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Outline

• Debugging needs in CLP(FD)

• Dynamic trace analysis

• Tracing driven by the analysis

• Assessment
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CLP and Debugging
[Meier95,DiSCiPl97, …]

CLP is very declarative but
● Numerous variables and constraints (105)

 What is the state of the system?
● Data flow embedded in the solver

 What is the behavior of the execution?

Specific debugging tools are needed
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Our Proposal: an Execution Trace

Ongoing

Execution

Execution

Trace

Debugging

Tools

…
<awake cident="12" />
<reduce vident="5" vname="x3">
  <delta><values>7 8 9 </values>
  </delta>
</reduce>
<suspend cident="12" />
…
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Tracer

Guiding Principle

Versatile debugging tools can be built on top of 
an execution trace

Execution
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Debugging
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For instance…

Pavot
(Arnaud, 

Inria)

InfoVis
(Fekete, 

EMN)

Discovery
(Baudel, Ilog)

TraceExecution
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Key Issues

What is the content of the trace?
Define relevant events and attached data

(trace schema)
Pb.: Tools have versatile needs
Trace has to be rich (Gentra4cp: 2GB per second)

How to produce the trace efficiently?
Pb.: Overhead  Non usability of the tools

A compromise has to be found
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A Rich Trace

• The trace is very rich (1s  2GBytes)
–  Costly to generate (tracer)
–  Costly to communicate (IPC)
–  Costly to process (debugging tool)

• A given tool needs only a small subpart of this 
huge trace

 Adapt the trace to the needs of the tool: we 
propose a tracer driver
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Rich And Efficient is Possible

Platform
Tracer

Generic
Trace

Requests

Driver
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Tracer driver

• A module of the tracer which drives the trace 
generation

• The tool describes its needs
– event patterns: When and What to trace

• The needs can be incrementally updated
– Cope with the evolving needs of a tool

• Tracer and tool can be synchronized or not
– Can investigate some execution states
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Principles of the Tracer Driver

Solver

Data

(store,

domains,

...)

Solver Tracer Driver Analyzer
Filtering of the 
evt

...

Evt. i
Evt. i+1
Evt. i+2
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Evt. i+4

Evt. i+5

Asynchronou
s

Evt. Handler
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Synchronous
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Event Patterns (1/2)

Trace of the search-tree
search_tree:   when port in [choicePoint, backTo, 

solution, failure] do current(port, chrono, node)

Full Trace predicate Class of relevant events

Event Data selection
function

Selection of trace data
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Event Patterns (2/2)

Contain a predicate on execution events
• Elementary condition on event attributes

– Ex: constraint involved, variable, type of event, 
depth in the search-tree

– Dedicated operators
• First order logic: negation, conjunction, 

disjunction
• Compiled into an automaton to evaluate the 

predicate
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Primitive Commands

The driver can handle commands:
• RESET: reset all patterns
• ADD: add a pattern
• REMOVE: remove (disable) a pattern
• GO: resume the execution

 Can be adapted to the evolving needs of the 
tools
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• Is the tracer driver powerful?
– Several existing architectures can be 

implemented in this framework (e.g. Opium 
[Ducassé92], Morphine [Jahier99])

– Monitoring, debugging and visualization are 
enabled in parallel

Qualitative Assessment
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Impact on Performances

Ongoing
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Driver Performance

2 orders of magnitude better than the “generate 
and dump” architecture
– We pay only for what we need to trace
– The size of the trace is drastically decreased

• Search-tree: 1/100

Its efficiency is inversely proportional to the mean 
duration of a trace event

OK for CP (a trace event 50ns)
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The Tracer Driver

Is indeed a good compromise

• Rich trace possible

• Only the requested trace is generated
– Reduces trace generation
– Speeds up trace communication
– Speeds up trace processing
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• Development of dynamic tools is made easier

• Versatile analyses can be activated in parallel

• Synchronous and Asynchronous modes enabled

• No efficiency concern when defining the trace 
content

• The trace is generated on demand

Conclusion
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Execution Data

• Execution data (trace)
– Sequence of events of interest
– Reflects the behavior of the execution

• Trace schema = definition of
– relevant events
– attached information


