An Improved Non-Termination Criterion for Binary Constraint Logic Programs

Etienne Payet Fred Mesnard

IREMIA,
université de la Réunion, Océan Indien, France

Workshop on Logic-based methods in Programming Environments, 2005
Where Is It?
1 Motivation
 - Termination/Non-termination in (C)LP
 - Previous Work

2 Our Contribution
 - Preliminary Definitions
 - Main Result
1 Motivation
- Termination/Non-termination in (C)LP
- Previous Work

2 Our Contribution
- Preliminary Definitions
- Main Result
There exists various web-interfaced termination analyzers for Prolog, e.g.

- *cTI (ISO-Prolog)*
- TALP
- TermiLog
- TerminWeb

They check or infer termination conditions for *universal termination* of Prolog programs.
There is also at least one web-interfaced non-termination tool for pure Prolog programs:

- **nTI**

It generates classes of queries for which existential non-termination is insured: there exists an infinite branch in the search tree.
The Idea:

When cTI and nTI produce complementary results, we hold **optimal** termination conditions for the given program wrt our language defining classes of queries.
An Example (1)

ways \((A, Cs, N) \) iff

- N is the number of ways to change
- a given amount of money A
- using a fixed set Cs of coins values

NB: suggested by Mike Codish.
add(0, X, X).
add(s(X), Y, s(Z)) :-
 add(X, Y, Z).

ways(A, [], 0).
ways(0, Cs, s(0)).
ways(s(Amount), [C | Coins], N) :-
 add(C, NewAmount, s(Amount)),
 ways(s(Amount), Coins, N1),
 ways(NewAmount, [C | Coins], N2),
 add(N1, N2, N).

ways(s(Amount), [C | Coins], N) :-
 add(s(Amount), s(D), C),
 ways(s(Amount), Coins, N).
An Example (3)

cTI:

- term_cond(add(A,B,C), C+A)
- term_cond(ways(A,B,C), 0)

What’s wrong???
An Example (3)

cTI:

- `term_cond(add(A,B,C), C+A)`
- `term_cond(ways(A,B,C), 0)`

What's wrong???
Let’s do an optimal termination check with $\textit{precision} = 2$:

- **ok for add/3:**
 - $\text{termConds} = [[1],[3]]$
 - $\text{nonTermQueries} = [[2]-\text{add}(s(A),B,s(C))]$
 - $\text{undecidedModes} = []$

- **problem with ways/3:**
 - $\text{termConds} = []$
 - $\text{nonTermQueries} = [\ [1,2,3]-\text{ways}(s(A),[0],B),$
 ...
 - $\text{undecidedModes} = []$

Oops ... $\text{ways}(s(t_1),[0],t_2)$ loops for any term t_1 and term t_2.

An Improved Non-Termination Criterion for Binary CLP
Let’s do an optimal termination check with precision = 2:

- ok for add/3:
 termConds=[[1],[3]],
 nonTermQueries=[[2]-add(s(A),B,s(C))],
 undecidedModes=[]

- problem with ways/3:
 termConds=[],
 nonTermQueries=[
 [1,2,3]-ways(s(A),[0],B),
 ...
 undecidedModes=[]

Oops ... ways(s(t_1),[0],t_2) loops for any term t_1 and term t_2.
ways(A, [], 0).
ways(0, Cs, s(0)).
ways(s(Amount), [C | Coins], N) :-
 C = s(_),
 add(C, NewAmount, s(Amount)),
 ways(s(Amount), Coins, N1),
 ways(NewAmount, [C | Coins], N2),
 add(N1, N2, N).
ways(s(Amount), [C | Coins], N) :-
 add(s(Amount), s(D), C),
 ways(s(Amount), Coins, N).
Let’s redo an optimal termination check with *precision* = 3:

- ok for add/3
- ok for ways/3:
 - *termConds*=[[1,2]],
 - *nonTermQueries*=[
 - [1,3]-ways(s(A),[s(0)|B],C),
 - [2,3]-ways(s(A),[s(0)],B)
]
- *undecidedModes*=[]
Hence, cTI + nTI *may* provide some means to:

- **debug** programs
- get a **complete** knowledge about the termination behaviour of programs.
Outline

1 Motivation
 - Termination/Non-termination in (C)LP
 - Previous Work

2 Our Contribution
 - Preliminary Definitions
 - Main Result
The Binary Unfoldings of a Logic Programs (1)

[Gabbrielli & Giacobazzi, 89] [Codish & Taboch, 99]

- A T_P-like operator: T_P^{bin}
- Input: a pure logic program P
- Output: $\text{lfp}(T_P^{bin}) = P^{bin}$ a possibly infinite set of facts and binary clauses

Property

Q, an atomic query, left-terminates wrt P

iff

Q terminates wrt P^{bin}
The Binary Unfoldings of a Logic Programs (2)

- compute $P_{\text{precision}}^{\text{bin}} = T_P^{\text{bin}} \uparrow \text{precision}$
- generalize the lifting lemma to infer classes non-terminating atomic queries from $P_{\text{precision}}^{\text{bin}}$
- hence we hold classes of non-terminating atomic queries for P
Outline

1 Motivation
 - Termination/Non-termination in (C)LP
 - Previous Work

2 Our Contribution
 - Preliminary Definitions
 - Main Result
We consider *ideal* CLP.

Definition (Set Described by a Query)

The set of atoms that is described by a query $S := \langle p(\tilde{t}) \mid d \rangle$ is

$$\text{Set}(S) = \{p(\nu(\tilde{t})) \mid \mathcal{D}_C \models \nu \ d\}.$$

Definition (More General)

We say that a query S' is *more general than* a query S if $\text{Set}(S) \subseteq \text{Set}(S')$.
Consider a derivation step $S \Rightarrow^r T$ and a query S' that is more general than S. Then, there exists a derivation step $S' \Rightarrow^r T'$ where T' is more general than T.

Theorem (Lifting)
Definition (Set of Positions)

- A set of positions, denoted by τ, is a function that maps each predicate symbol p to a subset of $[1, \text{arity}(p)]$.

- Let τ be a set of positions. Then, $\overline{\tau}$ is the set of positions defined as: for each predicate symbol p, $\overline{\tau}(p) = [1, \text{arity}(p)] \setminus \tau(p)$.

Preliminary Definitions (3)

Definition (Projection)

Let \(\tau \) be a set of positions and \(p \) a predicate symbol of arity \(n \).

- The projection of \(p \) on \(\tau \) is the predicate symbol denoted by \(p_\tau \). Its arity equals the number of elements of \(\tau(p) \).
- Let \(\tilde{t} \) be a sequence of \(n \) terms. The projection of \(\tilde{t} \) on \(\tau \), denoted by \(\tilde{t}_\tau \) is the sequence \((t_{i_1}, \ldots, t_{i_m}) \) where \(\{i_1, \ldots, i_m\} = \tau(p) \) and \(i_1 \leq \cdots \leq i_m \).
- Let \(A := p(\tilde{t}) \) be an atom. The projection of \(A \) on \(\tau \), denoted by \(A_\tau \), is the atom \(p_\tau(\tilde{t}_\tau) \).
- The projection of a query \(\langle A \mid d \rangle \) on \(\tau \), denoted by \(\langle A \mid d \rangle_\tau \), is the query \(\langle A_\tau \mid d \rangle \).
Definition (Filter)

A filter, denoted by Δ, is a pair (τ, δ) where τ is a set of positions and δ is a function that maps each predicate symbol p to $\langle p_{\tau}(\tilde{u}) \mid d \rangle$ where $D_C \models \exists d$ and \tilde{u} is a sequence of $\text{arity}(p_{\tau})$ terms.

Let $\Delta := (\tau, \delta)$ be a filter and S be a query. Let $p := \text{rel}(S)$. S satisfies Δ if $\text{Set}(S_{\tau}) \subseteq \text{Set}(\delta(p))$.

Let $\Delta := (\tau, \delta)$ be a filter and S and S' be two queries. S' is Δ-more general than S if S'_{τ} is more general than S_{τ} and S' satisfies Δ.
First Result

Definition (Derivation Neutral)

Δ is DN for r if for each derivation step $S \xrightarrow{r} T$ and each query S' that is Δ-more general than S, there exists a derivation step $S' \xrightarrow{r} T'$ where T' is Δ-more general than T.

Theorem

Let Δ be a filter that is DN for r. If $\langle B \mid c \rangle$ is Δ-more general than $\langle H \mid c \rangle$ then $\langle H \mid c \rangle$ loops with respect to $\{r\}$.

Definition (Local Variables)

Let $r := p(\tilde{X}) \leftarrow c \diamond q(\tilde{Y})$ be a rule. The set of local variables of r is denoted by $local_var(r)$ and is defined as:

$$local_var(r) := Var(c) \setminus (Var(\tilde{X}) \cup Var(\tilde{Y})).$$

Definition (sat)

Let $S := \langle p(\tilde{u}) | d \rangle$ be a query and \tilde{s} be a sequence of $arity(p)$ terms. Then, $sat(\tilde{s}, S)$ denotes a formula of the form

$$\exists Var(S')(\tilde{s} = \tilde{u}' \land d')$$

where $S' := \langle p(\tilde{u}') | d' \rangle$ is any variant of S variable disjoint with \tilde{s}.
Outline

1 Motivation
 - Termination/Non-termination in (C)LP
 - Previous Work

2 Our Contribution
 - Preliminary Definitions
 - Main Result
Definition (Logical Derivation Neutral)

A filter $\Delta := (\tau, \delta)$ is $DNlog$ for $r := p(\tilde{X}) \leftarrow c \diamond q(\tilde{Y})$ if

$$D_C \models c \rightarrow \forall \tilde{X}_\tau [sat(\tilde{X}_\tau, \delta(p)) \rightarrow \exists \tilde{Y} [sat(\tilde{Y}_\tau, \delta(q)) \land c]]$$

where $\tilde{Y} := Var(\tilde{Y}_\tau) \cup local_var(r)$.

Theorem

Assume C enjoys the following property: for each $\alpha \in D_C$, there exists a ground Σ_C-term a such that $[a] = \alpha$. Δ is DN for r iff Δ is $DNlog$ for r.

Payet, Mesnard An Improved Non-Termination Criterion for Binary CLP
Summary

For constraint filtered derivations: $DN = DN_{log}$

it strictly generalizes our previous criteria defined in SAS’02, SAS’04, and TOPLAS’06.

Implementation:

- SAS’02: CLP(H), filter: positions+true
- SAS’04: CLP(Q), filter: positions+true
- TOPLAS’06: CLP(H), filter: positions+constraint
- WLPE’05: ?