Current Work

Proving or Disproving
Properties with
Constraint Reasoning

T. Denmat M. Ducassé A. Gotlieb
Irisa Rennes France
WLPE 05 - Sitges




Inference of Program Properties

DEDUCTION » Sound properties

- - A
Static analysis I

OVER-approximation I

Program

UNDER-approximation I
I

\

INDUCTION : :
» Precise properties

Dynamic analysis




Our approach : 1-Modeling

C program

Constraint
P(X,Y)

B Modeling of the relational semantics
S[P] = {(X,Y) | there exists a trace t with init(t) = X and final(t) = Y}

m Correct and complete
P(X,Y) = true < (X,Y) €S[P]

B |[mplemented in Inka



Our approach : 2-Inducing

C program
P(X)=Y

Executions
pool

Constraint
P(X.Y)

®m Inference of an invariant (= property)
Relation between the memory states X and Y

m Could be a relation between intermediary states




Our approach : 3-Refuting

P(X) = \ / pool
Constraint
Py = [

Solving of P(X,Y) A = Inv(X)Y)

(Xs,Ys)is a

No solution @ solution
Inv (X,Y) is Counterexample
sound



Our approach : 4-Refining

Cprogram
P(X) = \
Constraint

/Y

Solving of P(X,Y) A
— Inv(X,Y)

(Xs, Ys
is a
>2 solution
(@8>

m Enlarge the pool of executions with the new one

Executions
pool

m Maybe refine directly the invariant



Expected contributions

m Obtain the correctness of dynamically
inferred invariants

B Precise invariants due to the mechanism of
refinement

m Potentially very large panel of invariants (all
the relations !)




Outline

m Step 1 : Translation of an imperative program
into CLP(FD)

B Step 2 : Dynamic inference of properties
(Daikon as a black-box)

m Step 3 : Validation of properties
Motivating example
Problems and future work

m No step 4 until now !!!




Constraint-model of a program

B Translation of an imperative program into a
constraint system

B 2 main problems
multiple assignments to a variable
conditionals and loops

B Approach of Gotlieb et al. [ISSTA 98]
SSA-Form
New constraint combinators




SSA Form

B Translation of the program into SSA-form
Preserves the semantics

Each variable is assigned only once during
execution
= Except the iteration structures

Data flow is preserved via phi-functions

m Direct translation into constraints
A variable in the SSA form -> A logic variable

A control-structure -> A constraint




“Ite” combinator

C program

if C
Sthen
else

S

else

SSA

SSA - form

if C

Constraint

A

/4
S then

ite(c,vg,V1,V2,CihensC

else)

else
Sl

vV, = O(vy,V,)

else

Guarded -
constraints

- (c”

ite(CIVOI\/lIVZICthenlCelse ):

N\ - N\

else

A A — A
L ol (_‘C Cthen V2 - Vl) — C Cthen

NV, = Vy

VAN —
V, =V,




“w”” Combinator

SSA - form
C program o e—
while ¢ vy = @(vg,vy) onstrain
S | while ¢ "TW(C,vg,V1,V2,Cpoqy)
SI
W(C,vo,V1:V2:Chody)

— (—|C N VO = V2) —->CcN Cbody N W(C’V1’V3’V2’C’b0dy)




Dynamic inference of properties

B \We use Dailkon as a black box, in its by
default configuration [Ernst ICSE 99]

B Generate a set of potential relationships
between variables of a program

At “interesting” points of the program
For “interesting” variables

B Run a test suite

m Consider relationships that hold over every
test case as a Likely Invariant




Motivating example

int foo (Iint n, Int r)

b = 0O;
while (n > 0)
if (b == 0)
b = 1; _ _ _ _
Fo- Likely invariants inferred
else , *orig(r) =0 = return = 0
b = 0; * return = 0 = orig(r) = 0
r——-: * return = orig(r)

return r;



Validation of likely invariants

B Problem of the Oracle :
Difficult to know if likely invariants hold

® Automatically checking these invariants is crucial

B Related work

Nimmer and Ernst 02 : based on a theorem prover
= Proving properties

Vaziri and Jackson 00 : based on constraint solving
= Disproving properties

m Our method :
Both proving and disproving invariants




Declarative semantics of invariant
validation

B Gopal Gupta [the LP paradigm 99]
Pre(X) : pre-condition on input vector X

P(X,Y) : denotation of an imperative program
= Relation between input vector X an output vector Y

Post(X,Y) : post-condition

Post condition is proved to hold if the following
goal has no solution
s Pre(X), P(X)Y), not Post(X,Y)




State space reduction with CLP

m Using pure horn logic :
Generate and Test
Try all values of X such that Pre(X)

m Using a CLP denotation :
Constrain — generate and Test
Asserting not Post(X,Y) reduces the search space

m Conjecture :
The reduction makes the approach more tractable




Running example - invariant 1

m Refutation of orig(r) = 0 = return = 0

B foo(N,R,Ret) A R =0 A Ret \=0

Input domains reduction :
N e [1,sup], R=0
labeling step :
find a solution: N=1, R=0, Ret =1

m Invariant 1 is disproved




Running example - invariant 2

m Refutation of return = 0 = orig(r) = 0

B foo(N,R,Ret) A Ret = 0 AR \=0

Input domains reduction :

N € [1,sup], R € [inf,-1] U [1,sup]
labeling step :

find a solution: N=1, R=-1,Ret=0

B |Invariant 2 is disproved




comments

m The labeling step is crucial to find counter
examples

B In our two examples the default labeling

procedure is “magically” efficient enough

For example, beginning to label variable R would
have been terrible

B Future work

Design specialized heuristics for finding counter
examples




Running example - invariant 3

m Refutation of return = orig(r)

B foo(N,R,Ret) A Ret < R

Input domains reduction :
Ned Red
No labeling step

B |Invariant 3 is proved




Detalls of the refutation 3

Initial state

Constraint store

Variables domains

B=0,

w(...)
RET <R

B in [0,0]
N in [-100,100]
R in [-99,100]
RET in [-100,99]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b =1;
r ++;
else
b = 0;
r —-;
return r;

int r)



Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard

— (=c *v0 =v2) —» ¢ * Cbody * w(c,v1,v3,v2,C’body)

Constraint store

B=0,
w(...)
RET <R
N =<0,
RET =R

—

Variables domains

]

B in [0,0]
N in [-100,0]

| Rind

RET in @

Failure =» the guard is entailed

int foo (int n,
b = 0;
while (n > 0)
if (b == 0)
b = 1;
r ++;
else
b = 0;
r—-;
return r;

int r)



Detalls of the refutation 3

Propagation of the w combinator :

setting the tail of the constraint

— (=c *v0 =v2) —» ¢ * Cbody * w(c,v1,v3,v2,C’body)

Constraint store

Variables domains

B=0,
w(...)
RET <R
N>0
N1 =N -1
B1=1
R1=R+1

B in [0,0]
N in [1,100]

R in [-99,99]
RET in [-100,98]
N1 in [0,99]
B1in [1,1]

R1 in [-98,100]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
r —-;
return r;

int r)



Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store

B=0,
w(...)
RET <R
N>0

N1 =N -1
B1=1
R1=R+1
N1 =<0
RET = R1

Variables domains

B in [0,0]
N in [1,100]

R in [-99,99]
RET in [-100,98]
N1 in [0,99]
B1in [1,1]

R1 in [-98,100]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
ro—-;
return r;

int r)



Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store

B=0,
w(...)
RET <R
N>0
N1 =N -1

B1 =1
R1=R+1/
N1 =<0
RET = R1

Variables domains

7
e

B in [0,0]

N in [1,1]

R in [-99,99]
RET in [-100,98]
N1 in [0,0]

B1in [1,1]

R1 in [-98,100]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
ro—-;
return r;

int r)



Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store Variables domains
B =0, B in [0,0]
w(...) N in [1,1] |n1b: fooo (int n, Int r)
RET <R R in [-99,99] while (n > 0)
N >0 |RET in [-98,98] if (b == 0)
N1 =N -1 N1 in [0,0] b = 1;
r ++;

B1=1 B1in[1,1] else
R1=R+1 R1 in [-98,98] b = 0;
N1 =<0 - ro

- return r;
RET = R1




Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store

B=0,

w(...)
RET <R

Variables domains

N>0
N1=N -1
B1="1
R1=R+1
N1=<0
RET = R1

A 4

B in [0,0]

N in [1,1]

R in [-97,99]
RET in [-98,98]
N1 in [0,0]
B1in [1,1]

R1 in [-98,98]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
ro—-;
return r;

int r)



Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store

B=0,
w(...)
RET <R
N>0
N1 =N -1
B1=1

Variables domains

K

R1=R+1
N1=<0
RET = R1

A

B in [0,0]

N in [1,1]

R in [-97,97]
RET in [-98,98]
N1 in [0,0]
B1in [1,1]

R1 in [-96,98]

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
ro—-;
return r;

int r)






Detalls of the refutation 3

Propagation in the w combinator :

entailment checking of the 2nd guard again

Constraint store

B=0,
w(...)
RET <R
N>0
N1 =N -1
B1=1
R1=R+1
N1 =<0
RET = R1

Variables domains

Ve

B in [0,0]
Nin[1,1]
Rin@
RET in @
N1 in [0,0]
B1in[1,1]
R1ind

NI

int foo (int n,
b = 0;
while (n > 0)
iT (b == 0)
b = 1;
r ++;
else
b = 0;
ro—-;
return r;

int r)



Detalls of the refutation 3

Propagation of the w combinator : setting the tail of the constraint

Constraint store Variables domains
B =0, B in [0,0]
w(...) N in [2,100]
RET <R / R in [-99,99] int foo (int n, Int r)
’ b = 0;
N> 0 / RET in [-100,98] while (n > O)
N1 =N -1 N1 in [1,99] if (b ==0)
b = 1;
B1 = 1 /51 in [1,1] L
R1=R + 1 R1in [-98,100] else
b = 0;
r --;
N1>0 1 N2in[0,98] return r-
N2=NT-1 —







Detalls of the refutation 3

Constraint store

Variables domains

B=0,
w(...)
RET <R
N>0
N1 =N -1
B1=1
R1=R+1

N1>0
N2 =N1-1
N100 = N99 - 1

B in [0,0]
N in [100,100]

R in [-99,99]
RET in [-100,98]
N1 in [99,99]
B1in [1,1]

R1 in [-98,100]

N2 in [98,98]
N100 in [0,0]

We have a failure as it is
impossible to unfold the loop
and to exit the loop




comments

m The propagation is very long

We need to show inconsistencies at each loop
unfolding

Each inconsistency is long to demonstrate
= Bound consistency = slow convergence

m Future work

Use information about the loops such as loop
iInvariants to add redundant constraint

Mix CLP(FD) with other types of constraint solver




Conclusion

m An approach to both prove and disprove
Invariants based on constraints
No approximation
Based on clp(fd)

B Need to specialize constraint techniques to
this particular problem
Propagation step
Labeling step




