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A number of papers have appeared recently using eigenvalues for solving steady-state queue-
ing problems. In this paper, we analyze Markovian systems with two state variables, the
level X; and the phase X5, X; > 0, 0 < X3 < N. Except for some boundary levels, the
rates of the events are independent of the level, and no event can change X, X5, or X; + X,
by more than 1. In this case, the eigenvectors are essentially Sturm sequences, which im-
plies that all eigenvalues are real. The properties of the Sturm sequences allow us to design
an extension of the binary search to find all eigenvalues. As it turns out, once the inter-
val containing an eigenvalue is narrowed down sufficiently, it is preferable to use Newton’s
method. A computational-complexity study indicates that the resulting algorithm should
be significantly faster than matrix-iterative methods. Two numerical examples are discussed
involving servers with breakdowns, and in both cases, our method yields highly accurate
results. Tentative reasons why this is to be expected are provided.

(Queueing; Eigenvalues; Unreliable Servers; Sturm Sequences)

1 1. Introduction

A number of authors have recently used the solutions of generalized eigenvalue problems to
solve queueing models (see, among others, Adan and Resing 1999, Bertsimas 1990, Grass-
mann and Drekic 2000, Haverkort and Ost 1997, Mitrani and Chakka 1995) and they have
found that this method often outperforms matrix-analytic methods. Here, we provide a
very efficient approach using eigenvalues for finding the equilibrium probabilities of certain
queueing systems with two integer state variables, the level X; and the phase X5. The level

can assume any non-negative value, whereas the phase is restricted to be between 0 and NV,
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where NV is a given finite number. The rates of all events depend only on the level and the
phase, that is, the system is a two-dimensional Markov chain. We also require that no event
can change X7, X, or X7+ X5 by more than 1. We will call this process a (BD)(BD) process.
Moreover, in our model, the rates repeat in the sense that for almost all levels, the rates
of the events do not depend on the present level. This process will be called a (BDR)(BD)
process, where the R stands for “repeating.” The problem is to find the equilibrium proba-
bilities for (BDR)(BD) models. Of course, equilibrium probabilities exist if and only if the
process is recurrent. We assume this to be the case.

Many (BDR)(BD) processes have been analyzed in the literature. Daigle and Lucantoni
(1991), for instance, analyzed a queue in a randomly changing environment, with the level
representing the queue, and the phase the environment. They assume that the phase cannot
change by more than 1 at any time. A number of researchers have analyzed sequential queues
with blocking (Grassmann and Drekic 2000; Konheim and Reiser 1976, 1978). In this case,
the level is the length of the first queue, and the phase is the length of the second queue.
There are numerous papers investigating systems with two customer types, in particular
Green (1985) and Stanford and Grassmann (1993, 2000), and these systems also fit into
the present framework. Another problem with two state variables is the unreliable-server
problem (Mitrany and Avi-Itzhak 1968) where servers are subject to breakdowns and repair.
There, the level is the number of customers in the system, and the phase is the number of
operational servers. This model will be used as our prime example.

In (BDR)(BD) processes, the equilibrium equations can be divided into boundary equa-
tions and repeating equations. As the name implies, the repeating equations repeat in some
sense, and it turns out that they have a solution of the form dz™, where the vector d # 0
is called the eigenvector, and the scalar x is called the eigenvalue. The reason for these
names is that d and x can be found by solving a so-called generalized eigenvalue problem,
sometimes also called a matrix pencil. There are several eigensolutions (c_i(k),xk), and to
solve the boundary equations, one must combine these solutions.

In an earlier paper (Grassmann 2002), we analyzed models where X;, i = 1,2 cannot
change by more than one, which is a generalization of the (BDR)(BD) process. One result
of the paper is that if X; + X5 cannot increase by more than 1, then all eigenvalues are
real and non-negative. This result greatly generalizes the work of Daigle and Lucantoni
(1991), Grassmann and Drekic (2000), and Konheim and Reiser (1976, 1978). These papers

show that in their models, all eigenvalues are indeed real. Incidentally, Grassmann (2002)



also shows that the eigenvalues needed to determine transient probabilities of birth-death
processes are real, a result found by more complicated methods independently by Karlin and
McGregor (1965) and Ledermann and Reuter (1954). The simplifications and generalization
described in Grassmann (2002) were possible by use of Sturm sequences for our theoretical
investigations. In this paper, we also use Sturm sequences, but this time for numerical
rather than theoretical purposes: we develop an extension of the binary search to find all
eigenvalues with a predetermined precision. As soon as a particular eigenvalue can be shown
to be the only eigenvalue within a small range, we switch to Newton’s method.

There are authors who claim that (BDR)(BD) processes are best solved by using matrix-
analytic methods. The problem with matrix-analytic methods is that they do not preserve
the sparsity of the matrices involved, and this can make a huge difference. Because matrix-
analytic methods generally involve matrix multiplications with matrices of dimension NV,
one has a time complexity of O(N?), no matter how fast the algorithm converges. By
using eigenvalues, on the other hand, one can exploit the fact that the matrices involved
are tridiagonal, which means that the computational effort is reduced to O(N?). We do not
deny that eigenvalues also have their problems, but these seem to be manageable for the

problems under investigation.

2 2. Solutions Involving Eigenvalues

(BD)(BD) processes possess block-structured transition matrices, with block @); ; indicating
the transitions from level 7 to level j. The entries inside the blocks indicate the changes of
the phases. In the (BDR)(BD) process, there is by definition a value n, such that for j > n,
Qi; = Q;_i. In other words, except for some boundary levels, all rows of blocks are identical
if properly shifted. It turns out to be convenient to combine all levels 7 < n. into one new
level, level —1. Levels n., n. + 1, n. + 2, ...are then renumbered 0, 1, 2, 3, .... If this is

done, the following transition matrix results:

Q-1-1 Q-0 0 O
Qo1 Qo @1 0 .
* = ’ ; 1
Q 0 Q—l Qo Q1 ( )

Here, Q_1_; is an (N_; + 1) x (N_; + 1) matrix, Q_;1 is an (N_; + 1) x (N + 1) matrix,

and Qo,—1 is an (IV + 1) x (N_; + 1) matrix. All other matrices are square with dimension
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N + 1. The problem is to find the equilibrium vector m, the vector satisfying 7#Q) = 0. If m;
is the vector of the equilibrium probabilities of level i, all equilibrium equations can readily

be expressed in block form. Here, we only need the first block equation:

O0=7m_1Q_1,1+7;Qo,1. (2)

The level numbered —1 here causes difficulties as indicated by Neuts (1981). We avoid
these difficulties by embedding the Markov chain at levels 0, 1, .... According to Kemeni et

al. (1966), the resulting transition matrix becomes

Qoo @1 O
0= Q-1 Qo @1 0 3)

0 Q-1 Qo G

where
Qop = Qo + Qo,fl(—Qﬂ,q)*qu,o-

Except for norming, the matrices * and () have the same equilibrium probabilities for levels

0,1,2, .... For Markov chains with matrix (), we obtain the following equilibrium equations:
0 = mpQoo+m Q-1 (4)
0 = 1, 1Q1+7,Q0+7, 1Q-1, n>1. (5)

Equation (4) will be referred to as the boundary equation, and equation (5) as the interior
equation. The interior equation always has solutions of the form (see e.g. Grassmann and
Drekic 2000)

f,=dz", n>0, |[z| <1, d#0, (6)

where d = [dy, dy,...,dy] is an eigenvector and z is an eigenvalue. Since , must converge
to zero as m goes to infinity, only eigenvalues inside the unit circle are acceptable. It was
shown by Gail et al. (2000) that if the process is recurrent, and all eigenvalues are distinct,
there are N + 1 distinct solutions of the form given in (6); we denote them by (d*), z}),
k=0,1,..., N. Obviously, any linear combination of these solutions also forms a solution,

and we tentatively set

N
Ty = Z de(k)ﬂﬁz
k=0



where ¢, Kk = 0,1,2,..., N are constants to be determined from the initial conditions and
the fact that the sum of all probabilities is one. If ¢ = [cy,cq,...,cn], A = diag(z;), and
D =[d?,d", ..., d™MT, we get

m, =cA"D, n> 0. (7)

This equation holds only if all eigenvalues are distinct. However, except for the eigenvalues
x = 0, this will always be true in our model. To find ¢, we replace m,, n = 0,1 in the

boundary equation (4) by (7) to obtain:
0= CDQ0,0 + CADQ_l. (8)

Suppose we know D and A, and we want to find c¢. Since equation (8) is homogeneous, it
allows us to find ¢ only up to a factor. Hence, we also need the fact that the sum of all
probabilities is 1. We return to the original problem given by (1) and solve (2) for #_; to

obtain

= cDQO,_l(—Q_L_l)*le_l + Z cA"De
n=0

= ¢(DQo, 1(—Q 1, 1) ey +diag(1/(1 — z;)) De). (9)

Here, e (e_1) is a column vector of N +1 (N_; + 1) 1’s. If xy is the largest eigenvalue inside
the unit circle, then ¢y should be greater 0. We find a solution ¢* of (8) with ¢j = 1. The
vector ¢ is then c*cy, and we can replace ¢ in (9) by c¢*¢y and solve for .

In the interior equation, we replace 7w, by dz™ which yields
0=ds"'Q1 + da"Qo + dz""'Q_1 = dQ(x),

where
Q(z) = Q1 + Qoz + Q_12”.

This equation must be solved for d and z.

3 3. Expressions for Eigenvalues and Eigenvectors
Expanding 0 = dQ(z) yields, if ¢; j(z) = Q(x);:

0 = dogoo(z)+ digip(x) (10)



0 = di1gi 1i(x) +digii(v) + diz1¢i14(7), i=1,2,...,N—1 (11)

0 = dyv_1gnv-1,n(2) +drngn (). (12)

We convert (12) to (11) by letting gn41,5(z) be an arbitrary polynomial with non-negative
coefficients and add dy;1gn4+1,n(z) to (12). The problem then becomes to find an z such

that dyi1 = dyy1(x) = 0 to satisfy (12). We now have
Theorem 1 If no ¢;11,:(x) is zero, all non-trivial eigenvectors satisfy do # 0.

Proof: dy = 0 implies d; = 0 unless ¢; o(z) = 0. The remainder of the proof follows by
complete induction based on (11).0

Hence, if ¢;11:(x) # 0 for all ¢, we can set dy = 1. We now introduce functions d,(z)
satisfying d;(x) = d; whenever z satisfies dyy1(z) = 0. To find the d;(x), we set do(z) =
do = 1, replace all d; by d;(x) in the above system of equations and solve for d;(z), i =
1,2,...,N + 1. This yields

di(z) = —QO,O(x)/QLO(ﬂU) (13)
dii(z) = ﬁ(di(x)qi,i(xwdil(m)qiu(x)), i=1,2 N (14)

To deal with the case that some ¢; 11 () are zero, we use determinants. We define

As shown by Wilkinson (1965), Gy 1(z) = det Q(x).
If giy1,:(z) = 0 for some 4, then Q(z) can be partitioned as follows

o= | 20 Mo

where all entries of M (z) are zero except for the lower right corner, which is equal to ¢; ;41 ().
It is known (Perlis 1952) that in this case, det Q(z) = det Q1 () det Q2(z). The same method
applies if ¢;_1;(z) = 0. By applying this method repeatedly, one can find matrices Q;(z),
Q2(), ..., Qk(z) such that none of the Q;(z) satisfy ¢;+1,(xz) =0 or ¢;_1,(z) = 0. Clearly,
x is an eigenvalue if and only if there is least one i satisfying det Q;(x) = 0.

We are in particular interested in the case where the only ¢;_1,(z) and ¢i+1,(z) that
vanish vanish identically. In this case, the problem can be partitioned into subproblems
d®)Q;(x) = 0, and each subproblem can be solved individually, using the methods to be
developed here to solve dQ(z) = 0.



4 4. Location of the Eigenvalues

To find the (standard) eigenvalues in symmetric matrices, one typically uses Sturm sequences
(see e.g. Wilkinson 1965). As it turns out, many of the techniques developed there can be
applied here as well. Essentially, the sequence {d;(z), i = 0,1,... N+1} is a Sturm sequence
within a given interval if for any fixed z within this interval, do(z) = 1 and d;(xz) = 0,
i=1,2,...,N implies d;_1(x)d;11(z) < 0.

There are no events that simultaneously increase X; and Xs, and (Q1);;+1 is therefore
0 for all 4. This implies that ¢;;1,(0) = 0. For this case, Corollary 1 of Grassmann (2002)
applies, indicating that if = is an eigenvalue inside the unit circle, 0 < z < 1. Let us first deal
with the case x = 0. Since ¢;_1,(0) = 0, det Q(0) = g0,0(0) ¢1,1(0) - - - ¢n,~(0), and it follows
that = 0 is an eigenvalue if ¢;,(0) vanishes for any i. Obviously, ¢;;(0) = 0 iff (Q1):; = 0.
It is therefore very easy to verify whether or not det Q(0) = 0. Moreover, it is not difficult
to see that if (Q1);; is zero for r different values of 7, then the multiplicity of the eigenvalue
at zero is r. Since in recurrent Markov chains, there are exactly N + 1 eigenvalues inside the
unit circle, we only have N+ 1 —r positive eigenvalues that still have to be determined. How
to deal with eigenvalues x = 0 will be developed in another paper. Here, we only mention
that all these eigenvalues can be removed by replacing n. by n. + r when forming level —1,
and ignoring these eigenvalues otherwise. The reader may explore this by considering the
appropriate Jordan chain (see Gohberg at al. 1982, Proposition 1.9). Hence, we assume
r = 0 in the sequel, even though the extension to the case r > 0 is straightforward.

Consider now the case 0 < x < 1. Since all off-diagonal elements of () are non-negative,
¢i—1,(x) and gi11,(z) must be non-negative. In fact, for any given z > 0, ¢;_1(z) and
¢i+1,/(x) must either vanish identically, or they must be strictly positive. The function
¢i+1,(7) is identically zero if and only if (Q1)i+1,4, (Qo)i+14, and (Q_1)i+1; are all zero, which
means that there is no way to go from phase 7 + 1 to phase 7 without going through some
boundary states. This case does arise in priority queues (Drekic and Grassmann 2002). In
cases like this, Q(z) must be partitioned into submatrices Q1(z), Q2(x), ..., @k (), and the
problems dQ; (x) = 0 must be solved separately. We will not deal with this further, except
for noting that most of our methods can easily be adapted to deal with this case. The reader
may want to verify this.

For every given = > 0, and g;+1:(z) # 0, the sequence {d;(z), i =0,1,...,N + 1} is a

Sturm sequence. First note that do(z) = 1 does not vanish. However, d;(x), could potentially



vanish, but for this z, dy(z)da(z) < 0 because of (14). This implies that there is no positive
value of = such that d;(z) and dy(x) are both zero. The remainder of the proof follows by
complete induction, and our assertion that the d;(x) describe a Sturm sequence is proven.
The proof also indicates that there is no x > 0, such that d;(z) and d;;1(z) both vanish.
Basic to Sturm sequences are sign variations (see e.g. Turnbull 1952). If d;1(z) # 0,
then a sign variation occurs if d;(z)d;11(x) < 0. A sign variation also occurs if d;(z) = 0,

but d;i;1(x) # 0, i # N. The number of sign variations will be denoted by n(z), that is
n(z) = #{d;(z)d;y1(x) <0, 0 <i < N} +#{d;(z) =0, 0 <i< N}
According to Grassmann (2002), we have the following important result:

Theorem 2 Suppose the (BDR)(BD) process under consideration is recurrent, there is no
etgenvalue at 0, and all phases are communicating without going through a boundary state.
Ifn(z—)—n(x) =1, then dyy1(x) = 0. Moreover, for anyy, 0 < n(y—)—n(y) < 1. Finally,
n(l—=) =0 and n(0+) = N + 1.

It follows that there are at least |n(z1) — n(xs)| eigenvalues between x; and x5, and at least
n(0+) —n(l—) = N + 1 eigenvalues between 0+ and 1—. Since there are exactly N + 1
eigenvalues within the unit circle, all eigenvalues are accounted for. This result will now be

exploited to develop a divide-and-conquer algorithm.

5 5. A Divide-and-Conquer Algorithm to Determine
the Eigenvalues

This section describes an extension of the binary search algorithm to find all eigenvalues
satisfying 0 < x < 1. As the reader may know, in binary search, one recursively divides the
present search interval into two parts, and discards any interval that contains no zero. Here,
we also recursively divide the search interval into two parts, and we discard any interval
not containing an eigenvalue. Hence, any interval (z1, z5] is discarded if n(x,) = n(xs). By
applying this method recursively, one will eventually end up with N + 1 intervals, each one
containing exactly one eigenvalue, provided, of course, that all eigenvalues are distinct. At
this point, the procedure becomes a binary search. This leads to the following algorithm,
called getx(x1,nx1,x2,nx2), where x1= z; is the start of the interval, x2= z, is the end, nx1

is set to n(z;) and nx2 is set to n(zy):



procedure getx(x1,nx1, x2, nx2)

if (nx1=nx2) return

x = (x14x2)/2

if (x2—x1 <¢)
then if (nx1 =nx2+1) x[nx2] := x and return
else report multiple eigenvalues and return

nx := n(x)

getx(x1,nx1, x, nx)

getx(x, nx, x2, nx2)

return

7

The square brackets are used for the indices of arrays, and “:=" is the assignment operator.
To initiate the algorithm, we use getx(0,Np1,1,0), where Npl= N + 1. The algorithm can
be improved by switching to Newton’s method as soon as an interval containing only one
eigenvalue is found. A failsafe method similar to the one given by Press et al. (1986) can be
used for this purpose.

We now study the computational complexity of the algorithm above under certain sim-
plifying assumptions. Clearly, the values of x can only be obtained at a certain precision,
which we take to be e = 27%. This implies that if two eigenvalues are separated by less than
27% they must be considered as multiple eigenvalues. We note, however, that eigenvalues
are typically well spaced. We also assume that N + 1 is a power of 2, say N + 1 = 2™ for
some integer m. We say that we are at depth k& when there are 2% intervals, each of length
27%_ Hence, at depth 0, there is one interval of length 1, at depth 1, there are two intervals
of length 271 = 0.5, and so on. Let k* be the depth where, for the first time, all eigenvalues
are in different intervals. N + 1 eigenvalues cannot be separated unless there are N + 1
intervals, and since there are N + 1 = 2™ eigenvalues, k* > m. Since the eigenvalues are
separated by at least 27%, k* < a. Observe that at lower depths, the intervals rejected are
longer, which means that the case where k* = m is the worst case. We therefore concentrate
on this case. To reach depth m requires 2 — 1 = N function evaluations, and it yields
2™ intervals, each of length 27™. From this point on, we need for each eigenvalue o — m
function evaluations to obtain the eigenvalue with accuracy 2~®. Since m = log,(N +1), this
yields (N + 1)(a — logy(N + 1)) + log, (/N + 1) function evaluations in total. Each function

evaluation has a complexity of O(N) as the reader may verify. The overall complexity to find



all eigenvalues and eigenvectors is therefore O(N?). This compares with O(N?) for finding
the matrix R in matrix-analytic methods. Incidentally, if there are no multiple eigenvalues,
one has R = D7'AD, that is, one can easily find R once all eigenvalues and eigenvectors are

given, but the reverse is not true.

6 6. Derivatives

To find the derivatives needed by Newton’s method, differentiate (10) and (11) with respect

to x:

0 = do(x)gp0(@) + di()q) o(x) + dy()go0(x) + di (v)g10(x)
0 = di1(2)g 1,(2) +di(2)g; (%) + diz1(2) g1 4(2)
+ déﬂ(x)%ﬂ,z‘(x) + dg(x)%',i(x) + d§+1($)%‘+1,i($)a i=1,2,...,N.

We solve these equations for d;_,(z) to get, noting also that dy(x) = 0:

d(z) = m;—;)wo(as)qs,o(x)+d1<x>q;,0<x>>
d (1) = ﬁ(dmw)qg_l,i(x) T di(2) i (2) + i (2) i (2)

+d;_1(2)gi—1,(z) + di(x)gii(2)), i=1,2,...,N.

The derivatives of dy; can also be used to decide whether or not the process in question

is recurrent. In fact, we have

Theorem 3 Ifz =1, dyi1(z) =0, one has

dy.1(1) <0 if the process is positively recurrent
dy.1(1) =0 if the process is null recurrent
dy.1(1) >0 if the process is non recurrent

To prove the theorem, note that dy1(1) is zero because Q(1) = Q@_1 + Qo+ @1 has row-sums
of 0, that is, e = [1,1,...,1]T is an eigenvector corresponding to the eigenvalue 1. If the
process is recurrent, then x, is, by definition, the point where the number of sign variations

decreases from 1 to 0. If there are no sign variations, do(z) and dy1(x) must have the same
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sign, and since dy(z) = 1, they both must be positive. Hence, for zo < z < 1, dy;1(x) > 0.
It follows that

(1) = lim(dyia (1) = dyia (1 h)/h < 0.

In Grassmann (2002), we introduced the mirrored process, which is obtained by interchanging
21 and (Q_1, and we showed that the eigenvalues of the mirrored process are the reciprocals
of the original process. (For the treatment of the case where an eigenvalue is zero, see
Grassmann (2002)). It can be shown that if the original process is positively recurrent, the
mirrored process is non-recurrent, and vice versa. If the original process is null recurrent, so
is the mirrored process. Suppose now that original process is non-recurrent, which implies
that the mirrored process is positively recurrent, and the entity corresponding to d'y,,(x)
in the mirrored process must therefore be negative. Taking reciprocals, however, makes this
derivative positive. In the null-recurrent process, ro = 1, and since 1 is always an eigenvalue,
there is a double zero at 1, that is, the derivative is 0.0

We note that in all recurrent processes we encountered, dy_,(1) # 0. We also were
unable to construct a recurrent process with dy_,(1) = 0.

Generally, eigenvalues that are close together pose problems, but if x is close to 1, and
the system is recurrent, no problem will arise because any eigenvalue x = 1 does not form
part of the matrix D and the corresponding eigensolution therefore has no detrimental effect

on the precision of the results.

7 7. An Example

To demonstrate our methods, consider the unreliable-server problem (Mitrany and Avi-
Itzhak 1968). In this model, there are in total N servers, and these servers can fail, which
means they cannot serve customers until they are repaired. The model is affected by four
events, namely arrivals, departures, breakdowns, and repairs. The arrival rate is A, the
service rate p, the failure rate is §, and the repair rate is . All rates depend only on the
present state, that is, the system is Markovian.

In this model, let X; be the number of customers in the system, and let X, be the
number of operational servers. Since there are N servers, 0 < Xy < N. It is convenient to
introduce the abbreviations diag;(2,,;m) for a matrix with entries z,, on row m and column
m+j,m=0,1,..., N, and zeros elsewhere. Hence, diag, (z,,; m) represents a superdiagonal

matrix, diag_;(z,;m) a subdiagonal matrix, and diag,(z,;m) = diag(z,; m) a diagonal
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Table 1: The Eigenvectors for N = 3

1 4.86546 7.8909 4.265873
1 —0.46576 —3.20734 —1.78063
1 —4.98481 4.08844 5.68804
1 —9.86546 32.44243 —35.5622

matrix. If there is no ambiguity, we will write diag;(2,,). Of course, events that increase
the phase by j will lead to matrices of the form diag;(7.,), where 7, is the rate of the event
while X, = m. Since the phase cannot change by more than 1, j in diag;(v,) ranges from

—1 to 1. We have

Qunt1 = diag(})
@nn-1 = diag(pmin{m, n};m)
Qnyn = diag_;(d min{m,n};m) + diag, (B(N — m); m)
—diag(A + (1 + 0) min{m,n} + B(N — m);m).

Clearly, Qp n+1 is independent of n for all n. Since for n > m, min{m, n} = m, the matrices

Qnnt1 and @ ,—1 are independent of n if n > N > m. Hence

@1 = diag(})
Q-1 = diag(um)
Qo = diag_;(6m) + diag,(B(N —m)) — diag(A + (u + §)m + B(N — m)).
We applied our method for two different problems, one with N = 3 servers, and one with

N = 10 servers. The first problem is the one with 3 servers, and A = 10, u = 6, § = 2,

0 = 1, and we found the following eigenvalues
xo = 0.898106, x; = 0.607321, x5 = 0.476535, z3 = 0.386613.

Note that the eigenvalues are well spaced, and they seem to lie on a parabola. They were
calculated by the method described above, using VBA with double precision, and the result
was accepted as soon as the absolute amount of dyyi(x) was less than € = 1E—5. The

matrix D obtained is given in Table 1. The vector c* is as follows:

1,—0.98591, 0.465741, —0.07414.

12



Table 2: The Eigenvalues and the ¢;x for N =10

7 T; c;
0 0.844949 1

1 0717121 —3.04156
2 0.64498  4.872541
3 0.588603 —4.63062
4 0.541146  2.901963
5 0.500000 —1.26452
6

7

8

9

0

0.46383 0.39129
0.431798 —0.08547
0.403299  0.012668

0.37785 —0.00115
0.355051 4.91E-05

Table 3: The Eigenvectors for N = 10

1 14.494 94.545 365.44 927.00 1612.4 1947.6 1613.1 876.8 28 2.44 40.940
1 8.1660 26.189 34.465 —16.371 —132.37 —224.33 —206.67 —112.72 —34.367  —4.5403
1 3.4869 —1.9503 —24.657 —34.593 13.640 89.961 112.46 70.275 22.843 3.0894
1 —-0.9681 —10.242 —0.9117 40.185 41977  =35.777  —100.05 —80.661 —29.904 —4.3606
1 —5.4379 0.0189 32.615 —1.5319 —91.805  —47.852 96.418 130.21 59.963 9.9168
1 —10.000 30.000 0.0000  —120.00 48.000 240.00 0.0000 —240.00 —160.00  —32.000
1 —14.678 81.462 —190.11 55.706 467.59  —391.48 —590.99 329.40 505.89 135.06
1 —19.476 156.21  —646.41 1354.6 —856.05  —1649.1 2405.9 863.48 —1623.4  —703.53
1 —24.386 255.89  —1493.6 5192.0 —10423 9569.9 2716.5 —11717 3 064.7 4330.1
1 —29.396 381.91  —2870.1 13682 —42493 84053 —95384 38353 3148 6 —30456
1

—34.494 535.45  —4925.4 29732  —123076 353792  —697373 902093 —691502 238533

To find ¢, these values would have to be divided by 1/¢y = 273.92, but since we want to
compare the ¢;, ¢ # 0 with ¢y, we will not do this here. Note that ¢} is small compared to
cp =1

We also calculated the values x;, ¢ = 0,1,...,10 and D for the case A = 30, u =6, 5 = 2,
0 =1, N = 10. The results are given in Tables 2 and 3. To find ¢; from ¢, one has to divide
by 369632.4. The matrix D is given in Table 3.

One striking fact is that there is an eigenvalue that has exactly the value 0.5. Since the

corresponding vector is
1,-10, 30, 0,—120, 48, 240, 0, —240,—167, 32

this is not likely to be a coincidence.
We did two accuracy checks. In the first check, we checked how well the repeating

equation (5) was satisfied. If the right-hand sides are accurate, they are zero. Hence, their
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calculated values can be interpreted as residuals. For the first problem, we obtained the

following residuals for n = 1,2, 3, and 4:

n=1 0 —5.2E-17 0 9.45E-09
n=2 —32E-18 259E-17 0 5.36E-09
n=3 0 0 —-1E-16 3.09E-09

n=4 —6.5F-18 —39FE-17 7.78E—-17 1.81E—-09

Note that the first three columns are extremely accurate, far more accurate than might be
expected, considering that € was set to 1E—5. Even the last is fairly accurate. The results
for the second problem are similar. The highest residual for X, < N =10 is 5.9E£—-17, and
the highest residual in the last column is 2.24 E—11.

As a second accuracy check, we evaluated the rate matrix R using
R=DAD.
It is known that R must satisfy
0= Qi+ RQy+ R*Q_1. (16)

We calculated the right-hand side of this equation, using the numerical values we obtained
for R. These residuals should be close to zero. In the first problems, the residual for
Xy < N = 3 are all less than 3.55FE—15. The last column is slightly worse, with errors
of —1.3E-06, —9.5E—-08, 1.17E—07, and 1.97E—07. For the second problem, the largest
residual is 1E—9 for the columns corresponding to Xy < N, and 1.94FE—7 for the ones
corresponding to Xy = N.

There is a reason why the column corresponding to Xo = N has worse performance
than the other ones. Really, if we use equations (13) and (14), then we should get zero
for Xo < N, no matter if the value chosen for x is correct or wrong. The value of = only
influences the residual of the last equilibrium equation. Setting the precision to ¢ = 1E—05
therefore affects only the column with Xy = N.

Since each eigenvalue is associated with a specific number of sign changes, the eigenvectors
can be expected to be rather dissimilar, a fact that is confirmed by the data given in Tables 1
and 3. These tables also indicate that the smaller the eigenvalues, the greater the variations
among the entries of the eigenvectors. These variations could potentially cause numerical
instability, but this is not what was observed here. A tentative explanation goes as follows.

Since probabilities must be between 0 and 1, ¢; must be small if an eigenvector contains large
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elements unless it is possible to subtract a multiple of another eigenvector or eigenvectors
such that the large elements cancel. However, since the eigenvectors are very different from
one another, it is not likely that all large elements of the eigenvector can simultaneously be
reduced to low values, which explains the surprisingly high accuracy observed in our results.
This is yet another consequence of Sturm sequences.

The fact that the equilibrium equations hold with great accuracy does not imply that
the eigenvectors are accurate. The reason is that the eigenvectors are calculated recursively,
which means that the rounding errors accumulate. However, this does not affect the residuals.
This begs the question as to what is more important, accurate eigenvectors or small residuals.

It seems, however, that most algorithms aim to minimize residuals.

8 8. Conclusions

In this paper, we discussed how to use eigenvalues and eigenvectors to find equilibrium
probabilities of Markovian problems with two integer state variables X; and X,, X; > 0,
0 < Xy < N, with the restriction that X;, X5, and X; + X5 cannot change by more than
1. It was shown that in this case, eigenvalue solutions are efficient, and that the results
are accurate. There are a number of easy extensions to our model. First, we only used
the fact that X; + X5 cannot increase by more than 1. That means that the theory also
applies if both X; and X, are allowed to decrease simultaneously. Actually, as indicated
in Grassmann (2002), our main tool, the Sturm sequences, are even applicable in a much
wider context. However, for the sake of simplicity, we have not discussed these additional
models, but using Grassmann (2002) and the results of this paper, the reader should have
no difficulty obtaining results for many additional problems. In fact, it is extremely difficult
to find problems where @Q(x) is tridiagonal and has complex eigenvalues. When writing
Grassmann (2002), we spent weeks searching for such examples, yet we could find only a
single one, and this was constructed by elaborate means.

If we step beyond the confines of the (BDR)(BD) process, it seems that eigenvalue so-
lutions are advantageous for cases with large, but sparse matrices @;, + = —1,0,1. The
number of sign changes can certainly be used in these larger problems as well, even when the
eigenvectors are no longer Sturm sequences. It is easy to show that in the interval (zi, zs),
there is at least one real eigenvalue if n(z;) — n(z2) is odd. This allows one to adopt the

algorithm discussed in Section 5 to find all real eigenvalues when @Q(z) is an (upper or lower)
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Hessenberg matrix. In addition to that, we are presently investigating how to use n(z) to
locate complex eigenvalues.

The theory of eigenvalues can also make important contributions to matrix-analytic meth-
ods. One issue to be explored is the role of eigenvalues x = 0. If there are such eigenvalues,
then the rows of R are no longer independent. This fact can potentially be used to make
matrix-analytic solutions more efficient. This issue is presently being investigated. Hence,

there are many open problems still waiting for solutions.
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