
  

 
Genetic Weighted K-means for Large-Scale Clustering Problems 

Fang-Xiang Wu1*, Anthony J. Kusalik1,2, and W. J. Zhang1  

 
1Division of Biomedical Engineering, 2Department of Computer Science 

University of Saskatchewan, Saskatoon, SK S7N 5A9, CANADA 
*Email: faw341@mail.usask.ca 

 
 

Abstract 
This paper proposes a genetic weighted K-means algorithm 
called GWKMA, which is a hybridization of a genetic 
algorithm (GA) and a weighted K-means algorithm 
(WKMA). GWKMA encodes each individual by a 
partitioning table which uniquely determines a clustering, and 
employs three genetic operators (selection, crossover, 
mutation) and a WKMA operator. The superiority of the 
GWKMA over the WKMA and other GA-clustering 
algorithms without the WKMA operator is demonstrated. 

1. Introduction 
Weighted k-means attempts to decompose a set of objects 
into a set of disjoint clusters, taking into consideration the 
fact that the numerical attributes of objects in the set often 
do not come from independent identical normal 
distribution. Weighted k-means algorithms are iterative 
and use hill-climbing to find an optimal solution 
(clustering), and thus usually converge to a local minimum. 
Genetic algorithms (GAs) (Obitko 2002) offer heuristic 
solutions to avoiding local minima in optimization 
problems. Several GA-clustering algorithms have been 
previously reported, some of which are not hybridized with 
clustering algorithms (e.g., Maulik and Bandyopadhyay 
2000), and thus their rates of convergence were very slow. 
Others are hybridized with k-means algorithms (e.g. Wu, 
et. al, 2003). The resultant algorithms inherit some 
drawbacks of unweighted k-means algorithms, for 
example, that the resultant clusters are spherical-shape. 
This paper proposes a genetic weighted k-means algorithm 
(GWKMA) which encodes solutions as partitioning strings 
and employs three genetic operators (natural selection, 
crossover and mutation) and one WKMA operator. 

2. GWKMA 
Denote a set of n  objects by }{ 21 n,x,xxD L= , and a 

partition of D  by ∆ . Abusing notation, let ix  also stand 
for the feature vector of object ix  ( ni ,,1 L= ). For the 
preset number of clusters, K , the cost function for a 
weighted k-means clustering technique may be defined by 
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km and kn  are the mean and the number of objects in kD , 
respectively, and G  is an arbitrary symmetrical positive 
matrix with 1)det( =G . The cost function (1) of a 
weighted k-means algorithm can be reduced to 
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The objective of a weighted k-means algorithm is to find 
an optimal partition o∆  which minimizes  
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where d is the dimension of the object’s feature vectors. 

1. Initialize the population *∆ .    
2. ),,,()](,[ *** NKXWKMJ ∆=∆∆ , 1=g . 
3. While ( GENg ≤ ) 

4.    ),,,(~ ** NKXSelection ∆=∆ ; 

5.    ),,~( ** NnCrossover ∆=∆ ; 
6.    ),,,,,( ** NKdnPmMutation ∆=∆ ; 
7.    ),,,()](,[ *** NKXWKMJ ∆=∆∆ ; 
8.   1+= gg ; 
9.  End while, and set 1∆=∆ o  
10. Return )( oJ ∆  and the resultant partition o∆ . 

Figure1. Genetic weighted K-means Algorithm (GWKMA) 
 
Our GWKMA is shown in Figure 1. In the following the 

encoding and selection, crossover and mutation, and 
WKMA operators are specified in detail. 

 Encoding:  A partitioning string is used to express a 
clustering.  A partitioning string is an integer string over 
the set },,1{ KL  on which each position corresponds to 
an object and the number in a position represents the 
cluster to which the corresponding object is assigned. The 
search space consists of all integer strings ∆s  with length 
n  over the set },,1{ KL . A population is expressed by a 
set of partitioning strings representing its individuals 
(solutions), denoted by *~

∆  or *∆ . 



  

Selection operator ),,,(~ ** NKXSelection ∆=∆ : For 
convenience of the manipulation, GWKMA always assigns 
the best individual found over time in a population to 
individual 1 and copies it to the next population. Operator 

),,,(~ ** NKXSelection ∆=∆  selects 2/)1( −N  individuals 
from the previous population according to the probability 
distribution given by 
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where N  (odd positive integer) stands for the number of 
individuals in a population, is∆  is the partitioning string of 
individual i , and )( isF ∆ represents the fitness value of 
individual i  in the current population, and is defined as 

    )()( ∆∆ −= sJTJsF                               (6) 
where )( ∆sJ  is calculated by (3), and TJ  is calculated by 
the following formula 
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Crossover operator ),,~( ** NnCrossover ∆=∆ : This 
operator creates new (and hopefully better) individuals 
from selected parent individuals. In GWKMA, of two 
parent individuals, one is always the first individual, and 
the other is one of the 2/)1( −N  individuals selected from 
the parent population other than the first individual by the 
selection operator. Here the crossover operator adopts the 
single-point crossover method (Obitko 2002).   

 Mutation operator ),,,,,( ** NKdnPmMutation ∆=∆ :  
Each position in an encoding string is randomly selected 
with a mutation probability Pm  set by the user, and the 
number in the selected position is uniformly randomly 
replaced by another integer from the set },,1{ KL . To 
avoid any singular partition (containing an empty cluster), 
after the previous operation, the mutation operator also 
randomly assigns K  different objects to K  different 
clusters, respectively.      

WKMA operator ),,,()](,[ *** NKXWKMAJ ∆=∆∆ : 
The WKMA operator employs a relocation-iteration 
algorithms (Wu et al. 2003) with each individual ∆s  in 

population *∆  as an initial partition, returning N  new 
partitions *∆  and their cost function values )( *∆J . This 
operator also arranges N new individuals such that such 
that the first individual is the best one in population *∆ .  

3. Computational Experiments and Results 
The proposed GWKMA was run on three datasets to 
illustrate its performance. Dataset 1 (Spath 1980) contains 
89 towns (objects) in Bavaria (Germany) with each having 
four features. Dataset 2 (Iyer et al. 1999) contains 

expression profiles of 517 genes (objects), each having 12 
expression values (features). Dataset 3 (Chu et al. 1998) 
contains expression profiles of 6118 genes with each 
having 7 expression values. 

In the experiment, the number of clusters is fixed at 7 for 
Datasets 1 and 3, and 10 for Dataset 2. Other parameters 
are set as follows: the number of generations 50=GEN , 
the population size 21=N , and mutation probability 

05.0=Pm . The MatlabTM software package was used to 
conduct most of our experiments. The performance of 
GWKMA was first compared with the GA without 
weighted k-means. The result showed that GWKMA 
reaches the best solutions in ten generations for all three 
datasets while the GA without the weighted k-means yields 
inferior solutions even if taken to 50 generations. Then the 
performance of GWKMA was compared with that of the 
weighted k-means algorithm without GA. To do this, the 
weighted k-means trials are run 500 times; the GWKMA 
trials are run 5 times. The results showed that the best 
solutions of GWKMA in 5 test runs are better than the best 
solutions of the weighted k-means in 500 test runs for all 
three datasets. Furthermore, the standard deviations in the 
5 runs of GWKMA are less than one-thirtieth of those in 
500 runs of the weighted k-means algorithm for all three 
datasets. This result shows GWKMA is more insensitive to 
the initial partitions than the weighted k-means algorithm. 

In conclusion, this study proposed a genetic weighted K-
means algorithm (GWKMA) which is a hybrid algorithm 
of the weighted K-means and a genetic algorithm. 
GWKMA was run on three real-life datasets. The results of 
the computational experiments showed that GWKMA can 
fulfil the clustering tasks not only on some small-scale 
datasets such as SS2 but also on large-scale datasets such 
as gene expression datasets.  Furthermore, the results also 
showed that the GWKMA outperformed both the WKMA 
without GA and other GA-clustering algorithms without the 
WKMA operator. 
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