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Locally Optimal Parameter Settings for Pattern Discovery 
in Gene Expression Microarray Data 

ABSTRACT 
Pattern discovery on gene expression microarray data is an emerging analysis technique.  It provides 
specific advantages over the more commonly used clustering techniques [Rigoutsos, 00].  Due to the NP-
Hard nature of pattern discovery, various heuristics are employed in pattern discovery algorithms such as 
Teiresias.  This paper explores the effects of varying parameter settings in Teiresias in terms of the 
patterns that are discovered in yeast cell cycle data.  A metric that relates execution time to proportion of 
patterns discovered is developed and used to determine that Teiresias is most efficient at finding patterns 
when minimum-number-of-literals and window-size are set to 5 and 12, respectively.  The metric and 
methodology are applicable to other pattern discovery algorithms and sources of data. 
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1. INTRODUCTION 
Pattern discovery has been successfully applied to DNA microarray data [Califano, 00; Rigoutsos, 00] 
because it offers several advantages over the more commonly used clustering methods [Rigoutsos, 00].  
However, pattern discovery is an NP-Hard problem [Brazma, 98] and its real-world application requires 
the use of heuristics.  Teiresias is a pattern-finding algorithm that employs such heuristics.  A 
disadvantage of the use of heuristics is that every important pattern may not be found. 

Unfortunately, published accounts of applying Teiresias to microarray data do not provide 
recommendations for parameter settings nor describe how varying parameter values affect efficiency and 
completeness.  The same is true for other pattern discovery algorithms such as SPLASH [Califano 99; 
00].  This paper develops an efficiency metric for Teiresias, applies it to pattern discovery on the gene 
expression microarray data of Spellman et al. [Spellman, 98; Yeast, 02], and based on the results, 
determines the most efficient parameter settings for Teiresias. 
2. BACKGROUND 
A pattern is a series of two or more characters shared between multiple strings (hence forth called 
streams) that is considered interesting [Rigoutsos, 00].  The definition of “interesting” is application 

specific.  A pattern is specified by a template and a list of 
occurrences. The template is a series of literals optionally 
interspersed with “don’t care” characters (the '.' character).  Each 
item of the list of occurrences records a stream identifier and the 
position (offset) of occurrence.  The cardinality of the list is the 

support for the pattern. Patterns that occur with the same offset in all streams are considered aligned.  If 
the offsets differ by no more than a finite amount, the patterns are unaligned.  Thus all aligned patterns 
are also unaligned.  In Figure 1, the unaligned pattern P1 occurs in streams 1 and 2 at an offset of 2 and 
3, respectively.  In this work, “interesting patterns” are all patterns where the offsets vary by only a small 
amount (e.g. abs(MAX(offset)-MIN(offset))<=2) and which contain a large number of literals.   

Teiresias is a two-stage pattern-finding algorithm.  In stage 1, it uses two parameters, L and W, to 
establish a minimum density for a given elementary pattern.   Density is the ratio of the positions that are 
occupied by literals over a pattern’s length [Rigoutsos, 00].  Parameter L is the minimum number of 
literals to appear in a window of size W.  It follows that the largest gap that may appear in a pattern is 
W-L.  In stage 2, elementary patterns are convoluted together to form larger patterns.  In Figure 1, P1 
could have been found using either L=3 W=5, which would have found “A..BA” as an elementary 

Figure 1 

Stream 1  AYAJKBAY  

Stream 2  IUVAOPBA  

P1:“A..BA”{(1,2),(2,3)} 
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pattern, or L=2 W=4 which would have found the patterns “A..B” and “BA” as elementary patterns and 
convoluted them together to form “A..BA”. 

As the difference between L and W is increased and/or L is lowered, the number of patterns 
found increases exponentially.  The only way to find every pattern is to set L equal to 2, W equal to the 
length of the stream and the support, k, to 2.  However, the vast majority of the resulting patterns will be 
“uninteresting” (short) and the execution time will be long.  The goal of tuning the values of L and W is 
to enrich the number of interesting patterns in the result set and to keep execution time reasonable.  
Unfortunately, descriptions of Teiresias do not outline how these values should be tuned. 

3. METHODOLOGY 
Teiresias was used to discover patterns in the test data described in Section 3.1.  For each set of 
parameters, the execution time and number of discovered patterns of each length was recorded.   Initially, 
“modest” values for L and W were selected (L=4, W=7).  Subsequently, the value of W was increased 
until execution time became unacceptably long (over 24 hours), whereupon L was increased (which 
reduced execution time) and W was again incremented.  This “inchworm-ing” process was repeated until 
it became clear from the metric established in Section 3.3 that the ratio of time cost to completeness was 
not likely to improve.   From these data the most efficient values for L and W were chosen.  

3.1  Data 
Two subsets of publicly available yeast cell cycle data [Yeast, 02] were used.  The first subset was a 
handpicked selection of 24 genes (CHS3, KAR4, HO, MNN1, SWE1, CLN2, TIP1, PSA1, CLN1, FKS1, KRE6, MCD1, HTB1, GOG5, 

SPC42, GAS1, PL30, PSD1, HTA1, RFA3, RAD27, RFA1, HHF1, HTT1) which are well studied and known to be co-regulated. 
In this set we expect to find many long patterns.  The second subset, 24 randomly selected genes (YBL089W, 
YCR072C, YDR464W, YGR008C, YJR004C, YMR088C,  YNL328C, YOR001W, YBR223C,  YDL067C, YER087C-A, YHR139C, YML003W, 

YMR161W, YNR022C, YPL074W, YCR041W, YDR379W, YER164W, YJL109C, YML032C, YNL112W, YOL004W, YPR021C), acts as a 
control where we have no expectation of outcome.  This set was used to compare results obtained from 
the first data set against what might occur “at random”.  Each of these data sets was treated in two ways: 
1) no manipulation (the data is then called “non-break”) or 2) external symbols were introduced in such a 
way as to break-up all strictly unaligned patterns (“break” data).  Unaligned patterns form the majority of 
patterns in a result set.  By breaking up these patterns Teiresias found all aligned patterns in the “break” 
data quickly.  After pattern discovery was completed the patterns in the result set were placed into “bins” 
according to the number of literals in the pattern (the “bin size”).   The bins used were:  >60, >50 (but 
less than 61), >40 (but less than 51), and >30.   
3.2  Evaluation metric 
A metric that fairly measures the efficiency of a parameter set, Π, should take into account two things: 1) 
how many patterns (with a certain number of literals) is found using Π compared to how many patterns 
of that size exist (completeness), and 2) how long it takes to find those patterns.  It is typically infeasible 
to compute the total number of unaligned patterns in even a small microarray data set.   Fortunately, it is 
reasonable to assume that the proportion of interesting, unaligned patterns found using Π to all unaligned 
patterns in the data set is approximately equal to the ratio of interesting, aligned patterns found using Π 
to all aligned patterns present.  This assumption is born out by additional experimentation which is not 
reported due to space limitations.  For bin size X, define an estimate of completeness, PXΠ, to be (number 
of patterns in non-break data discovered using Π)/(total number of patterns in the data set).  By the 
previous assumption PXΠ for aligned patterns should be approximately equal to PXΠ for unaligned 
patterns.  When calculating P_XPI for aligned patterns, the denominator can be determined using 
“break” data.  The numerator is still determined using "non-break" data.  With respect to point 2, it is 
known that the execution time of Teiresias is linear in output [Floratos, 98].  However, interesting 
patterns comprise only a small fraction of the total number of patterns discovered and any interesting 
pattern arises from an exponential number of smaller patterns.  Given a parameter set Π that discovers Z 
interesting patterns and another set Π’ that discovers 2Z interesting patterns, we expect Π’ to take an 
additional exponential factor of time to finish if both parameter sets Π and Π’ are otherwise equally 
efficient.  Therefore, the log of the execution times for different parameter sets (i.e. log(TΠ)) should be 
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linearly related when consider-ing interesting (long) patterns.  The efficiency metric for parameter set Π 
should give the amount of time required for each fraction of completeness achieved.  Consequently, we 
define E(Π)X to be  the ratio of run time to completeness, i.e. E(Π)X=log(TΠ)/PXΠ for pattern bin size 
X.  The average (or weighted average) of E(Π)X for all bin sizes yields E(Π), the final measure of 
efficiency for Π.  If E(Π)< E(Π’) than an execution of Teiresias using Π  finds more interesting patterns 
in a given time then an execution using Π’. 

An advantage of this metric is that it requires no special knowledge of the data in question, nor 
does it rely on any special features of Teiresias.  Thus, the above metric and methodology should be 
applicable to other forms of data and other pattern finding algorithms. 

4. RESULTS, CONCLUSIONS AND FUTURE WORK 
4.1 Parameters 
The total number of aligned patterns, NX, in the handpicked data set for each bin size X was found to be:  
N>60 =6, N>50=38, N>40=231, N>30=1628.  In Table 1, for each (L,W) pair an execution time in seconds is 
given, as well as the number of interesting, aligned patterns found in non-break data for each bin size.  
From these data the efficiency of each parameter set, (L,W), can be calculated.  In Figure 2, E(P) is 
plotted against L and (W-L).  In this figure the point for L=5, (W-L)=7 corresponds to the most efficient 
parameter set Π* with E(Π*)X = 0.1724.  Further, Π* remains the most efficient parameter set even when 
considering a number of different weighted averages.  Lastly, when this procedure was repeated on the 
randomly selected data, L=5, W=12 was still the most efficient parameter set.  From these results we 
deduce that Π*=(L=5, W=12) provides the best trade-off between completeness of results and time spent 
finding the patterns for this type of data.  The next step in this research is to test if Π* remains the most 
efficient parameter set for other kinds of gene expression microarray data (e.g. non-cell-cycle and non-
yeast). 
Table 1.  Number of patterns found of each size     
 for hand-picked, non-break data for a given 
 (L,W) pair (where execution time < 1 day).  Figure 2.  W-L, L vs. E(Π) to find E(Π*). 

 
 

4.2 Patterns 
At the outset of this research it was clear that long patterns would be found in the hand-picked data set of 
related genes.  However, what was not clear was if the randomly selected set of genes would have any 
significant patterns between them.  Although not the focus of this paper, 2 patterns found in the 
randomly selected data set prove to be very interesting and are reported here.  Of the 5 patterns of length 
50 or more discovered, 4 were aligned and 1 was unaligned.  In Figure 3, we see the input streams for 
YNL112w (DBP2) and YOR001w (RRP6) and the 50-literal, aligned pattern they form.  In Figure 4, we 
see the input streams for YDL067c (COX9) and YOL004w (SIN3) and the 50-literal, unaligned pattern 
that they form (note: an extra character “X” has been added to the SIN3 stream for clarity).  Although no 
direct link between RRP6 (a 3’-5’ exoribonuclease) and DBP2 (an RNA helicase) could be found in the 
literature, RRP6 and other members of DBP family (DBP3,4,6,7,8,9,10) are well know to be involved in 

 Aligned Patterns of given size 
L W 

Time 
(s) >60 >50 >40 >30 

3 8 32607 6 35 146 769 

4 10 8689 6 34 151 613 

5 10 390.8 6 22 36 136 

5 11 310.34 6 30 71 268 

5 12 6554 6 36 147 575 

6 12 146.49 6 24 43 173 

6 13 331.38 6 30 88 290 

6 14 19120 6 38 146 563 

7 14 199.03 6 29 59 193 

7 15 3465.1 6 37 108 327 
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ribosome synthesis in yeast [Venema, 99].  Further, DBP2 and RRP6 cluster together very tightly using 
multiple correlation techniques (centred and uncentred correlation and centered and uncentred absolute 
correlation) and the hierarchical clustering scheme found in [Eisen, 98].  Although confirmation of a link 
between DBP2 and RRP6 would have to be confirmed in a wet-lab, this evidence seems to support a 
relationship between the two genes.   
 
The second pattern that was examined was found displaced in time between COX9 and SIN3.  The 
length of this pattern implies some significant relationship has been discovered.  Again, however, the 
relationship between the two genes can only be confirmed by a wet-lab.  That said it is important to point 
out that this relationship would likely not be found by currently used correlation and hierarchical 
clustering methods of [Eisen, 98].  In fact, when these techniques are applied to this data, COX9 and 
SIN3 appear, unsurprisingly, very far apart in the resulting tree.  This seems to confirm that these 
displaced patterns not only exist but are not readily found using the currently most common techniques.  
Further, it seems likely that any existing unaligned patterns in microarray data have gone unnoticed and 
thus available data sets represent a rich source of hereto untapped information and are ripe to be mined 
using this technique. 
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Figure 3 

DBP2 -++0-+++-+---+-+--+0+---+++0+--++-+-0--+-++++-+--+-+-+--+-+-++-+----++++-++-- 
RRP6 ++-+-++0-+--0+-+0+--+--++-+-+-+-+0+----+--+-+-0-++-+----+-+0--++----+++--+++- 
Patrn +..-++.-+--.+-+....+--.+.+.+-..+.+-.--+-.+.+-.-.+-+-.--+-+....+----+++.-++.- 

Figure 4 

COX9 ++--++-+-+-+-+-+-+-+-++----+-+-+-+++-----+-0+-+--++--+--+++---0++0+-+--0-+-++ 
SIN3 X-++-+-+-+-+-+-+-+-+-+-++--+++-+-++--+--+-+-+-+-+----+++-++--++-+0+-+---0+-0+- 
Patrn     +-+-+-+-+-+-+-+-+...--+.+-+-++.-.--....+-+-...--+...++--...+0+-+--..+-.+ 
 


