
1

Ludovic Langevine
SICS

In collaboration with Mireille Ducassé, IRISA

WLPE 2005
Sitges – October 2005

A Tracer Driver for
Versatile Dynamic Analyses of

Constraint Logic Programs

2

Outline

• Debugging needs in CLP(FD)

• Dynamic trace analysis

• Tracing driven by the analysis

• Assessment

3

CLP and Debugging
[Meier95,DiSCiPl97, …]

CLP is very declarative but
● Numerous variables and constraints (105)

 What is the state of the system?
● Data flow embedded in the solver

 What is the behavior of the execution?

Specific debugging tools are needed

4

Our Proposal: an Execution Trace

Ongoing

Execution

Execution

Trace

Debugging

Tools

…
<awake cident="12" />
<reduce vident="5" vname="x3">
 <delta><values>7 8 9 </values>
 </delta>
</reduce>
<suspend cident="12" />
…

5

Tracer

Guiding Principle

Versatile debugging tools can be built on top of
an execution trace

Execution
Trace

Debugging
Tool 1

Debugging
Tool 2

Debugging
Tool m

...

6

For instance…

Pavot
(Arnaud,

Inria)

InfoVis
(Fekete,

EMN)

Discovery
(Baudel, Ilog)

TraceExecution

7

Key Issues

What is the content of the trace?
Define relevant events and attached data

(trace schema)
Pb.: Tools have versatile needs
Trace has to be rich (Gentra4cp: 2GB per second)

How to produce the trace efficiently?
Pb.: Overhead  Non usability of the tools

A compromise has to be found

8

A Rich Trace

• The trace is very rich (1s  2GBytes)
– Costly to generate (tracer)
– Costly to communicate (IPC)
– Costly to process (debugging tool)

• A given tool needs only a small subpart of this
huge trace

 Adapt the trace to the needs of the tool: we
propose a tracer driver

9

Rich And Efficient is Possible

Platform
Tracer

Generic
Trace

Requests

Driver

Debugging
Tool 1

Debugging
Tool 2

Debugging
Tool m

...

10

Tracer driver

• A module of the tracer which drives the trace
generation

• The tool describes its needs
– event patterns: When and What to trace

• The needs can be incrementally updated
– Cope with the evolving needs of a tool

• Tracer and tool can be synchronized or not
– Can investigate some execution states

11

Principles of the Tracer Driver

Solver

Data

(store,

domains,

...)

Solver Tracer Driver Analyzer
Filtering of the
evt

...

Evt. i
Evt. i+1
Evt. i+2

Evt. i+3
Evt. i+4

Evt. i+5

Asynchronou
s

Evt. Handler

Trace data

Synchronous

Evt. Handler

Trace data

12

Event Patterns (1/2)

Trace of the search-tree
search_tree: when port in [choicePoint, backTo,

solution, failure] do current(port, chrono, node)

Full Trace predicate Class of relevant events

Event Data selection
function

Selection of trace data

13

Event Patterns (2/2)

Contain a predicate on execution events
• Elementary condition on event attributes

– Ex: constraint involved, variable, type of event,
depth in the search-tree

– Dedicated operators
• First order logic: negation, conjunction,

disjunction
• Compiled into an automaton to evaluate the

predicate

14

Primitive Commands

The driver can handle commands:
• RESET: reset all patterns
• ADD: add a pattern
• REMOVE: remove (disable) a pattern
• GO: resume the execution

 Can be adapted to the evolving needs of the
tools

15

• Is the tracer driver powerful?
– Several existing architectures can be

implemented in this framework (e.g. Opium
[Ducassé92], Morphine [Jahier99])

– Monitoring, debugging and visualization are
enabled in parallel

Qualitative Assessment

16

Impact on Performances

Ongoing

Execution

Execution

Trace

Debugging

Tools

Trace
Processing

Trace
Generation Trace

Communication

17

Driver Performance

2 orders of magnitude better than the “generate
and dump” architecture
– We pay only for what we need to trace
– The size of the trace is drastically decreased

• Search-tree: 1/100

Its efficiency is inversely proportional to the mean
duration of a trace event

OK for CP (a trace event 50ns)

18

The Tracer Driver

Is indeed a good compromise

• Rich trace possible

• Only the requested trace is generated
– Reduces trace generation
– Speeds up trace communication
– Speeds up trace processing

19

• Development of dynamic tools is made easier

• Versatile analyses can be activated in parallel

• Synchronous and Asynchronous modes enabled

• No efficiency concern when defining the trace
content

• The trace is generated on demand

Conclusion

20

Ludovic Langevine
SICS

Joint work with Mireille Ducassé, IRISA

WLPE 2005
Sitges – October 2005

A Tracer Driver for
Versatile Dynamic Analyses of

Constraint Logic Programs

21

Execution Data

• Execution data (trace)
– Sequence of events of interest
– Reflects the behavior of the execution

• Trace schema = definition of
– relevant events
– attached information

