On the effective use of abstraction

Anthony Arkles

aja042@mail.usask.ca
December 2" 2009




Abstraction?

* Simplifying a concept, hiding implementation
details.



Quantum Mechanics
Dopant Concentrations
Transistors

Logic Gates
Sequential Logic

Logic Modules
Processors

Operating System Kernel
Standard Libraries
Java Virtual Machine
Java Bytecode

Java Standard Library
Java Source Code

You probably don’t want
to be writing software up
here

You are here



Java Object Streams

Objects go in Objects come out
the other side

ObjectOutputStream ObjectinputStream

Magic Happens
Here!



The Server
ObjectOutputStream toClient =

Boolean allowed;

// figure out if the client is
allowed

toClient.writeBoolean(allowed)

if(allowed) {
toClient.writeObject(room);
toClient.writeObject(msgs);

The Client

ObjectinputStream server = ...

allowed = server.readBoolean()
if(allowed) {
room = server.readObject()
msgs = server.readObject()

} else {

System.out.printin(“Error”)

)



The Server
ObjectOutputStream toClient =

Boolean allowed;

// figure out if the client is
allowed

TRUE
toClient.writeBoolean(allowed)

if(allowed) {
toClient.writeObject(room);
toClient.writeObject(msgs);

}

Execution makes it here fine

The Client

ObjectinputStream server = ...

allowed = server.readBoolean()
if(allowed) {
room = server.readObject()
msgs = server.readObject()

} else {

System.out.printin(“Error”)

)

Execution makes it here fine



The Server
ObjectOutputStream toClient =

Boolean allowed;

// figure out if the client is
allowed

FALSE
toClient.writeBoolean(allowed)

if(allowed) {
toClient.writeObject(room);
toClient.writeObject(msgs);

}

Execution makes it here fine

The Client

ObjectinputStream server = ...

allowed = server.readBoolean()

Execution hangs here
room = server.readObject()

msgs = server.readObject()

} else {

System.out.printin(“Error”)

)



Buffered 10

* ObjectOutputStream is operating with a
Socket

* Sockets have buffering

* |f there isn’t enough data, buffers need to be
manually flushed



The Server
ObjectOutputStream toClient =

Vector msgs = new Vector();

toClient.writeObject(msgs);

// do some other code that
adds some messages to the
msgs Vector

toClient.writeObject(msgs);

The Client

ObjectinputStream server = ...

Vector msgs;

// receive the list of messages
msgs = server.readObject();

// do some other stuff

// receive new list of messages
msgs = server.readObject();



The Server
ObjectOutputStream toClient =

Vector msgs = new Vector();

Empty vector the first time
toClient.writeObject(msgs);

// do some other code that
adds some messages to the
msgs Vector

Non-empty Vector the second time
toClient.writeObject(msgs);

The Client

ObjectinputStream server = ...

Vector msgs;

// receive the list of messages
msgs = server.readObject();

Empty Vector comes out

// do some other stuff

// receive new list of messages
msgs = server.readObject();

Another empty Vector comes out?!



Java Object Serialization

» Convert an object instance to/from a
bytestream (using introspection)

e |f an instance has references to other

instances, the other instances are serialized
too.

e How?



Cyclic References

Serializeithis \

Instance 1 Instance 2

Instance 4 Instance 3

N



So why the empty Vector?

* ObjectOutputStream keeps a single Serializer
for the whole instance lifetime

* The Vector has the same id both times, so the
second time it only sends the address

 The deserializer on the other end just returns
the same empty Vector again...



More Examples

e HTTP Caching
* Python threading

 “Why can’t | get a packet to Japan in less than
28ms?”



Take-home Message

If you don’t want to spend a lot of time
debugging subtle bugs, take the time to
understand how abstractions work
underneath.



