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ABSTRACT
The growth of wireless LANs has brought the expectation for

high-bitrate streaming video to wireless PCs. However, it re-

mains unclear how wireless channel characteristics impact the

quality of streaming video sent over wireless LANs. This pa-

per presents results from experiments that stream commercial

video over a wireless campus network. By analyzing the streaming

video quality and capturing wireless LAN characteristics across

network and wireless link layers, “weather forecasts” are created

such that selected wireless LAN performance indicators might be

used to predict the streaming video quality. Furthermore, a quan-

tified measurement of accuracy is presented to evaluate the effec-

tiveness of individual weather forecasts. The paper evaluates six

distinct weather forecasts four different streaming configurations

including TCP and UDP streaming, and single and multiple-level

encoded videos. The results show that the wireless Received Sig-

nal Strength Indicator (RSSI) and average wireless link capacity

are the most accurate indicators to predict the performance of

streaming video over wireless LANs. The weather forecast phi-

losophy can be beneficial for adapting video streaming in wireless

LAN environments.

Categories and Subject Descriptors: C.2.m [Computer-
Communication Networks]: Miscellaneous

General Terms: Measurement, Performance, Design.

Keywords: Streaming Media, Wireless, IEEE 802.11.

1. INTRODUCTION
Although much is already known about wireless LANs

and the individual components of the wireless LAN envi-
ronment that make the delivery of high-demand applications
over wireless a challenge, there has been little effort to use
the relationships between wireless link measurements to pre-
dict the performance of streaming media applications. Thus,
predicting the performance of high-demand applications is
analogous to weather forecasting. However, while meteorol-
ogists attempt to provide accurate weather predictions using
well-known predictors, such as temperature and humidity,
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network practitioners do not yet have effective methods to
forecast the performance for streaming video over wireless
LANs as a function of reliable wireless LAN characteristics.

Our earlier work has shown that streaming products such
as RealNetworks and Windows Streaming Media use net-
work probes to provide estimates of the underlying network
characteristics prior to making key decisions about the exact
nature of the video stream sent over the network. However,
current techniques do not adapt to wireless characteristics
such as frame loss rate, signal strength, or link layer bitrate
to protect the quality of video streams from bad wireless
conditions.

A primary goal of this investigation is to correlate wire-
less link layer behavior and network layer performance with
streaming video application layer performance. Applica-
tion layer measurement tools [6] are combined with cus-
tomized network layer measurement tools and publicly avail-
able IEEE 802.11 measurement tools to conduct wireless ex-
periments and integrate the measurement results. Seeking
the relationships between wireless network indicators and
video performance, this study evaluates the effectiveness of
several wireless network condition predictors for forecasting
streaming video performance.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the methodology used to obtain video mea-
surements on a wireless LAN; Section 3 presents the results
from the experiments and describes how the weather reports
are constructed; Section 4 depicts detailed wireless weather
reports; and Section 5 summarizes the paper and presents
possible future work.

2. METHODOLOGY

2.1 Tools
The strength of this investigation is concurrent use of mea-

surement tools at multiple levels in the network protocol
stack to seek the correlation between wireless transmission
characteristics and the performance of streaming video. For
reference, the layer corresponding to each tool and examples
of some of the performance measurements available from
each tool are listed in Table 1.

At the application layer, an internally developed mea-
surement tool, called Media Tracker [6], streams video from
a Windows Media Server, collecting application layer data
specific to streaming video including: video frame rate, en-
coded bitrate, playout bitrate, time spent buffering, frames
lost, frames recovered, etc.

For network layer performance measures such as round-
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Table 1: Measurement Tools

Layer Tools Performance Measures

Application Media Tracker Frame rate,
Frames lost, Encoded bitrate

Network UDP Ping Round-trip time,
Packet loss rate

Wireless Typeperf, Signal strength,
WRAPI Frame retries, Capacity

trip time and packet loss rate along the stream flow path,
an internally developed tool, UDP ping, was used. Prelim-
inary experiments revealed that a constant ping rate could
not be maintained by the standard ICMP ping provided by
Windows XP in some poor wireless conditions where 10 sec-
onds and longer round-trip times were recorded. Thus, a
customized ping tool using application-layer UDP packets
was built to provide constant ping rates, configurable ping
intervals and packet size.

At the wireless data link layer, a publicly-available library,
called WRAPI [2] was enhanced to collect information at
the wireless streaming client that includes: Received Signal
Strength Indicator (RSSI), frame retransmission counts and
failures, and information about the specific wireless access
point (AP) that handles the wireless last hop to the client.
Additionally, typeperf, a performance monitoring tool built
into Windows XP, collected processor utilization and net-
work data including received bitrate and the current wireless
capacity target.

Although the above four tools were deployed concurrently
on the wireless streaming client, baseline measurements in-
dicated these tools consume only about 3% of the processor
time on the test laptop. Given that the streaming videos
consumed about 35% of the processor time, the assumption
is the measurement tools do not significantly effect the per-
formance of the streaming videos to the wireless clients.

2.2 Experiment Setup
This investigation conducts a series of experiments where

video clips are streamed from a Windows Media Server over
a wired campus network to a wireless streaming client at
pre-determined locations in the WPI Computer Science de-
partment building. As Figure 1 shows, the wireless portion
of the WPI campus network is partitioned from the wired in-
frastructure. Thus, the assumption is that all video streams
traverse the same network path except for the last two hops
from a common exit off the wired campus LAN to a wire-
less AP and from the AP to the streaming client. The media
server runs Windows Media Service v9.0 as part of the Win-
dows Server 2003 Standard Edition, and the wireless client
runs on a Dell laptop with a Centrino mobile CPU running
Windows XP sp1 and an IEEE 802.11g wireless network
adaptor based on the Broadcom1 chipset. The WPI wire-
less LAN uses Airespace2 APs and provides IEEE 802.11
a/b/g wireless service for all the experiments.

Two distinct video clips, one with high motion and the
other with low motion, were used in this study. Both clips
were encoded at 353×288 resolution and 30 frames per sec-
ond with a duration of approximately two minutes.3 Anal-
ysis of the two clips shows no statistically significant differ-

1http://www.broadcom.com/
2http://www.airespace.com/
3The median duration of video clips stored on the Web is
about 2 minutes [7].

Figure 1: WPI Campus Network

ences in performance, so all subsequent analysis combines
the measurement data obtained for both clips.

Broadly, there are two classes of videos stored on the Web,
those with a single encoded bitrate level and those with mul-
tiple encoded bitrate levels [7]. With a single encoded bi-
trate level, a streaming media server is limited in its ability
to adapt to changes in the network weather. An analogy
is going outside without a coat; if it gets cold, there is no
easy way to warm up. With multiple encoded bitrate levels,
a streaming media server can adapt the video streamed to
any changing network conditions. An analogy is going out-
side wearing multiple layers of clothing; if it gets warm, you
can take off layers to remain comfortable.

Therefore, during this investigation, two distinct versions
of each video were encoded using Windows Media Encoder
v9.0: a single level version of the video encoded at 2.5 Mbps
and a multiple level version that includes eleven encoding
layers (2.5 Mbps, 1.0 Mbps, 700 Kbps, 500 Kbps, 300 Kbps,
250 Kbps, 128 Kbps, 93 Kbps, 45 Kbps, 32 Kbps, and 19
Kbps) such that the streaming server has the opportunity
to do media scaling to dynamically choose the encoded clip
to stream based on the network conditions.

As previous work has shown both UDP and TCP are both
used for streaming [4], each of the four video instances was
streamed using TCP and repeated using UDP to capture
the effect of transport protocol choice on streaming perfor-
mance.

2.3 Experiment Design
Each experiment consisted of streaming videos under eight

different conditions (2 clips × 2 versions (Single Level and
Multiple Level) × 2 transport protocols (UDP and TCP)) to
a stationary, wireless laptop. While each video was streamed,
the client initiated UDP ping requests to determine round-
trip time and packet loss rates. The UDP ping requests were
200 milliseconds apart, with 1350-byte packets for the single
level video and 978-byte packets for the multiple level video.
The choice of packet sizes came from the observation that
90% of the packets are 1350 bytes and 978 bytes for single
level and multiple level video, respectively. While streaming,
measurement data was also collected by WRAPI, typeperf
and Media Tracker at the client.

On each floor of the building, an AP was selected to in-
teract with the client laptop. It was found that the selected
video clips could be played back at full-motion quality at
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all locations where the RSSI was above −65dBm. At lo-
cations where the RSSI was less than −65dBm, the video
performance was inconsistent. Thus, the experiments were
designed to gather more data in areas where performance
was inconsistent. A weather analogy is the need to be pre-
cise on the temperature near freezing to be able to predict
if the precipitation is rain, sleet or snow, while prediction
(of rain) is easy when the temperature is in the 40+ degree
range. Preliminary experiments found three laptop recep-
tion locations for each AP, representing good, fair, and bad
reception locations (as indicated by the display status in
Windows XP).

Streaming performance over a wireless network depends
upon the prevalent network conditions. To reduce the vari-
ability in the network conditions, all experiments were con-
ducted during the University’s winter break (December 23-
25, 2004 and December 29-30, 2004). During the testing pe-
riods, there was only occasional network activity and virtu-
ally no other wireless users. Each experiment was repeated
five times at the three distinct locations on three different
floors in the Computer Science department. Thus the re-
sults come from a total of 45 experimental runs that include
360 video stream runs.

2.4 Weather Forecast
Using a forecasting analogy emphasizes the importance

of predicting streaming video quality (the weather) given
measurements of current network conditions. For a spe-
cific quality metric (the weather prediction), the forecasting
goal is to find a measurable network parameter (a weather
predictor) that accurately estimates streaming video qual-
ity. However, quality metrics differ in their sensitivity to
lower-layer predictors and streaming server choices such as
transport protocol or encoding method. Thus, weather pre-
dictors will differ in their effectiveness in mapping to distinct
prediction levels that yield a reliable forecast. This paper
analyzes data from a streaming video measurement study
to determine reliable lower-layer predictors for predicting
the frame rate of Windows Streaming Media over a wireless
LAN environment.

The first step in the forecasting process consists of divid-
ing the numerical quality measurements for a weather pre-
diction into three regions: Good (Sunny), Edge (Cloudy) and
Bad (Rainy). Then, for each weather predictor, the ordered
predictor samples are clustered into 10 equally-populated
bins to determine the fraction of samples in each bin in the
Good, Edge and Bad regions. Finally, a weather forecast
map is created using the median predictor value in each bin
and the fraction of Good, Edge and Bad sample points per
bin.

An ideal forecasting map for streaming video weather is
likely to make good predictions over the complete range of
the predictor. To accurately distinguish weather regions, the
map needs significant separation of the regions when viewed
vertically. Namely, a weather map with large stretches of
vertical overlap of the Good, Edge and Bad regions cannot
accurately predict the video quality.

We define weather map effectiveness (E) as the fraction of
the range of the weather predictor that is likely to produce
accurate predictions:

E =
Reffective

Rall

(1)

Reffective is the range of the predictor that provides more
than a 50% chance of having either Good or Bad perfor-
mance. Rall is the observed predictor range using as end-
points the median of the first and last bins. Any predictor
measurements less than the median of the first bin or greater
than the median of the last bin are removed as outliers. For
some wireless network predictors (e.g., round-trip time) the
theoretical sampling space is infinite. Thus, this definition
bounds the effective sample space to observed values minus
a few outliers. E provides a method for a normalized com-
parison of the effectiveness of different weather predictors.
Since an equal number of samples per predictor bin main-
tains reasonable sample density for computing the quality
fractions, this approach provides a more accurate prediction
across the predictor range than using the linear bins in a
standard histogram.

An E of 1 indicates a perfect indicator where the weather
map provides effective predictions (more than 50% chance
of having Good quality or more than 50% chance of having
Bad quality) over the entire practical range of the weather
predictor. An E of 0 implies a useless indicator whereby the
map does not effectively predict the weather for any portion
of the weather predictor’s practical range.

3. RESULTS
Due to wireless connection failures that resulted in abnor-

mal terminations, ten data sets were removed from the set
of 360 streaming runs. Thus, 350 video streaming runs are
included in the analysis.

3.1 Weather Predictors
The weather predictors used in this research are all mea-

surements taken from our tools and include: the physical
layer Received Signal Strength Indicator (RSSI), wireless
link capacity, MAC layer retry fraction, IP loss rate, round-
trip time (RTT) and throughput.

Aguayo et al.[1] suggest that signal strength alone is not
an accurate indicator of performance for some wireless appli-
cations. Figure 2 presents the relationship in this study be-
tween wireless connection capacity and wireless RSSI, with
a second order best-fit polynomial curve for reference. Since
the wireless network capacity adapts based on RSSI, the
strong relationship shown with RSSI is not surprising. Con-
versely, Figure 3, shows that upstream wireless layer retry
fraction is not strongly correlated with the RSSI since the
retry fraction is also affected by the network traffic load.

3.2 Weather Prediction
For weather prediction, the average frame rate, one of the

fundamental measures of video performance, is used as the
measure of video quality. The standard frame rate for full-
motion video is 24 to 30 frames per second (fps). At these
speeds, the human eye perceives movement as continuous,
without seeing individual frames. A common frame rate
for computer video that approximates full-motion video is
15 fps. To most people, a 15 fps video flows smoothly, al-
though for some videos, it will not appear quite as fluid as
it would at a higher frame rate. A video looks choppy if
the frame rate is lower than 15 fps. Using these guidelines,
video quality is partitioned into three distinct regions: Bad
(less than 15 fps), Edge (between 15 and 24 fps) and Good
(more than 24 fps). Figure 4 shows the cumulative distri-
bution function (CDF) of the average frame rates for all the
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Figure 2: Average Wireless Capacity versus RSSI
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Figure 3: Upstream MAC Layer Retry Fraction ver-

sus RSSI

experimental runs, with arrows depicting the Good, Edge
and Bad regions.
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Figure 4: CDF of Frame Rate

The coefficient of variation (CoV) of the frame rate was
also considered as a predictor of streaming video quality,
but analysis showed CoV to provide the same prediction
effectiveness as average frame rate. Analysis using alternate
video quality metrics, such as buffering count, media scaling
count, and video image quality is left as future work.

4. ANALYSIS
All the analysis presented uses the average video frame

rate for weather prediction.
Figure 5 shows a forecasting weather map where RSSI is

the weather predictor. The (unlabeled) horizontal illustra-
tions above all maps are a visual histogram of RSSI samples
that indicate the data sample density. The Good (Sunny)
and Bad (Rainy) regions are separated by the Edge (Cloudy)
quality area.

This weather map can be used for weather forecasting as
follows: If the RSSI is -60 dBm, there is a 100% chance for
Sunny weather (24-30 fps). If the RSSI is -75 dBm, there
is a 75% chance of Sunny weather, about a 20% chance
of Cloudy weather (15-23 fps) and a 5% chance of Rainy
weather (less than 15 fps). If the RSSI is -80 dBm, it is
likely to Rain.

The lack of a large vertical overlap between the three areas
implies RSSI is a good predictor of average video frame rate.

In the RSSI range from -80 dBm to -36 dBm, the only re-
gion that does not provide clear predictions of Good or Bad
performance is between -79 dBm and -78 dBm. An RSSI
lower than -79 dBm forecasts Rain is likely (the probability
of a Bad frame rate is 50+%), while an RSSI higher than
-78 dBm forecasts likely Sunny weather (the probability to
get a Good frame rate is 50+%). The region where RSSI is
greater than -68 dBm strongly forecasts Sunny weather.
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Figure 5: Frame Rate Prediction by RSSI

Average wireless capacity is the predictor for the weather
map in Figure 6. Similar to the previous result, the lack of
significant vertical overlap in the map suggests average wire-
less capacity is also an effective predictor of frame rate. In
the sampling range from 0 to 54 Mbps, an average wireless
capacity greater than 5 Mbps forecasts a high likelihood of
Good weather, while a capacity greater than 18 Mbps always
forecasts Good weather. Given the maximum encoding bit
rates of 2.5 Mbps for the videos used in the experiments,
the performance degradation in the region between 2.5 to 5
Mbps is not only due to capacity, but may be due to the
variance of link capacity. Figures 7 and 8 demonstrate that
even with high average link capacity, the variation in capac-
ity can be high enough to degrade the video frame rate. The
link capacity variance may cause upper layer congestion. In
the case of TCP streaming, the sender might reduce to a
lower sending rate, while a UDP stream may suffer from
bursty packet drops as the AP queue fills.
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Figure 6: Frame Rate Prediction by Average Wire-

less Capacity

Figure 9 provides a forecasting weather map using the
wireless layer retry fraction as the predictor. As the wireless
layer retry fraction increases over the 16% to 44% range, the
probability of Good weather slowly decreases. Moreover, the
vertical overlap between Good, Edge and Bad over much of
the x-axis suggests wireless layer retry fraction is not an
effective predictor of video frame rate.

IP packet loss rate is the predictor for the weather map
in Figure 10. As with wireless retry fraction, the IP packet
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loss rate is not effective for forecasting video frame rate.
Only when the loss rate is under 2% or over 16% is a single
forecast likely.

Note, the fact that the IEEE 802.11 data link layer re-
transmits lost frames up to 7 times [3] significantly reduces
the number of lost data link frames and also lowers the num-
ber of IP packet losses. Comparing the wireless layer retry
histogram (the thin, horizontal illustration at the top of each
figure) at the top of Figure 9 with the IP packet loss rate
histogram at the top of Figure 10, one sees that the density
of the samples has shifted from 25%-40% for wireless retries
down to less than 10% for IP packet loss rate.

This investigation also considered round-trip time as a
weather predictor for forecasting performance for TCP and
UDP video streams separately. Due to space constraints, the
weather maps cannot be shown, but the results imply that
round-trip time is not a good choice as a weather predictor
for average frame rate. Similarly, throughput was analyzed
as a weather predictor for both multiple and single level
videos and was also shown to be ineffective in forecasting
the wireless weather. However, while not presenting the
respective weather maps, a closer look below the surface is
shown with a few appropriate scatter plots.

Figure 11 presents scatter points for throughput in differ-
ent streaming setups: multiple level TCP streaming, multi-
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Figure 10: Frame Rate Prediction by IP Packet Loss

Rate

ple level UDP streaming, single level TCP streaming, and
single level UDP streaming. Each graph has a best-fit line
for visual reference and to allow observation of the y-intercepts
at the left edge of the lines. Comparing Figure 11(a)-11(b)
to Figure 11(c)-11(d), one sees that multiple level encoded
video sustains frame rates of 10+ fps even for very low
throughput, while single level encoded video has frame rates
near 0 fps at the same throughput. Conversely, reviewing
frame rates for the different protocols shows TCP streaming
maintains a higher average frame rate than UDP streaming
for low throughput. However, TCP streaming also suffers
from long buffering times and a higher frequency of re-buffer
events as shown in [5].

These experiments include four distinct video configura-
tions that are analyzed with weather maps based on the six
distinct weather predictors. The number of samples in each
experimental category is shown in Table 2. Table 2 indicates
that encoding video with multiple levels (versus only a sin-
gle level) results in fewer Bad frame rates, with many Bad
rates having been moved into the Edge frame rate region.
Furthermore, TCP streaming provides slightly more Good
frame rates overall and for multiple level encoding than does
UDP streaming.

Table 2: Experiments Categorized by Frame Rate

Setup Good Edge Bad Total

TCP 73 5 8 86
Multiple level UDP 50 25 10 85

Subtotal 123 30 18 171
TCP 62 7 20 89

Single level UDP 62 3 25 90
Subtotal 124 10 45 179

TCP 135 12 28 175
All UDP 112 28 35 175

Subtotal 247 40 63 350

The weather maps for all of the configurations and predic-
tors are not included in this paper due to lack of space, but
more can found in [8]. A summary of the four categories and
corresponding effectiveness measurement, E (Equation 1),
are provided in Table 3 (sorted in decreasing order of effec-
tiveness). The weather map of the predictors with bold E

value in the table are analyzed in this paper.
From Table 3, RSSI and average wireless link capacity are

effective predictors of video performance for all streaming
setups. Predictors such as round-trip time and throughput
are effective for single level encoded video but are ineffec-
tive for multiple level encoded video. Finally, forecasting
performance for videos encoded with a single level is easier
than for videos encoded with multiple levels. This is likely
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Figure 11: Comparison of Throughput versus Average Frame Rate

because a video with multiple levels of encoding may adapt
better to the network weather and yield Good performance,
while in the single level encoding case, there is only Bad
weather.

Table 3: Effectiveness of Weather Maps

Predictor All Multiple Single TCP UDP

RSSI 0.98 0.96 0.99 0.99 0.96
Capacity 0.97 0.95 0.99 0.97 0.94
Retry rate 0.75 0.76 0.81 0.79 0.59
Loss rate 0.71 0.69 0.98 0.79 0.89

RTT 0.54 0.35 0.85 0.83 0.94
Throughput 0.47 0.31 0.82 0.59 0.66

5. CONCLUSIONS
This study uses streaming wireless experiments to investi-

gate the relationship between streaming video performance
and wireless network behavior. 360 videos were streamed in
carefully designed experiments over multiple access points
and multiple network conditions to accurately capture per-
formance for wireless locations where streaming is a chal-
lenge.

The main analysis vehicle was generation and interpre-
tation of weather maps to forecast streaming video perfor-
mance. A quantifiable measure of effectiveness is presented
allowing comparison of the value of individual weather maps.
By considering weather maps for six distinct predictors in
four different experimental setups, this research makes sev-
eral key contributions.

First, the wireless RSSI and average wireless capacity are
effective predictors of video frame rate. Second, even pre-
dictors that are not effective for forecasting video perfor-
mance often provide weather maps that have regions of ac-
curate performance prediction. For example, IP packet loss
rate predicts high video frame rates when loss rates are less
than 2%. Third, the effectiveness of individual predictors
varies for different video configurations. For example, mul-
tiple level encoding improves video performance over single
level encoding for poor wireless conditions, and TCP stream-
ing improves frame rates compared with UDP streaming in

the same regions. These findings can improve rate adaption
schemes for streaming video over dynamic wireless LAN en-
vironments.

Future research includes incorporating knowledge derived
from the weather maps into a dynamic video system. Ad-
ditional weather maps can be developed based on combined
weather predictors, such as RSSI and retries or even retries
and IP packet loss. Weather maps with different predictions,
such as buffering time, re-buffering events and image quality
need to be investigated. Additional future work may include
investigating performance when there is link contention and
competing traffic in wireless networks.
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