability Benchmarks. Proc. 2002
DSN Workshop on Dependability Benchmarking. Washing-
ton, D.C., June 2002.

[3] A. Brown and D. A. Patterson. Rewind, Repair, Replay:
Three R’s to Dependability. Proc. 10th ACM SIGOPS Euro-
pean Workshop. St. Emilion, France, 2002.

[4] A. Brown and D. A. Patterson. To Err is Human. Proc. 2001
Workshop on Evaluating and Architecting System depend-
abilitY. Göteborg, Sweden, July 2001.

[5] M. Crispin. RFC2060: Internet Message Access Protocol
Version 4rev1. December 1996.

[6] G. Dunlap, S. King, et al. ReVirt: Enabling Intrusion Analy-
sis through Virtual-Machine Logging and Replay. Proc. 5th
OSDI. Boston, MA, December 2002.

[7] W. K. Edwards. Flexible Conflict Detection and Manage-
ment in Collaborative Applications. Proc. 10th ACM Symp.
on User Interface Software and Technology. Banff, Canada,
October 1997.

[8] W. K. Edwards and E. D. Mynatt. Timewarp: Techniques for
Autonomous Collaboration. ACM Conf. on Human Factors
in Computing Systems. Atlanta, GA, 1997.

[9] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A Survey
of Rollback-Recovery Protocols in Message-Passing Sys-
tems. CMU TR 96-181. Carnegie Mellon, 1996.

[10] J. Gray. Why Do Computers Stop and What Can Be Done
About It? Symp. on Reliability in Distributed Software and
Database Systems, 3–12, 1986.

[11] IBM. Autonomic Computing: IBM’s Perspective on the State
of Information Technology. http://www.research.ibm.com/
autonomic/manifesto/autonomic_computing.pdf.

[12] A. Kermarrec, A. Rowstron, et al. The IceCube approach to
the reconciliation of divergent replicas. Proc 20th ACM
Symp. on Principles of Distributed Computing (PODC
2001). Newport, RI, August 2001.

[13] J. Klensin, ed. RFC2821: Simple Mail Transfer Protocol.
April 2001.

[14] R. Lemos and M. Farmer. Microsoft fingers technicians for
crippling site outages. ZDNet News, 25 January 2001.

[15] D. E. Lowell, S. Chandra, and P. Chen. Exploring Failure
Transparency and the Limits of Generic Recovery. Proc. 4th
OSDI. San Diego, CA, October 2000.

[16] R. B. Miller. Response time in man-computer conversa-
tional transactions. Proc. AFIPS Fall Joint Computer Con-
ference, 33:267–277, 1968.

[17] C. Mohan, D. Haderle, et al. ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write-Ahead Logging. ACM Trans.
Database Systems, 17(1): 94–162, 1992.

[18] B. Murphy and T. Gent. Measuring System and Software
Reliability using an Automated Data Collection Process.
Quality and Reliability Engineering International, 11:341–
353, 1995.

[19] Network Appliance. SnapManager Software. http://
www.netapp.com/products/filer/snapmanager2000.html.

[20] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do Internet services fail, and what can be done about it?
Proc. 4th USENIX Symp. on Internet Technologies and Sys-
tems. March, 2003.

[21] Osterman Research. Survey on Messaging System Down-
time from a user perspective. http://www.ostermanre-
search.com/results/surveyresults_dt0801.htm.

[22] D. A. Patterson, A. Brown, et al. Recovery-Oriented Com-
puting (ROC): Motivation, Definition, Techniques, and Case
Studies. UC Berkeley TR UCB//CSD-02-1175. Berkeley,
CA, March 2002.

[23] N. Preguiça, M. Shapiro, and C. Matheson. Efficient seman-
tics-aware reconciliation for optimistic write sharing.
Microsoft TR MSR-TR-2002-52. May 2002.

[24] J. Reason. Human Error. Cambridge University Press, 1990.
[25] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using

Abstraction to Improve Fault Tolerance. Proc. 18th SOSP.
Banff, Alberta, Canada, October 2001.

[26] Roxio, Inc. GoBack3. http://www.roxio.com/en/products/
goback/index.jhtml.

[27] A. Rubin, D. Boneh, and K. Fu. Revocation of Unread E-
mail in an Untrusted Network. Proc. 1997 Australasian
Conf. on Information Security and Privacy. Sydney, Austra-
lia, July 1997.

[28] M. Satyanarayanan. The Evolution of Coda. ACM Transac-
tions on Computer Systems, 20(2):85–124, May 2002.

[29] SPEC. SPECmail2001. http://www.spec.org/osg/mail2001.
[30] D. B. Terry, M. M. Theimer, et al. Managing Update Con-

flicts in a Bayou, a Weakly Connected Replicated Storage
System. Proc 15th SOSP. Copper Mountain, CO, Dec. 1995.

[31] VMware. http://www.vmware.com.
[32] Xpoint Technologies. XPoint Rapid Restore Server. http://

www.xpointdirect.com/en/IBMRRPC/RRServer.asp.

	Undo for Operators: Building an Undoable E-mail Store
	Abstract
	1 Introduction
	2 The Three R’s Model of Operator Undo
	2.1 Three-R’s design decisions
	2.2 Challenges in the Three-R’s model

	3 Design of a Generic Undo System
	3.1 Undo system architecture
	Figure 1: Undo system architecture

	3.2 Verbs: the undo manager interface
	Figure 2: Illustration of verb flow
	3.2.1 Verb interfaces
	Sequencing interfaces
	Consistency-management interfaces
	Discussion

	3.2.2 Handling failed verbs

	4 Implementing Undo in an E-mail Store
	4.1 Verbs for e-mail
	4.1.1 Managing context
	4.1.2 External consistency model
	4.1.3 Commutativity and independence

	4.2 E-mail proxy
	4.3 Time-travel storage layer
	4.4 Undo manager

	5 Analysis of Overhead and Performance
	5.1 Setup
	5.2 Results: overhead
	Figure 3: Overhead and Performance of Undo

	5.3 Results: performance

	6 Related Work
	7 Conclusions and Future Work
	Source code
	Acknowledgements
	References

