Publications 1993 and later

For Books: See Books
  1. W. K. Grassmann, Factors Affecting Warm-up Periods in Discrete Event Simulation. Simulation Accepted 2013
  2. W. K. Grassmann, A Computer Built with Relays and a Mechanical Memory, and ALGOL The Computer Journal 2012, vol 55(11), 1309-1316
  3. W. K. Grassmann. Rethinking the Initialization Bias Problem in Steady-State Discrete Event Systems Proceeding of the 2011 Winter Simulation Conferencea, 2011, 593-599
  4. W. K. Grassmann, A New Method for Finding the Characteristic Roots of the En/Em/1 queueu, Methodol Comput Appl Probab 2011, vol 13, 873-886
  5. W. K. Grassmann, J. Tavakoli, Comparing Some Algorithms for Solving QBD Processes Exhibiting Specail Structures INFOR 2010, vol 48, 133-141
  6. W. K. Grassmann, J. Tavakoli. Transient Solutions for Multi-server Queues with Finite Buffers. Queueing Systems 2009, vol 62, 35-49.
  7. W. K. Grassmann, J. Tavakoli. Spectrum of Certain Tridiagonal Matrixes when Their Dimension Goes to Infinity. Linear Algebra and Its Applications 2009, vol 431, 1208-1217.
  8. W. K. Grassmann, When, and when not to Use Warm-up Periods in Discrete Event Simulation. SimuTools 2009, Rome 2009.
  9. W. K. Grassmann. Stochastic and Substochastic Solutions for Infinite-State Markov Chains with Applications to Matrix-Analytic Methods. Adv. Appl. Prob. 2008, vol 40, 1157-1173.
  10. W. K. Grassmann, M. L. Puterman, P. L'Ecuyer, A. Ingolfsson. Three Canadian Contributions to Stochastic Modeling. INFOR, 2008. vol 46(1), 3-14.
  11. W. K. Grassmann. Warm-Up Periods in Simulation can be Detrimental, Probability in the Engineering and Informational Sciences,, 2008, vol 22, 415-429.
  12. W. K. Grassmann,S. Drekic. Multiple Eigenvalues in Spectral Analysis for Solving QBD Processes Methodology and Computing in Applied Probability. , 2008, vol. 10, 73-83.
  13. W. K. Grassmann and J. Tavakoli. The Continuous Spectrum for the M/M/1 queue. Linear and Multilinear Algebra, vol 56(3), 2008, 319-331
  14. W. K. Grassmann and J. Tavakoli, A Baysian Approach to Find Random-Time Probabilitiesr from Embedded Markov Chain Probabilities. Probability in the Engineering and Informational Sciences. vol. 21, 2007, 551-556.
  15. W. K. Grassmann, J. Tavakoli. Two-station Queueing Networks with Moving Servers, Blocking, and Customer Loss Electronic Journal of Linear Algebra, vol. 13, 2005.
  16. W. K. Grassmann, J. Luo. Simulating Markov-Reward Processes with Rare Events. vol. 15(2), April 2005, pages 138-154 ACM Transactions on Modeling and Computer Simulation.
  17. J. Luo and W. K. Grassmann, 2004. Rate Tilting for Fast Simulation of Level/Phase Processes, Linear Algebra and its Applications 386, 261-284.
  18. W. K. Grassmann, 2004. Finding Equilibrium Probabilities of QBD Processes by Spectral Methods when Eigenvalues Vanish, Linear Algebra and its Applications 386, 207-223.
  19. W. K. Grassmann, 2003. The Use of Eigenvalues for Finding Equilibrium Probabilities of Certain Markovian Two-dimensional Queueing Problems. INFORMS Journal on Computing, vol. 15(4), 412-421.
  20. S. Drekic and W. K. Grassmann. 2002. An Eigenvalue Approach to Analyzing a Finite Source Queueing Model. Annals of Operations Research 112, 139-152.
  21. W. K. Grassmann. 2002. Real Eigenvalues of Certain Tridiagonal Matrix Polynomials, with Queueing Applications. Linear Algebra and its ApplicationsVol. 342, 93-106.
  22. W. K. Grassmann and J. Tavakoli. 2002. A Tandem Queue with a Movable Server: An Eigenvalue Approach. SIAM Journal on Matrix Analysis and Applications, Vol. 24(2), 465-474.
  23. S. Drekic and W. K. Grassmann. 2002. An Eigenvalue Approach to Analysing a Finite Source Priority Queueing Model. Annals of Operations Research, Vol. 112, 139-152.
  24. W. K. Grassmann, X. Chen, B. R. K. Kashyap. 2001. Optimal Service Rates for the State-dependent M/G/1 Queue in Steady State. Operations Research Letters, vol. 29, 57-63.
  25. D. A. Stanford and W. K. Grassmann. 2000. Bilingual Server Call Centres. in: Ananlysis of Communication Networks: Call Centres, Traffic and Performance, D. R. McDonald and S. R. E. Turner, editors. Fields Institute Communications, 31-47.
  26. W. K. Grassmann and S. Drekic. 2000. An Analytical Solution for a Tandem Queue with Blocking. Queueing Systems, vol. 36, 221-235.
  27. W. K. Grassmann. 1998. Finding Test Data for Markov Chains with Repeating Columns, in: Advances in Matrix-Analytic Methods for Stochastic Systems, A.S. Alfa, S. R. Chakravarthy, editors, Notable Publications, Inc., New Jersey.
  28. W. K. Grassmann, Y. Zhao. 1997. Heterogeneous Multiserver Queues with General Input. INFOR 35, 208-224.
  29. W. K. Grassmann. 1996. Optimizing Steady State Markov Chains by State Reduction, European Journal of Operational Research 89 (1996), 277-284
  30. W. K. Grassmann, X. Chen. 1995. The Use of Derivatives for Optimizing Steady State Queues. Journal of the Operational Research Society 46, 104-115.
  31. W. K. Grassmann, Y. Wang. 1995. Immediate Events in Markov Chains. In: W. J. Stewart, Computations with Markov Chains, Kluwer Academic Publishers, 163-176.
  32. Yiqiang Zhao, Winfried K. Grassmann. 1995. Queueing Analysis of a Jockeying Model. Operations Research 43, 520-529.
  33. Winfried Grassmann. 1993. Rounding Errors in Certain Algorithms Involving Markov Chains, ACM Transaction on Mathematical Software, 496-508. David Stanford, Winfried Grassmann, 1993. The Bilingual Server System. INFOR, 261-277.
  34. D. A. Stanford, W. K. Grassmann. 1993. The Bilingual Server System: a Queueing Model Featuring Fully and Partially Qualified Servers. INFOR 31, 261-277.
  35. Winfried Grassmann, Daniel Heyman, 1993. Computation of Steady-State Probabilities for Infinite-State Markov Chains with Repeating Rows. ORSA Journal on Computing, 282-303.

U of S Home Page] Department Home Page Homepage

This page last modified March 31, 2005