Available online at www.sciencedirect.com

SCIENCE<dDIRECT® JOURNAL OF

) COMPUTATIONAL AND
. APPLIED MATHEMATICS

LSEVIER Journal of Computational and Applied Mathematics 185 (2006) 203—211

www.elsevier.com/locate/cam

Verifying approximate solutions to differential equations

W.H. Enright

Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 1A4

Received 7 March 2003

Abstract

Itis now standard practice in computational science for large-scale simulations to be implemented and investigated
inaproblem solving environment (PSE) such as MATLAB or MAPLE. In such an environment, a scientist or engineer
will formulate a mathematical model, approximate its solution using an appropriate numerical method, visualize the
approximate solution and verify (or validate) the quality of the approximate solution. Traditionally, we have been
most concerned with the development of effective numerical software for generating the approximate solution and
several efficient and reliable numerical libraries are now available for use within the most widely used PSEs. On the
other hand, the visualization and verification tasks have received little attention, even though each often requires as
much computational effort as is involved in generating the approximate solution.

In this paper, we will investigate the effectiveness of a suite of tools that we have recently introduced in the
MATLAB PSE to verify approximate solutions of ordinary differential equations. We will use the notion of ‘effec-
tivity index’, widely used by researchers in the adaptive mesh PDE community, to quantify the credibility of our
verification tools. Numerical examples will be presented to illustrate the effectiveness of these tools when applied
to a standard numerical method on two model test problems.
© 2005 Elsevier B.V. All rights reserved.

MSC:65L05; 65Y20

KeywordsMerification; ODEs; Defect; Numerical solutions; Reliability

*This research was supported by the Natural Science and Engineering Research Council of Canada.
E-mail addressenright@cs.utoronto.ca

0377-0427/% - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.03.006

http://www.elsevier.com/locate/cam
mailto:enright@cs.utoronto.ca

204 W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203-211

1. Introduction

In the last decade there has been a significant change in the way scientific computing is carried out.
Those of us developing numerical methods must be aware of this change if our software is ever going
to be widely used and have an impact. The expectations and measures we use to evaluate software mu
evolve to make the results more relevant and applicable to modern scientific computing.

Two environments where numerical software is now widely used are:

e Large-Scale Scientific Computation:
Characterized by simulations generating massive amounts of data and involving expensive runs on High
Performance distributed systems (often located at remote sites). Applications require data compression
interactive data viewing (or data mining), remote visualization and the distributed collaboration of
experts.

e Problem Solving Environments (PSES):
Often where students are first exposed to scientific computing and where scientists and engineers
formulate their mathematical models and investigate approximate solutions of these problems.

In this investigation we focus on the latter environment but the tools and approaches we consider and
the observations we make are also applicable to tools that can be developed for the former environment
We will use the numerical solution of ordinary differential equations (ODES), in particular initial value
problems (IVPs), to illustrate the tools and evaluation criteria that have been developed and implemented.
The approach can be adopted in a similar fashion for other problem classes.

In the next section we will discuss the concept of a PSE and identify the characteristics or features
that make a PSE most effective. We will consider the importance of verification tools (as an essential
component of a PSE) and describe four such tools that we have implemented for use with ODE solvers. In
Section 3, we describe how one can quantify the effectiveness of these tools by introducing the notion of
an ‘effectivity index’ (a concept which has been developed and applied in the PDE community). Finally,
we illustrate the credibility of these tools on two model problems and the method ode45 of the MATLAB
PSE.

2. The components of a PSE

In a PSE the focus is on visualizing approximate solutions of mathematical models. This generally
involves graphical representation of a ‘subset’ of the results. (e.g. Phase plane or standard plots.) It car
also involve the use of colour, texture, lighting, animation and sound. Stringent accuracy is not usually
necessary, but off-mesh accuracy is often required.

Ease of use and robustness is very important (as important as efficiency) in a PSE. Information should
be hidden unless necessary to define the problem. Options and additional parameters (if required) shoul
be specified in the same way for all methods that perform similar tasks.

Similarly, there should be a standard representation (adopted by all methods of the PSE performing
similar tasks) of what is meant by an approximate solution to a particular problem. For example, an
approximate solution of an ODE can be represented in a PSE by a vector of piecewise polynomials. Suct
a representation makes it easy to compare, visualize, verify and manipulate the results of simulations
without having to pay attention to or understand how the approximations were generated. It must be

W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203—-211 205

acknowledged that, without an assumption of this type, it would be difficult to define and/or interpret
verification tools suitable for use with ODE software.
A PSE should provide tools to:

(1) Formulate and alter a mathematical model of the problem.

(2) Approximate the solution of the mathematical model.

(3) Visualize theapproximatesolution.

(4) Verify that an approximate solution is consistent with the mathematical model and the requested
accuracy.

(5) Verify that the mathematical model is well-posed. (That is, quantify the underlying inherent
conditioning.)

Generic tools for the first three of these tasks have been widely investigated and implemented as the key
components of PSEs.

We have recentl{B8] developed a class of tools that can be used for the latter two tasks when the under-
lying mathematical model is a system of ODEs and the numerical solution is a continuous approximation
to the true solution. In this investigation we will illustrate the effectiveness of these tools.

The key assumption we make of any method which generates an approximate solution is that, when
applied to the IVP,

y'=f(x,y), y(a)=yo, onla,b],

with a specified accuracy,OL, the numerical method, M, generates a piecewise polynogiigl,(x),
defined forx € [a, b] and satisfying,

lztoL(x) — y(x)|| < KpTOL

This assumption is satisfied by most state-of-the-art ODE software and certainly by the built-in numerical
methods of MATLABI4]. Note thatK ;; will always depend on the underlying mathematical conditioning
of the problem, but it can also be very sensitive to the particular metkigdcan be interpreted as the
‘numerical condition number’ associated with method M.

The restrictions we imposed on the verification tools we developed were:

(1) The tool must be easy to use—If possible the calling sequence should be the same as that used tc
generate the approximate solution with no additional information required.

(2) The ‘cost’associated with applying the tool should not be much greater than that involved in generating
the approximate solution (or visualizing it). (Note that this requirement rules out technigues that
provide strict bounds on the global error as such techniques are much more expensive to apply.)

(3) The calling sequence should be the same for any method it is applied with. The tool may require some
knowledge of the method but this information should be transparent to the user.

The four verification tools we have implemented for ODEs in MATLAB (E&3efor details) are:
Check 1: A consistency Check based on solving the problem with a more stringent vall@f@nd
returning the difference in the two approximations as a piecewise polynomial. That is we compute

EtoL(x) = zToL(x) — zTOL1(X),

206 W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203-211

whereTOLL < TOL. The ‘cost’ of applying this tool is about double the cost of generatifg (x).
(Note that, in our implementation, we have used the default vEiel = TOL/10.)

Check 2: A consistency Check based on solving the problem with an alternative mefthod,
The piecewise polynomial returned by this routine is

EtoL(x) = zTOL(X) — ZTOL(X),

whereztoL(x) is the approximate solution associated wih(Note that this Check will be most suitable
if the methodM is very different fromM and the value oK ; is not very sensitive to the method. For
example, in our implementation of this tool, we use a variable order Adams method when assessing a
Runge—Kutta method from MATLAB.)

Check 3: A Check which computes the defect,

DoL(x) = Z5oL(x) — f(x, zTOL(X)).

Note thatDtoL(x) is not a piecewise polynomial, but it is a function that can be evaluated at any point
in [a, b]. Itis an inexpensive Check most suitable for methods designed to control the magnitude of the
defect.

Check 4: A consistency Check based on an idea of Zadundiskwhere we determine a piecewise
polynomial

ESTroL(x) = wroL(x) — zToL(X),

where wtoL(x) is the approximate solution, produced by method M applied to the perturbed IVP,
7 = f(x,z) + DyoL(x) with known exact solutiorzto.(x) on the same mesh that was used to de-
termineztoL(x). That is, we haveTtoL(x)' = f(x, zToL(x)) + DtoL(x). (Note that this Check is most
appropriate when the defect is small in magnitude as it will likely be for methods that directly estimate
and control the size of the defect.)

For each of the vector-valued functions returned by Check 1, Check 2 and Check 4 we can interpret its
max value for € [a, b] to be an estimate of the maximum global error. Therefore, a crude indicator of the
numerical condition number is the ratio of this max valud@L. Similarly for Check 3, the maximum
magnitude of the components bfro (x)/TOL can be considered an indication of the contribution of the
numerical method to the overall numerical conditioning of the problem (it does not reflect the underlying
mathematical conditioning of the problem).

Each of these verification tools are scalable with respect to the dimension of the problem and the length
of the integration (in the sense that the cost associated with applying the tool remains a small multiple
of the cost associated with generating the approximate solution). Each is also straightforward to apply in
a parallel computing environment where the underlying numerical method and the verification tool can
be run simultaneously on independent processors with very little communication required between the
processors.

In the numerical solution of partial differential equations (PDESs) there has been a similar (although
more advanced) effort in developing efficient numerical methods and corresponding verification tools
for special classes of problems. In the last decade there has been considerable interest in developin
verification tools based on a posteriori error estimates for assessing the validity of a particular numer-
ical solution. Such estimates are intended to be computed as a post processing task, and have bee
implemented and packaged with some of the widely used PDE PSEs. In particular, the finite element

W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203—-211 207

and adaptive mesh refinement research communities have adopted this point of view (see for example
[1,2]). They have introduced the concept of an ‘effectivity index’ to quantify the credibility of their
tools. We will adopt this approach in quantifying the credibility of the ODE verification tools we have
introduced.

3. Effectivity indices for ODE verification tools

For the ODE verification tool, Check 3, the only error that arises is due to round-off and therefore
this verification Check will be reliable at all reasonable error tolerances. Because it does involve the
subtraction of near equals (the pointwise evaluation of the defect) it will become unreliable at stringent
tolerances (values @fOL near the unit round-off).

Each of the other verification tools (Check 1, Check 2 and Check 4) can be interpreted as an estimate
of the global errorEST~ TRUERRIn this case the natural definition for the ‘Effectivity Index’is,

El = |[EST]|/| TRUERR.

Clearly, the closer this value is to 1, the more accurate and useful it will be. Too large a value indicates an
over-estimate while too small a value indicates an under-estimate and the possibility that an inaccurate
approximate solution will not be recognized. We will compute the valugl é6r Check 1, Check 2 and
Check 4 for two test problems, a range of value$OL, and monitor its behaviour over the entire range
of integration § € [a, b]).

In our numerical results we report,

MaX;cfxo.xr1I[ESTX) |
TOL ’

MnEl= min El(x),

x€[x0,xF]

CEST=

MxEl= max El(x).

x€[xo.xF]

Our main objective, in developing these verification tools, is to produce an inexpensive but reasonably
reliable tool for assessing the credibility of a particular approximate solution. For Check 1 and Check 2
the ‘reliability’ of these tools can be improved by setting the accuracy parameter associated with the
secondary solution to be more severe. We have been somewhat arbitrary in setting the default for these
values TOL/10 for Check 1 andOL for Check 2) but the overall credibility of these tools is quite good

and not very sensitive to this choice. For Check 4, the reliability of the tool is sensitive to the definition
of the piecewise polynomial associated with the approximate solution and we have assumed that this is
part of the definition of the method. For ode45 there are several possible choices for how this piecewise
polynomial can be defined and the MATLAB implementation, while appropriate for most purposes,
does not necessarily result in a small magnitude defect (especially at relaxed tolerances). Alternative
definitions for this piecewise polynomial (for the same underlying discrete Runge—Kutta formula) are
available which, at a small increase in cost per step, will result in a smaller magnitude defect and hence
a more robust and credible verification tool.

208 W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203-211
4, Numerical results and discussion

The first test problem corresponds to a recently discovered stable orbit that arises in the simulation
of the restricted three-body problem (where the orbits are planar). The bodies have equal mass (in oul
case we assume1 = mp = m3=1.0) and, with the appropriate starting conditions, will follow the same
figure-eight orbit as a periodic steady-state solution.

The two spatial coordinates of thigh body areyy;, y»; for j =1, 2, 3. Each of the six coordinates
satisfy a second-order differential equation,

3
Yik — Yij
h= 3 m (d—)
k=1k#]j jk

Trajectory of the three bodies

15 T T T T T T T T T 0.4
0.3
1
021
0.5
0.1f
0 ot
-0.1+
-0.5
-0.2}
= -0.3}
asbl— .) oo ..
0 2 4 6 8 10 12 14 16 18 20 15 -1 -0.5 0 0.5 1 15
(a) Solution Plot (b) Solution Plot

Fig. 1. The approximate solution produced by ode45 for the Three Body problem: (a) solution plot; (b) phase portrait.

| 40
35
30
25

1 20

| 15
10
28°

] 10

0 2 4 6 8 10 12 14 16 18 20 20 T55 9015 10 5 0
(@) Solution Plot (b) Phase Portrait

50

40} |

30

20 f

10

_5-10-15-20-25

Fig. 2. The approximate solution produced by ode45 for the Lorentz problem: (a) solution plot; (b) phase portrait.

W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203—-211 209

Table 1
Effectiveness indices for the Three Body problem

TOL CEST MnEI MXEI CEST MnEI MXEI CEST MnEI MXEI
Check 1 Check 2 Check 4

103 801 0.67 1.01 778 0.56 155 1078 0.42 3.59
1074 1370 0.98 1.01 1450 0.81 5.43 1411 0.39 1.53
106 120 0.99 1.02 188 0.90 11.9 76 0.62 1.22
108 190 0.98 1.03 247 0.63 5.80 223 0.21 2.75
1079 220 0.99 1.02 220 0.99 1.02 258 0.28 2.09
10-10 230 0.13 1.00 218 0.19 1.92 273 0.05 1.32
where

2
i =" Ou—y)® kj=123.

When this system is re-written, as a first-order system, the dimension of the problem is 12 and the initial
conditions, att = 0, are given by

y1=-097000436 ;= 0466203685
v21=024308753 y}b, = 0.43236573

y12=0.0, y1, = —0.93240737
y22=0.0, yh, = —0.86473146
y13 = 0.97000436 / = 0.466203685

y23 = —0.24308753 y23 =0.43236573

We solve the problem far € [0, 20].
The second problem is the well-known Lorentz problem which arises in the study of dynamical systems
and is known to have solutions which are potentially poorly conditioned,

y1 =10(y2 — y1),
yo = y1(28— y3) — y2,

, 8
Y3 =Y1y2 — é)’S,

with
y1(0) =15, y2(0) =15 y3(0)=36, andx € [0, 20].

Using ode45 to investigate solutions of these problems allows us to illustrate the ability of our tools to
identify potential conditioning difficultiesiFigs. 1and 2 present standard visualizations of numerical
solutions to these problems determined by ode45.

Tables land2 andFig. 3 report statistics on the behaviour of the effectivity indices quantifying the
credibility of these verification tools on these two test problems. As these tables indicate the tools are

210 W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203-211

Table 2
Effectiveness indices for the Lorentz problem

TOL CEST MnE| MXEI CEST MnEI MXxEI CEST MnEI MXEI
Check 1 Check 2 Check 4
1073 3.8 x 104 0.20 2.22 20 x 104 0.06 6.21 B x 104 0.18 6.21
104 4.0 x 10° 0.26 18.1 37 x 10° 0.10 6.83 FH x 10° 0.09 8.44
106 3.6 x 107 0.92 1.12 3l x 107 0.30 14.3 ¥ x 107 0.28 3.77
108 5.1 x 108 0.99 1.00 28 x 10° 0.70 9.85 al x 108 0.39 2.05
1079 4.4 % 108 0.98 1.00 57 x 108 0.41 4.33 M x 108 0.69 1.24
1010 43 x 108 0.24 1.08 % x 10° 0.60 10.4 45 x 108 0.18 1.19
4 4 -
35} 35
3t 3
251 1 25}
2t . 1 21" ~
L R Cal . ;/ FN
A P MR VIR / A
L e e LR e - G — SN NN
L 5'& i
05f { 05
0

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
(@) Three Body problem at TOL=10"° (b) Lorenz problem at TOL=10°

Fig. 3. Graphs of the effectiveness indices over the range of integration for the verification tools. The solid line corresponds to
Check 1, dashed line to Check 2 and dotted line to Check 4: (a) Three Body probléh at 10~5; (b) Lorentz problem at
TOL=10"8.

able to provide a consistent and reliable estimate of the conditioning of the mathematical model over
a range of accuracy requests for a method that does not attempt to control the size of the defect. Note
that even on poorly conditioned problems, such as the Lorentz problem (where the condition number is
exponential in the length of the integration interval), all three tools reflect this. While the effectivity index
values associated with Check 1 are particularly good (all values very close to 1), the values are also quite
reasonable for the other tools as well (the respective estimates of the norm of the maximum error is rarely
out by a factor of 5).

From the reported results it is also clear that, when the errors are potentially underestimated (small
values ofMnEl), the reported values are usually large in magnitude (the corresponding relative error
is estimated to be much greater than 100%) and this is a reliable signal that the approximate solution
cannot be trusted. The results summarizeliq 3illustrate that the tools provide reliable and credible
information about the approximate solution over the entire interval of integration.

These results indicate that verification tools, such as those we have developed, can provide inexpen
sive confirmation that a particular approximate solution can be trusted. It is also clear that, when the

W.H. Enright / Journal of Computational and Applied Mathematics 185 (2006) 203—-211 211

reported error is small enough for the approximation to be accurate to a few significant digits, then the
associated estimate of the condition number is generally a good indication of the underlying numerical
conditioning.

References

[1] M. Ainsworth, J. Tinsley Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience, New York,
2000.

[2] I. Babuska, T. Strouboulis, The Finite Element Method and its Reliability, Oxford University Press, Oxford, 2001.

[3] W.H. Enright, Tools for the Verification of Approximate Solutions to Differential Equations, Department of Computer
Science Technical Report, University of Toronto, January 2002.

[4] L.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18 (1997) 1-22.

[5] P.E. Zadunaisky, On the estimation of errors propagated in the numerical integration of ordinary differential equations,
Numer. Math. 27 (1976) 21-39.

	Verifying approximate solutions to differential equations62626262
	Introduction
	The components of a PSE
	Effectivity indices for ODE verification tools
	Numerical results and discussion
	References

