A Tracer Driver for
Versatile Dynamic Analyses of
Constraint Logic Programs

Ludovic Langevine
sIcS

In collaboration with Mireille Ducassé, IRISA

WLPE 2005
Sitges — October 2005

Outline

Debugging needs in CLP(FD)
Dynamic trace analysis
Tracing driven by the analysis

Assessment

CLP and Debugglng

[Meier95,DiSCiPI97, .

CLP is very declarative but

* Numerous variables and constraints (10°)
— What is the state of the system?

e Data flow embedded in the solver
— What is the behavior of the execution?

Specific debugging tools are needed

Our Proposal: an Execution Trace

Ongoing Debugging

Execution Tools

<awake cident="12" />

<reduce vident="5" vname="x3">
<delta><values>7 8 9 </values>
</delta>

</reduce>

<suspend cident="12" />

Guiding Principle

Versatile debugging tools can be built on top of
an execution trace -

Debugging
Tool 1

Execution
Trace : < Debugging

Tracer =/ Tool 2

Debugging
Tool m

3)

For instance...

Discovery 'i|
(Baudel, llog

Pavot
: — Arnaud,
Execution (I%”r?el:)

InfoVis

(Fekete,
EMN)

Key Issues

What is the content of the trace?
Define relevant events and attached data
(trace schema)
Pb.: Tools have versatile needs
—=Trace has to be rich (Gentradcp: 2GB per second)

How to produce the trace efficiently?

Pb.: Overhead = Non usability of the tools
A compromise has to be found

A Rich Trace

* The trace is very rich (1s ~ 2GBytes)
— Costly to generate (tracer)
— Costly to communicate (IPC)
— Costly to process (debugging tool)

* A given tool needs only a small subpart of this
huge trace

— Adapt the trace to the needs of the tool: we
propose a tracer driver

Rich And Efficient is Possible

" Debugging

Generic ,/ Tool 1

Trace
Platform

Debugging
Tracer

Tool 2

~ Driver -.__ s
) Requests| Debugging
Tool m

Tracer driver

A module of the tracer which drives the trace
generation

The tool describes its needs

— event patterns: When and What to trace

The needs can be incrementally updated

— Cope with the evolving needs of a tool

Tracer and tool can be synchronized or not

— Can investigate some execution states

10

” Solver Tracer Driver. ~ Analyzer
— Ewt. | |—_Filtering.of.the
— JEvt.i+1]
SO|VeI' R EVt i+2‘ X
) |—Trace datg
Data = [Fwt j+3 X u Asynchronou
——[Evt.i+4] | 5
(store, > Evt. Handler
Trace data
domains, Synchronous
) _ Evt. Handler
—EVvt. i+5
11

Event Patterns (1/2)

Full Trace Predicate class of relevant events
HEEEEEEERREEN HE BN BEEEE B

selection

Event Data Selection of trace data

% function

Trace of the search-tree

search_tree: when port in [choicePoint, backTo,
solution, failure] do current(port, chrono, node)

12

Event Patterns (2/2)

Contain a predicate on execution events

* Elementary condition on event attributes

— EX: constraint involved, variable, type of event,
depth in the search-tree

— Dedicated operators

* First order logic: negation, conjunction,
disjunction

 Compiled into an automaton to evaluate the
predicate

13

Primitive Commands

The driver can handle commands:

« RESET: reset all patterns

 ADD: add a pattern

« REMOVE: remove (disable) a pattern
« GO: resume the execution

— Can be adapted to the evolving needs of the
tools

14

Qualitative Assessment

* |s the tracer driver powerful?

— Several existing architectures can be
implemented in this framework (e.g. Opium
[Ducasse92], Morphine [Jahier99])

— Monitoring, debugging and visualization are
enabled in parallel

15

Impact on Performances

Ongoing Debugging
Execution Tools
Trace — Trace
Generation Trace Processing

Communication

16

Driver Performance

2 orders of magnitude better than the “generate
and dump” architecture

— We pay only for what we need to trace

— The size of the trace is drastically decreased
« Search-tree: 1/100

Its efficiency is inversely proportional to the mean
duration of a trace event

OK for CP (a trace event ~50ns)

17

The Tracer Driver
Is indeed a good compromise
* Rich trace possible

* Only the requested trace is generated
— Reduces trace generation
— Speeds up trace communication
— Speeds up trace processing

18

Conclusion

Development of dynamic tools is made easier
Versatile analyses can be activated in parallel
Synchronous and Asynchronous modes enabled

No efficiency concern when defining the trace
content

The trace is generated on demand "

A Tracer Driver for
Versatile Dynamic Analyses of
Constraint Logic Programs

Ludovic Langevine
sIcS

Joint work with Mireille Ducassé, IRISA

WLPE 2005
Sitges — October 2005

20

Execution Data

« Execution data (trace)
— Sequence of events of interest
— Reflects the behavior of the execution

* Trace schema = definition of

— relevant events
— attached information

A

