
Supporting Workflow in User Interface Description
Languages

Nicole Stavness
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

+1 306 966 8654
nicole.stavness@usask.ca

Kevin Schneider
Department of Computer Science

University of Saskatchewan
Saskatoon, Saskatchewan, Canada

+1 306 966 4891
kas@cs.usask.ca

ABSTRACT
XML-based user interface description languages (UIDLs)
have been developed to support user interface portability
across multiple platforms. UIDLs express various aspects of
the user interface, including the abstract and concrete
elements of the user interface, the tasks to be performed by
the user, and the user interface dialogue.

We have developed the progression model for expressing
workflow aspects of an interactive system using an XML-
based language. The progression model considers workflow
to be a sequence of scenes progressing towards an
organizational goal. The model allows us to express
workflow explicitly using a markup language.

In this paper we present a prototype system, the
progression analyzer that accepts a progression, renders
the user interface described by a scene and provides the
user with a mechanism to monitor, save, recall, reorder and
coordinate the workflow.

Keywords
Workflow, Task Model, User Interface Description
Language, XML

INTRODUCTION
Business organizations use interactive information systems
to support their business processes. Users require flexibility
when interacting with the system to contend with changes
in the business processes, to support differing work
approaches, and to coordinate the activities of various
workers. This flexibility can be supported by workflow
systems.

UIDLs specify important aspects of the user interface.
Unfortunately, UIDLs do not express aspects of the user
interface related to workflow. We have developed the
progression model [18] to explicitly express workflow as a

sequence of scenes called a progression. Our language to
express progressions is XML-based.

Our approach is specifically aimed at the development of
transaction-based interactive systems. A progression in
this context may be renting a car, filling out a mortgage
application, or booking a flight.

In this paper we present a prototype system, the
progression analyzer, for rendering and interacting with
progressions. After a discussion of the related work and
introducing the progression model we describe the
progression analyzer prototype. We then evaluate our
approach by showing how it maps to the components
commonly found in a workflow system, using examples from
our prototype. We conclude the paper with a discussion of
future research directions.

RELATED WORK
In this section we describe workflow models, task models
and how task and workflow models differ with respect to
user interface development. As well we briefly describe
some current XML-compliant UIDLs.

Workflow Model
The workflow model is used to represent the flow of work
within a department, across a company or to external agents
[14]. The Workflow Management Coalition (WFMC) defines
workflow as the automation of a business process, in whole
or part, during which documents, information, or tasks are
passed from one participant to another for action, according
to a set of procedural rules [20]. The details of a specific
business process are defined in a process definition. This
includes the sequences of activities and associated
relationships; start and finish criteria; and information such
as executers of manual or automated activities, procedural
rules, and control data. The process definition may also
include sub-process descriptions.

Workflow research focuses on approaches to making
changes during the business process. Procedure-like,
routine processes that are statically supported are on one
end of a continuum, and highly unspecified, dynamic
processes are on the other end [5]. In adaptive workflow

management systems [13] the procedural rules can be
changed or created during the process. Some research
proposes a cooperative hypermedia system, with process
support through a meta-model, to integrate the efforts
towards communication, coordination, and cooperation in
workflow systems [7]. A two -part classification defines
types of possible flexibilities that may be desired in
workflow management applications [9]. ‘Flexibility by
selection’ provides the user some leniency in executing a
process by offering multiple execution paths. Alternatively,
‘flexibility by adaption’ provides the ability to add extra
execution paths through additional functionality and tools
that allow the workflow type to change and integrate during
runtime.

Some workflow concepts that are common in many systems
have been identified in [12]. This research has focused on
applying workflow to object oriented systems; the following
concepts are identified as important to workflow.

• Monitoring for contributing information about the
circumstances of workflows during execution;

• History of workflow actions for evaluation or recovery;

• Persistence to save the historic information and
provide access to it;

• Manual Intervention for changing the order that
activities are performed in as they are performed;

• Worklist to coordinate the activities among the
workers;

• Federated Workflow addresses the issue of how
workflow systems interoperate.

Task Model
Task Models are logical descriptions of activities that are
designed to be carried out in reaching user’s goals in an
interactive system. There are many different approaches to
task modeling such as Hierarchical Task Analysis [2],
GOMS [6], UAN [8], and ConcurTaskTrees [14].

Hierarchical Task Analysis (HTA) is based on describing
the set of goals, tasks and operations in logical structures
of different levels . GOMS (goals, operators, methods,
selection) depicts procedural knowledge or ‘how-to-do-it”
knowledge through fine-grained operators that are
performed to reach a goal. UAN (User Action Notation) also
follows a hierarchical structure . It provides a notation for
designers to describe the dynamic behaviour of graphical
user interfaces, where the tasks are represented
asynchronously with operators that denote the temporal
relationships. The ConcurTaskTrees notation was created
to support engineering approaches to task modeling.
Temporal relationships are also incorporated for enabling,
concurrency, disabling, interruption, and optionality.
Additionally, synchronized tasks where the output
information of one task is the input information of another
are supported.

In relation to business processes, task models describe the
paths of activities available to reach the user’s goals.
Unfortunately, task models often result in large
specifications with more detail than is necessary for a
designer. Recent research has investigated annotating task
models with data artifacts to better support information
systems and extracting dialog models from the task model to
better support automated generation of user interfaces [10].

Workflow models and a task models both describe how to
accomplish work or tasks. As identified in [19], they both
have similar concepts, such as actions/tasks and
workers/users. Alternatively, [19] points out that workflow
models are useful for group or organization interaction,
while task models focus on individual users. This coincides
with our research that associates workflow models with
focusing on the management of task accomplishment
processes. In groups or organizations more direction is
required to ensure that orderliness and goal
accomplishment are maintained. Workflow research as
discussed in [12] goes beyond the actual task and provides
a meta-level that focuses on how to coordinate the activities
towards completion and how to examine them thereafter.

User Interface Description Languages
Souchon and Vanderdonckt [17] have analyzed a number of
XML-compliant languages for defining user interfaces
including UIML [1], AUIML [4], XIML [16], Seescoa XML
[11], Teresa XML [15], and WSXL [3].

User Interface Markup Language (UIML) allows the user to
specify the user interface in general terms then render it
according to a style description. Abstract User Interface
Markup Language (AUIML) focuses on describing the
desired user interaction in terms of its purpose rather than
appearance. The eXtensible Interface Markup Language
(XIML) affords the ability to describe a user interface
without concern for the implementation. Software
Engineering for Embedded Systems using a Component
Oriented Approach (Seescoa XML) defines an XML
description to express an abstraction of the user interface
using Java User Interface components. Teresa XML
provides a facility to support the design and generate a
concrete user interface for a specific type of platform. Web
Services Experience Language (WSXL) focuses on a web
services model to interact with web applications. The User
Interface Description Languages referenced above do not
address workflow issues.

PROGRESSION MODEL
The progression model [18] incorporates workflow features
into a markup language specification. This research is not
concerned with the actual rendering of the user interface as
is addressed in many other UIDLs. The progression model
makes explicit the steps and transactions a user makes when
using a transaction–based information system. As the user
progresses towards accomplishing a task or goal, the

progression model infrastructure records each step and the
state of the transaction.

Making the steps and transactions explicit allows the user
to group transactions into batches for later processing, to
store partial transactions for later editing, and allows the
user to browse historical progressions. Linking the steps in
the workflow directly to the transaction provides a means to
integrate the process model and the data model in one
coherent model. This enables the support of the flow of
work for an individual user by supporting new interactions.
A series of definitions outline the basic aspects of a
progression. Consequently, new interactions are enabled to
provide flexible business process support.

Definitions
The following definitions describe the key elements of the
progression model and how they relate to each other. These
items are graphically depicted in Figure 1.

Progression. A progression, p, is a sequence of scenes (or
steps), s, in a process to create a transaction, that is
p = < s1, … , s n >.

Progression Interval. A progression interval , pi, is a
subsequence of a progression or a couple steps.

Scene. A scene, s, corresponds to a step in a progression.
Each scene of a progression is associated with the user
interface, u, current state of the transaction, t, and current
state of the workflow, w, therefore, s = < u, t, w, >. A scene
captures the process and associated data as a user performs
actions throughout a progression.
User Interface. The user interface, u, is a rendering of the
user interface for the current scene. The user can perform
user actions, a, according to the components , such as a text
field or select box, available in the user interface.

User Actions. The user actions, a, for a scene are the
interactions that the user performs within the user interface.

Transaction. The transaction, t, models the accumulation of
information at each point in the progression. Each
transaction is made up of a series of elements, e, that are
accumulated throughout the progression by user actions,
that is t = < e i, …, en >. As the scenes change, the element
additions, deletions, and changes are reflected in the
transaction. For instance, if the user is filling out a wizard
form, at every submission the new information is added to
the transaction. A series of zero or more user actions, a, can
be performed directly on the transaction. For example, the
user may want to directly edit a field in the transaction
rather than going back and editing through the user
interface.
Workflow. The workflow , w, is a sequence of scenes
progressing towards an organizational goal. It identifies the
scenes that are completed, currently in progress, and not
yet started. It also defines who is assigned to complete a

scene. Additionally, it outlines the available workflow
actions, wa, for the current scene.

Workflow Action. A workflow action , wa, is an action that
affects the workflow of the progression. One type of
workflow action is “transform”, which may send information
to the transaction and change the user interface to a new
scene. For example, when the user clicks on a submit
button, a new scene is generated. The information that was
entered in the previous scene, such as the text entered in a
form is reflected in the transaction. The feedback is then
displayed to the user through the user interface. The other
type of workflow action deals with interacting with the
progression. For example, the user can recall a past
progression, replay a progression, save a progression, and
so on.

Figure 1. A progression is a sequence of scenes. The
rectangles represent scenes that encompass a user
interface, a transaction, and workflow.

Benefits of Recording Progressions
An information system is developed to support an
organization’s business processes. This requires a high
degree of flexibility, which has been traditionally difficult to
support. The process and data information that is captured
through the progression model can be used to support
flexible business processes. It is facilitated by displaying
the transaction to the user, in addition to the original
interface, accompanied by new functionality. Through
opening the model to the user in this way, a number of new
interactions become available to the user. The interactions
that are enabled include: information orientation, immediate
updates, historical review, concurrent process comparison,
progression batching, and progression manipulation.

Progression Orientation
By visually observing the transaction, the user is able to
see the information being built up while the progression is
enacted. This provides a reference for the user to ensure the
information is correct. Additionally, foresight into the
information that is required later in the progression is
available from the beginning. This allows users to organize
and anticipate the work required to complete the
progression. Users that are new to the system now have the
ability to reduce the unknown aspects of the system.

Progression Updates
Direct editing of the accumulated data is available while
enacting a progression. A user can change information at

…

Scene 1

Transaction

Workflow

User Interface

Scene n

Transaction

Workflow

User Interface

Scene 2

Transaction

Workflow

User Interface

any time without having to go backward in the progression
and forfeit the later information, such as in web browsing.
This also allows the user to keep track of their placement
within the progression. Updates may not be allowed for
some information items as the constraints of the system
must be upheld. Nonetheless, flexibility to make direct
changes to the information already accumulated is afforded.

Progression History
A user has access to the progression history. History
includes the progression scenes, as well as the transaction
snapshots. The user can benefit from the ability to change,
replay, or reuse historical information. Changing the history
allows the user to move backward in the progression to
undo actions. Replaying a progression may be useful for
learning how progressions were previously completed by
others; remembering what the user did last time they went
through the progression; or for the supervisor to look at the
work that an employee has performed. New or infrequent
users would find the most benefit from this interaction. It is
also useful for lengthy progressions, to view work that is
not easily remembered. By saving the history of the
progression, partial progressions can be closed and
returned to at a later time or parts of saved progressions can
be reused in future progressions. This is useful when the
user is interrupted during a session before they can
complete the progression. Alternatively, when the work
requirements are more ambiguous and combinations of
different progressions are useful.

Multiple Progressions
Multiple progressions can be used to process transactions
concurrently. The ability to duplicate and/or view more than
one progression at the same time allows for easy
comparisons without having to lose work that is already
completed, such as when trying out different scenarios or
outcomes. The user can go through one possibility, then
without losing that information try out another scenario.
The outcomes can be considered in a side by side manner.

Progression Batches
Progressions can be applied to multiple items to enable the
user to perform a progression and have it affect more than
one selected item in the system. For example, a user can
perform a progression to change an employee’s salary, but
have it apply to ten employees. This is beneficial for saving
time and consistency while managing large amounts of
information.

PROGRESSION ANALYZER
The progression analyzer is a prototype system for
displaying information about a progression. A progression
is modeled using a mark-up language. Figure 2 shows the
outline of the progression model in the markup format. Each
scene consists of an abstract user interface (aui) with the
corresponding user actions; a set of transactions with

possible transaction actions; and finally the workflow with
available workflow actions.

The parsed code is interpreted and explicit sections are
depicted in the progression analyzer interface. Figure 3
shows a screenshot of the prototype without content.

Figure 3. An outline of the progression analyzer panels .

The user interface is rendered in the user interface panel.
From the user interface information, the specific user
actions are extracted and displayed in the user actions
panel. The transaction is shown in a table indicating the
transaction number, transaction structure, and the status of
the transaction. Any transaction actions that are
permissible, such as directly edit field, are presented in the
transaction actions panel. The workflow is presented as a
table with the scene number, scene name, worker assigned
to complete the scene, and status of the workflow scene.
Then the possible workflow actions, such as reorder and
history, are displayed in the workflow actions panel.
Additionally, the mark-up language document is displayed
in the corresponding panel.

When the user selects the “transform” workflow action to
create and display the next scene, the markup language for
that scene is derived from the previous scene and the user
actions. The new scene is added to the markup language
document and displayed in the progression analyzer panels.

 <progression>
 <scene>
 <aui>…</aui>
 <transactions>
 <transaction>…</transaction>
 </transactions>
 <workflow> … </workflow>
 </scene>
 …
 </progression>

Figure 2. Skeleton of mark-up language for the progression
model.

User Interface

Workflow
Actions

Transaction

User Actions

User Actions

Workflow Transaction

Markup Language Document

User Interface
The user interface panel shows the rendering of the user
interface as it appears to the user. It is non-editable and
intended to show the user the snapshot of the user
interface at the beginning of the current scene.

User Actions
The user actions panel shows the user all the possible
actions that are available to perform within the user
interface. The user can interact with the elements on this
form and perform user actions toward the progression. For
example, the user can enter some text in a text field or select
from a select box and so on.

Transaction
The transaction panel depicts the transaction in a table. The
transaction consists of all the required information that is
accumulated throughout the progression to successfully
submit and complete the progression. Each transaction is
numbered for unique identification. There is also a status
field to indicate the current transaction state, such as
partial, complete, valid, or invalid. The remaining fields
depend on the information requirements of the transaction.

Transaction Actions
The transaction actions panel displays the available actions
that the user can perform on the transaction structure itself.
For example, the user may want to edit a field in the
transaction directly rather than going through the user
interface. System constraints may restrict the user from
performing some transaction actions.

Workflow
The workflow panel shows the scenes that are completed
during a progression. The workflow panel lays out to the
user the scenes that are completed, the scene to be
completed next, and the scenes that still need to be
completed. Each scene is numbered for unique
identification. The status column provides the information
on whether the scene is completed, currently being worked
on, or yet to be completed. The worker column indicates
which human user is assigned to complete the scene
actions. This could also be extended to include jobs that the
system must complete to show the interaction with the
application.

Workflow Actions
The workflow actions panel shows all the possible workflow
actions that the user can perform during the interaction with
the user interface. Some workflow actions that we have
identified as interesting are: move to the previous scene;
move to the next scene; reorder the scenes within the limits
of system constraints; transform the scene as the user
actions are complete; add the transaction to a batch; save
the partially completed progression; and view the
progression history.

THE PROGRESSION ANALYZER AND WORKFLOW
Manolescu's research [12] maps workflow concepts to an
object oriented framework. In his research he identified six
components that are common to workflow systems, namely:
monitoring, history, persistence, manual intervention,
worklist and federated workflow. In this section a
comparison is made between each of these workflow
components and the progression model using examples
from our prototype.

Monitoring refers to gathering information on the state of
the workflow regarding the progress of the activities within
the workflow. In the progression model, this relates to
presenting the user with information on what work has been
done, what is currently being done, and what work remains
to be done.

In the example depicted in Figure 4 and Figure 5, the first
four scenes are completed in the progression and four
remain uncompleted. The worker named Jen is responsible
for completing the last two scenes of the progression. She
wants to see how far along the other workers are in
completing the scenes. By viewing the workflow panel, as
shown in Figure 4, she can see that the first four scenes are
completed and the fifth is in progress.

Figure 4. The workflow panel depicting the status of the
workflow.

Additionally, when she is completing her scenes, she can
view the buildup of information in the transaction. In Figure
5 she has just entered the address information and then
selected the transform workflow action. When she looks at
the transaction in third scene, she can see the information
that resulted from her actions in the previous scene through
the transaction panel. Her address information is added to
the correct fields in the transaction.

History refers to recording the actions that were taken
during the execution of the workflow. This can be used for
evaluation and analysis, as well as information recovery. In
the progression model, this history is captured in the
evolution of the markup language document. The
progression analyzer is intended to allow access to the
information through the history workflow action.

Figure 5. A transaction near the end of a progression.

For example, the worker named Dave may want to go back
to the previous scene to make a change to his user actions.
He can select the previous scene workflow action, which
processes the markup language for the previous scene.
Figure 6 shows the selection of the previous scene
workflow action.

Figure 6 . The workflow actions panel, which is displaying
the available workflow actions.

Persistence refers to the storing and accessing of the
captured history information. This research identifies that
persistence and history are often combined in traditional
workflow systems. [12] however, provides a separate
persistence component, which gives access to the
database. In the progression model, the information is
saved in the mark-up document. There are also workflow
actions that allow partially completed progressions and
their transactions to be saved, and then recalled at a later
time.

For example, the worker named Mark might want to review
what he did in a previous progression. He would have
previously selected the “save” workflow action to save the
partially completed progression. Then when he wants to re-
open the progression he selects the “recall” workflow
action and the progression is displayed at the point where
he saved it. He can traverse through the progression to
replay his actions using the next scene and previous scene

workflow actions. Figure 7 shows the file chooser for the
recall workflow action.

Figure 7. File chooser prompt for the recall button.

Manual intervention refers to allowing users or developers
to change the organization of activities during the execution
of the workflow. In the progression model, a “reorder”
workflow action is provided. It allows the user to perform
the workflow scenes in varying orders. This reordering
action is limited to the constraints of the system.

For example, the worker named Tara may decide that she
does not have the required information to complete scene
two – enter credit card information, but she does have her
personal information, which is required for scene three.
Therefore, she would like to rearrange the scenes so she
can complete as much information as possible. She would
select the “reorder” workflow action to perform the third
scene before the second. Figure 8 shows the new workflow
panel resulting from Tara selecting the “reorder” workflow
action and switching the scenes.

Figure 8. The rearranged workflow scenes.

Worklist refers to the table provided to help manage the
flow of work amongst human workers concerning assigning
responsibilities. In the progression model, the workflow
section indicates the tasks to be completed as grouped into
scenes with the corresponding worker assigned to the task.
Also, some circumstances require the system to be a worker
and complete part of the workflow. Therefore the interaction
with the application is partially captured as well.

For example, the worker named Jim may want to determine if
another worker has completed their part of the progression.
He can look at the workflow panel and see which worker is

responsible for a particular scene. He can also see what he
is responsible for, such as in this scenario, where he is
required to provide the account information for this
transaction in the fourth scene. Figure 9 shows the worklist
of workers assigned to scenes in the workflow panel.

Federated Workflow addresses the issue of how
workflow systems interoperate. We have not investigated
the implications of the progression model and
Federated Workflow. Expressing workflow with a markup
language may be conducive to integrating workflow
systems since the workflow is stated explicitly.

 Figure 9. The worklist in the workflow panel

 .

Figure 10. A screenshot of a more complex user interface and progression model in the Progression Analyzer.

CONCLUSION
User interface description languages have been designed to
specify various aspects of a user interface, such as the
tasks to be accomplished by the user, the abstract and

concrete elements in the user interface and the user
interface dialog. Workflow aspects, such as coordinating
and managing tasks, are not modeled by current UIDLs. The
progression model is an attempt to identify workflow issues

and to integrate workflow into a user interface description
language.

We have developed a prototype system, the progression
analyzer, to help refine the progression mo del and to
investigate workflow in a UIDL. Explicitly recording and
manipulating progressions allows us to dynamically change
the workflow of an interactive system. Benefits include,
improving the plasticity of an interactive system (workflow
plasticity), providing a coarser integration with an
application (transaction-based integration), and additional
workflow functionality.

The progression analyzer has provided us a mechanism for
studying progressions in detail. From this experience, we
plan to formalize our XML-compliant language to show how
workflow concepts can be integrated into a user interface
markup language.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L.,

Williams, S., and Shuster, J. UIML: An Appliance-
Independent XML User Interface Language. In A.
Mendelson, editor, Proceedings of 8th International
World-Wide Web Conference WWW’s (Toronto, May 11-
14, 1999), Amsterdam, 1999. Elsevier Science
Publishers.

2. Annett, J., Duncan, K.D., Stammers, R.B., & Gray, M.J.
(1971). Task analysis. London: Her Majesty's Stationery
Office.

3. Arsanjani, A., Chamberlain, D., and et al. (WSXL) web
services experience language version, 2002.

4. Azevedo, P., Merrick, R., and Roberts, D. OVID to
AUIML – user-oriented interface modeling. In N. Nunes,
editor, Proceedings of 1st International Workshop
“Towards a UML Profile for Interactive Systems
Development” TUPIS’00 (York, October 2-3, 2000).,
York, 2000.

5. Bernstein, A. How Can Cooperative Work Tools
Support Dynamic Group Processes? Bridging the
Specificity Frontier. (CSCW’00), 2000, pp. 279-288.

6. Card, S. K., Moran, T. P., and Newell, A., The
Psychology of Human-Computer Interaction , Lawrence
Erlbaum, 1983.

7. Haake, J., Wang, W. Flexible Support for Business
Processes: Extending Cooperative Hypermedia with
Process Support. (GROUP’97), 1997, pp. 341-350.

8. Hartson, H. R, Siochi, A. C., Hix, D. The UAN: a user-
oriented representation for direct manipulation interface
designs. ACM Transactions on Information

9. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K.,
Teschke, M. A Comprehensive Approach to Flexibility
in Workflow Management Systems. (WACC’99), 1999,
pp. 79-88.

10. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.
Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction. (DSV-IS’2003), Funchal,
Madeira Island (Portugal), 2003, ©Springer-Verlag 2003.

11. Luyten, K., Vandervelpen, C., and Coninx, K. Adaptable
user interfaces in component based development for
embedded systems. In Proceedings of the 9 th Int.
Workshop on Design, Specification, and Verification of
Interactive Systems DSV-IS’2002, (Rostock, June 12-14,
2002). Springer Verlag, 2002.

12. Manolescu, D. An Extensible Workflow Architecture
with Objects and Patterns. Chapter 4 in Technology of
Object-Oriented Languages, Systems, and Architectures
Theo D'Hondt, editor. Kluwer Academic Publishers,
2003.

13. Narendra, N. C., Adaptive Workflow Management – An
Integrated Approach and System Architecture.
(SAC’00), 2000, pp. 858-865.

14. Paternò, F., Mancini, C., Meniconi, S. ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models.
(Proceedings Interact’97), Chapman&Hall, 1997, pp.362-
369.

15. Paternò , F. and Santoro, C. One model, many interfaces.
In Ch Kolski and J. Vanderdonckt (Eds.), editors,
Proceedings of the 4th International Conference on
Computer-Aided Design of User Interfaces CADUI’2002
(Valenciennes, 15-17 May 2002), pages 143-154,
Dordrecht, 2002. Kluwer Academic Publishers.

16. Puerta, A. and Eisenstein. XIML: A common
representation for interaction data. In Proc. Of the 7th
International Conference on Intelligent User Interfaces
(Santa Fe, United States, January 2002), pages 69-76.,
New York, 2002. ACM Press.

17. Souchon, N. and Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. (DSV-
IS’2003), Funchal, Madeira Island (Portugal), 2003,
©Springer-Verlag 2003.

18. Stavness, N. and Schneider, K. A. Supporting Flexible
Business Processes with a Progression Model, (IUI-
CADUI 2004) Workshop: Making Model-based UI
Design Practical: Usable and Open Methods and Tools ,
Island of Madeira, Portugal, January 2004

19. Traetteberg, H.: Modeling work: Workflow and Task
modeling. In: Vanderdonckt, J., Puerta, A.R. (eds.): Proc.
of 3 rd Int. Conf. on Computer-Aided Design of User
Interfaces CADUI’99 (Louvain-la-Neuve, 21-23 October
1999). Kluwer Academics, Do rdrecht (1999) 275–280.

20. WfMC. Workflow Management Coalition Terminology
& Glossary, WFMC-TC-1011, Document Status- Issue
2.0, June 1996. Specifying Task Models. (Proceedings
Interact’97), Chapman&Hall, 1997, pp.362-369

