
Motivation
Our Contribution

Summary

An Improved Non-Termination Criterion for
Binary Constraint Logic Programs

Etienne Payet Fred Mesnard

IREMIA,
université de la Réunion, Océan Indien, France

Workshop on Logic-based methods in Programming
Environments, 2005

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Where Is It?

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Outline

1 Motivation
Termination/Non-termination in (C)LP
Previous Work

2 Our Contribution
Preliminary Definitions
Main Result

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

Outline

1 Motivation
Termination/Non-termination in (C)LP
Previous Work

2 Our Contribution
Preliminary Definitions
Main Result

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

Termination

There exists various web-interfaced termination analyzers for
Prolog, e.g.

cTI (ISO-Prolog)

TALP

TermiLog

TerminWeb

They check or infer termination conditions for universal
termination of Prolog programs.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

Non-Termination

There is also at least one web-interfaced non-termination tool
for pure Prolog programs:

nTI

It generates classes of queries for which existential
non-termination is insured: there exists an infinite branch in the
search tree.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

Optimal Termination Condition

The Idea:
When cTI and nTI produce complementary results, we hold
optimal termination conditions for the given program wrt our
language defining classes of queries.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (1)

ways(A,Cs,N) iff

N is the number of ways to change

a given amount of money A

using a fixed set Cs of coins values

NB: suggested by Mike Codish.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (2)

add(0,X,X).
add(s(X),Y,s(Z)) :-

add(X,Y,Z).

ways(A,[],0).
ways(0,Cs,s(0)).
ways(s(Amount),[C|Coins],N) :-

add(C,NewAmount,s(Amount)),
ways(s(Amount),Coins,N1),
ways(NewAmount,[C|Coins],N2),
add(N1,N2,N).

ways(s(Amount),[C|Coins],N) :-
add(s(Amount),s(D),C),
ways(s(Amount),Coins,N).

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (3)

cTI:

term_cond(add(A,B,C),C+A)

term_cond(ways(A,B,C),0)

What’s wrong???

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (3)

cTI:

term_cond(add(A,B,C),C+A)

term_cond(ways(A,B,C),0)

What’s wrong???

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (4)

Let’s do an optimal termination check with precision = 2:

ok for add/3:
termConds=[[1],[3]],
nonTermQueries=[[2]-add(s(A),B,s(C))],
undecidedModes=[]

problem with ways/3:
termConds=[],
nonTermQueries=[

[1,2,3]-ways(s(A),[0],B),
...

undecidedModes=[]

Oops ... ways(s(t1),[0],t2) loops for any term t1 and term t2.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (4)

Let’s do an optimal termination check with precision = 2:

ok for add/3:
termConds=[[1],[3]],
nonTermQueries=[[2]-add(s(A),B,s(C))],
undecidedModes=[]

problem with ways/3:
termConds=[],
nonTermQueries=[

[1,2,3]-ways(s(A),[0],B),
...

undecidedModes=[]

Oops ... ways(s(t1),[0],t2) loops for any term t1 and term t2.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (5)

ways(A,[],0).
ways(0,Cs,s(0)).
ways(s(Amount),[C|Coins],N) :-

C=s(_) ,
add(C,NewAmount,s(Amount)),
ways(s(Amount),Coins,N1),
ways(NewAmount,[C|Coins],N2),
add(N1,N2,N).

ways(s(Amount),[C|Coins],N) :-
add(s(Amount),s(D),C),
ways(s(Amount),Coins,N).

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (6)

Let’s redo an optimal termination check with precision = 3:

ok for add/3

ok for ways/3:
termConds=[[1,2]],
nonTermQueries=[

[1,3]-ways(s(A),[s(0)|B],C),
[2,3]-ways(s(A),[s(0)],B)

undecidedModes=[]

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

An Example (7)

Hence, cTI + nTI may provide some means to:

debug programs

get a complete knowledge about the termination behaviour
of programs.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

Outline

1 Motivation
Termination/Non-termination in (C)LP
Previous Work

2 Our Contribution
Preliminary Definitions
Main Result

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

The Binary Unfoldings of a Logic Programs (1)

[Gabbrielli & Giacobazzi, 89] [Codish & Taboch, 99]

A TP-like operator : T bin
P

Input: a pure logic program P

Output: lfp(T bin
P) = Pbin a possibly infinite set of facts and

binary clauses

Property

Q, an atomic query, left-terminates wrt P
iff

Q terminates wrt Pbin

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Termination/Non-termination in (C)LP
Previous Work

The Binary Unfoldings of a Logic Programs (2)

compute Pbin
precision = T bin

P ↑ precision

generalize the lifting lemma to infer classes
non-terminating atomic queries from Pbin

precision

hence we hold classes of non-terminating atomic queries
for P

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Outline

1 Motivation
Termination/Non-termination in (C)LP
Previous Work

2 Our Contribution
Preliminary Definitions
Main Result

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Preliminary Definitions (1)

We consider ideal CLP.

Definition (Set Described by a Query)

The set of atoms that is described by a query S := 〈p(̃t) |d〉 is
Set(S) = {p(v (̃t)) | DC |=v d}.

Definition (More General)

We say that a query S′ is more general than a query S if
Set(S) ⊆ Set(S′).

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Lifting Theorem

Theorem (Lifting)

Consider a derivation step S =⇒
r

T and a query S′ that is more

general than S.
Then, there exists a derivation step S′ =⇒

r
T ′ where T ′ is more

general than T .

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Preliminary Definitions (2)

Definition (Set of Positions)

A set of positions, denoted by τ , is a function that maps
each predicate symbol p to a subset of [1, arity(p)].

Let τ be a set of positions. Then, τ is the set of positions
defined as: for each predicate symbol p,
τ(p) = [1, arity(p)] \ τ(p).

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Preliminary Definitions (3)

Definition (Projection)

Let τ be a set of positions and p a predicate symbol of arity n.

The projection of p on τ is the predicate symbol denoted
by pτ . Its arity equals the number of elements of τ(p).

Let t̃ := (t1, . . . , tn) be a sequence of n terms. The
projection of t̃ on τ , denoted by t̃τ is the sequence
(ti1 , . . . , tim) where {i1, . . . , im} = τ(p) and i1 ≤ · · · ≤ im.

Let A := p(̃t) be an atom. The projection of A on τ ,
denoted by Aτ , is the atom pτ (̃tτ).

The projection of a query 〈A |d〉 on τ , denoted by 〈A |d〉τ ,
is the query 〈Aτ |d〉.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Preliminary Definitions (4)

Definition (Filter)

A filter, denoted by ∆, is a pair (τ, δ) where τ is a set of
positions and δ is a function that maps each predicate
symbol p to 〈pτ (ũ) |d〉 where DC |= ∃d and ũ is a
sequence of arity(pτ) terms.

Let ∆ := (τ, δ) be a filter and S be a query. Let p := rel(S).
S satisfies ∆ if Set(Sτ) ⊆ Set(δ(p)).

Let ∆ := (τ, δ) be a filter and S and S′ be two queries. S′ is
∆-more general than S if S′

τ is more general than Sτ and
S′ satisfies ∆.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

First Result

Definition (Derivation Neutral)

∆ is DN for r if for each derivation step S =⇒
r

T and each query

S′ that is ∆-more general than S, there exists a derivation step
S′ =⇒

r
T ′ where T ′ is ∆-more general than T .

Theorem

Let ∆ be a filter that is DN for r .
If 〈B | c〉 is ∆-more general than 〈H | c〉 then 〈H | c〉 loops with
respect to {r}.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Preliminary Definitions (5)

Definition (Local Variables)

Let r := p(X̃)← c � q(Ỹ) be a rule. The set of local variables of
r is denoted by local_var(r) and is defined as:
local_var(r) := Var(c) \ (Var(X̃) ∪ Var(Ỹ)).

Definition (sat)

Let S := 〈p(ũ) |d〉 be a query and s̃ be a sequence of arity(p)
terms. Then, sat(s̃, S) denotes a formula of the form
∃Var(S′)(s̃ = ũ′ ∧ d ′) where S′ := 〈p(ũ′) |d ′〉 is any variant of S
variable disjoint with s̃.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

Outline

1 Motivation
Termination/Non-termination in (C)LP
Previous Work

2 Our Contribution
Preliminary Definitions
Main Result

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Preliminary Definitions
Main Result

DNlog = DN

Definition (Logical Derivation Neutral)

A filter ∆ := (τ, δ) is DNlog for r := p(X̃)← c � q(Ỹ) if

DC |= c → ∀X̃τ

[
sat(X̃τ , δ(p))→ ∃Y [sat(Ỹτ , δ(q)) ∧ c]

]
where Y := Var(Ỹτ) ∪ local_var(r).

Theorem

Assume C enjoys the following property: for each α ∈ DC , there
exists a ground ΣC-term a such that [a] = α.
∆ is DN for r iff ∆ is DNlog for r .

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

Motivation
Our Contribution

Summary

Summary

For constraint filtered derivations: DN = DNlog

it strictly generalizes our previous criteria defined in
SAS’02, SAS’04, and TOPLAS’06.

Implementation:
SAS’02: CLP(H), filter: positions+true
SAS’04: CLP(Q), filter: positions+true
TOPLAS’06: CLP(H), filter: positions+constraint
WLPE’05: ?

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP

	Motivation
	Termination/Non-termination in (C)LP
	Previous Work

	Our Contribution
	Preliminary Definitions
	Main Result

	Summary

