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Abstract

Over the last decade many techniques and tools for software clone detection have been proposed.
In this paper, we provide a qualitative comparison and evaluation of the current state-of-the-art in
clone detection techniques and tools, and organize the large amount of information into a coherent
conceptual framework. We begin with background concepts, a generic clone detection process
and an overall taxonomy of current techniques and tools. We then classify, compare and evaluate
the techniques and tools in two different dimensions. First, we classify and compare approaches
based on a number of facets, each of which has a set of (possibly overlapping) attributes. Second,
we qualitatively evaluate the classified techniques and tools with respect to a taxonomy of editing
scenarios designed to model the creation of Type-1, Type-2, Type-3 and Type-4 clones. Finally, we
provide examples of how one might use the results of this study to choose the most appropriate
clone detection tool or technique in the context of a particular set of goals and constraints. The
primary contributions of this paper are: (1) a schema for classifying clone detection techniques
and tools and a classification of current clone detectors based on this schema, and (2) a taxonomy
of editing scenarios that produce different clone types and a qualitative evaluation of current clone
detectors based on this taxonomy.
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1. Introduction

Reusing code fragments by copying and pasting with or without minor adaptation is a com-
mon activity in software development. As a result software systems often contain sections of
code that are very similar, called code clones. Previous research shows that a significant fraction
(between 7% and 23%) of the code in a typical software system has been cloned [8, 99]. While
such cloning is often intentional [64] and can be useful in many ways [3, 61], it can be also be
harmful in software maintenance and evolution [56]. For example, if a bug is detected in a code
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fragment, all fragments similar to it should be checked for the same bug [84]. Duplicated frag-
ments can also significantly increase the work to be done when enhancing or adapting code [87].
Many other software engineering tasks, such as program understanding (clones may carry domain
knowledge), code quality analysis (fewer clones may mean better quality code), aspect mining
(clones may indicate the presence of an aspect), plagiarism detection, copyright infringement in-
vestigation, software evolution analysis, code compaction (for example, in mobile devices), virus
detection, and bug detection may require the extraction of syntactically or semantically similar
code fragments, making clone detection an important and valuable part of software analysis [102].

Fortunately, several (semi-)automated techniques for detecting code clones have been pro-
posed, and there have been a number of comparison and evaluation studies to relate them. The
most recent study, by Bellon et al. [18], provides a comprehensive quantitative evaluation of six
clone detectors in detecting known observed clones in a number of open source software sys-
tems written in C and Java. Other studies have evaluated clone detection tools in other contexts
[72, 22, 105, 106]. These studies have not only provided significant contributions to the clone
detection research, but have also exposed how challenging it is to compare different tools, due
to the diverse nature of the detection techniques, the lack of standard similarity definitions, the
absence of benchmarks, the diversity of target languages, and the sensitivity to tuning parameters
[4]. To date no comparative evaluation has considered all of the different techniques available.
Each study has chosen a number of state-of-the art tools and compared them using precision, re-
call, computational complexity and memory use. There is also as yet no third party evaluation of
the most recent tools, such as CP-Miner [84], Deckard [52], cpdetector [72], RTF [12], Asta [42]
and NICAD [104].

In this paper, we provide a comprehensive qualitative comparison and evaluation of all of the
currently available clone detection techniques and tools in the context of a unified conceptual
framework. Beginning with a basic introduction to clone detection background and terminology,
we organize the current techniques and tools into a taxonomy based on a generic clone detection
process model. We then classify, compare and evaluate the techniques and tools in two different
dimensions.

First, we perform a classification and overall comparison with respect to a number of facets,
each of which has a set of (possibly overlapping) attributes. Second, we define a taxonomy of
editing scenarios designed to create Type-1, Type-2, Type-3, and Type-4 clones, which we use to
qualitatively evaluate the techniques and tools we have previously classified. In particular, we
estimate how well the various clone detection techniques may perform based on their published
properties (either in the corresponding published papers or online documentation). In order to es-
timate maximal potential, we have assumed the most lenient settings of any tunable parameters of
the techniques and tools. Thus, this is not an actual evaluation, rather it provides an overall picture
of the potential of each technique and tool in handling clones resulting from each of the scenarios.
Our comparison is not intended to be a concrete experiment, and could not be comprehensive or
truly predictive and qualitative if it were cast as one, bound to target languages, platforms and
implementations. Finally, we provide two examples of how one might use the results of this study
to identify one or more appropriate clone detectors given a set of constraints and goals.

In contrast to previous studies, which concentrate on empirically evaluating tools, we aim to
identify the essential strengths and weaknesses of both individual tools and techniques and alter-



native approaches in general. Our goal is to provide a complete catalogue of available technology
and its potential to recognize “real” clones, that is, those that could be created by the the editing
operations typical of actual intentional code reuse.

To the best of our knowledge, this paper is the first study of the area, other than Koschke’s
recent overview [70, 69, 73] and our own short conference paper [103], that provides a com-
plete comparison of all available clone detection techniques. For an even more complete in-depth
overview of the area, readers are referred to our recent technical report [102].

Our work particularly differs from previous surveys in our use of editing scenarios as a basis
for estimating the ability of techniques to detect intentional rather than observed clones, in the
evaluation of techniques for which no runnable tools as yet exist, in the inclusion of a number
of new techniques and tools that have not been previously reviewed, and in the comparison of
techniques independent of environment and target language. Our goal is not only to provide the
current comparative status of the tools and techniques, but also to make an evaluation indicative
of future potential (e.g., when one aims to develop a new hybrid technique) rather than simply
present implementation.

The rest of this paper is organized as follows. After introducing some background terms in
Section 2, we provide a general overview of the clone detection process in Section 3. We present
the available clone detection techniques in the form of a taxonomy in Section 4, and based on the
taxonomy, Section 5 presents an overall comparison of the techniques and tools in terms several
general criteria organized into facets. Section 6 introduces our taxonomy of hypothetical editing
scenarios and presents our qualitative evaluation result, an analysis of the techniques and tools in
terms of their estimated ability to detect clones created by each scenario. An example discussion
on how the results of this study can be useful to a potential user or tool builder is presented in
Section 7. Section 8 relates our work to that of others, and finally, Section 9 concludes the paper
and suggests directions for future work.

2. Background

We begin with a basic introduction to clone detection terminology.
Definition 1: Code Fragment. A code fragment (CF) is any sequence of code lines (with

or without comments). It can be of any granularity, e.g., function definition, begin-end block, or
sequence of statements. A CF is identified by its file name and begin-end line numbers in the
original code base and is denoted as a triple (CF.FileName, CF.BeginLine, CF.EndLine).

Definition 2: Code Clone. A code fragment CF2 is a clone of another code fragment CF1
if they are similar by some given definition of similarity, that is, f(CF1) = f(CF2) where f is the
similarity function (see clone types below). Two fragments that are similar to each other form a
clone pair (CF1, CF2), and when many fragments are similar, they form a clone class or clone
group.

Definition 3: Clone Types. There are two main kinds of similarity between code fragments.
Fragments can be similar based on the similarity of their program text, or they can be similar
based on their functionality (independent of their text). The first kind of clone is often the result of
copying a code fragment and pasting into another location. In the following we provide the types
of clones based on both the textual (Types 1 to 3) [18] and functional (Type 4)[46, 65] similarities:



Type-1: Identical code fragments except for variations in whitespace, layout and comments.

Type-2: Syntactically identical fragments except for variations in identifiers, literals, types, whites-
pace, layout and comments.

Type-3: Copied fragments with further modifications such as changed, added or removed state-
ments, in addition to variations in identifiers, literals, types, whitespace, layout and com-
ments.

Type-4: Two or more code fragments that perform the same computation but are implemented by
different syntactic variants.

3. Clone Detection Process

A clone detector must try to find pieces of code of high similarity in a system’s source text.
The main problem is that it is not known beforehand which code fragments may be repeated.
Thus the detector really should compare every possible fragment with every other possible frag-
ment. Such a comparison is prohibitively expensive from a computational point of view and thus,
several measures are used to reduce the domain of comparison before performing the actual com-
parisons. Even after identifying potentially cloned fragments, further analysis and tool support
may be required to identify the actual clones. In this section, we provide an overall summary of
the basic steps in a clone detection process. This generic overall picture allows us to compare and
evaluate clone detection tools with respect to their underlying mechanisms for the individual steps
and their level of support for these steps.

Figure 1 shows the set of steps that a typical clone detector may follow in general (although
not necessarily). The generic process shown is a generalization unifying the steps of existing
techniques, and thus not all techniques include all the steps. In the following subsections, we
provide a short description of each of the phases.

3.1. Preprocessing
At the beginning of any clone detection approach, the source code is partitioned and the domain

of the comparison is determined. There are three main objectives in this phase:
Remove uninteresting parts: All the source code uninteresting to the comparison phase is

filtered out in this phase. For example, partitioning is applied to embedded code to separate dif-
ferent languages (e.g., SQL embedded in Java code, or Assembler in C code). This is especially
important if the tool is not language independent. Similarly, generated code (e.g., LEX- and
YACC-generated code) and sections of source code that are likely to produce many false positives
(such as table initialization) can be removed from the source code before proceeding to the next
phase [96].

Determine source units: After removing the uninteresting code, the remaining source code is
partitioned into a set of disjoint fragments called source units. These units are the largest source
fragments that may be involved in direct clone relations with each other. Source units can be at any
level of granularity, for example, files, classes, functions/methods, begin-end blocks, statements,
or sequences of source lines.
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Determine comparison units / granularity: Source units may need to be further partitioned
into smaller units depending on the comparison technique used by the tool. For example, source
units may be subdivided into lines or even tokens for comparison. Comparison units can also
be derived from the syntactic structure of the source unit. For example, an if-statement can be
further partitioned into conditional expression, then and else blocks. The order of comparison units
within their corresponding source unit may or may not be important, depending on the comparison
technique. Source units may themselves be used as comparison units. For example, in a metrics-
based tool, metrics values can be computed from source units of any granularity and therefore,
subdivision of source units is not required in such approaches.

3.2. Transformation
Once the units of comparison are determined, if the comparison technique is other than textual,

the source code of the comparison units is transformed to an appropriate intermediate representa-
tion for comparison. This transformation of the source code into an intermediate representation is
often called extraction in the reverse engineering community.

Some tools support additional normalizing transformations following extraction in order to de-
tect superficially different clones. These normalizations can vary from very simple normalizations,
such as removal of whitespace and comments [6], to complex normalizations, involving source
code transformations [104]. Such normalizations may be done either before or after extraction of
the intermediate representation.

3.2.1. Extraction
Extraction transforms source code to the form suitable as input to the actual comparison algo-

rithm. Depending on the tool, it typically involves one or more of the following steps.
Tokenization: In case of token-based approaches, each line of the source is divided into tokens

according to the lexical rules of the programming language of interest. The tokens of lines or files
then form the token sequences to be compared. All whitespace (including line breaks and tabs)
and comments between tokens are removed from the token sequences. CCFinder [59] and Dup
[6] are the leading tools that use this kind of tokenization on the source code.

Parsing: In case of syntactic approaches, the entire source code base is parsed to build a parse
tree or (possibly annotated) abstract syntax tree (AST). The source units to be compared are then
represented as subtrees of the parse tree or the AST, and comparison algorithms look for similar
subtrees to mark as clones [15, 113, 116]. Metrics-based approaches may also use a parse tree
representation to find clones based on metrics for subtrees [66, 87].

Control and Data Flow Analysis: Semantics-aware approaches generate program depen-
dence graphs (PDGs) from the source code. The nodes of a PDG represent the statements and
conditions of a program, while edges represent control and data dependencies. Source units to be
compared are represented as subgraphs of these PDGs. The techniques then look for isomorphic
subgraphs to find clones [65, 75]. Some metrics-based approaches use PDG subgraphs to calculate
data and control flow metrics [66, 87].

3.2.2. Normalization
Normalization is an optional step intended to eliminate superficial differences such as differ-

ences in whitespace, commenting, formatting or identifier names.



Removal of whitespace: Almost all approaches disregard whitespace, although line-based
approaches retain line breaks. Some metrics-based approaches however use formatting and layout
as part of their comparison. Davey et al. [31] use the indentation pattern of pretty printed source
text as one of the features of their attribute vectors, and Mayrand et al. [87] use layout metrics
such as the number of non-blank lines.

Removal of comments: Most approaches remove and ignore comments in the actual compari-
son. However, Marcus and Maletic [86] explicitly use comments as part of their concept similarity
method, and Mayrand et al. [87] use the number of comments as one of their metrics.

Normalizing identifiers: Most approaches apply an identifier normalization before compar-
ison in order to identify parametric Type-2 clones. In general, all identifiers in the source code
are replaced by the same single identifier in such normalizations. However, Baker [6] uses an
order-sensitive indexing scheme to normalize for detection of consistently renamed Type-2 clones.

Pretty-printing of source code: Pretty printing is a simple way of reorganizing the source
code to a standard form that removes differences in layout and spacing. Pretty printing is normally
used in text-based clone detection approaches to find clones that differ only in spacing and layout.
Cordy et al. [28] use an island grammar [91] to generate a separate pretty-printed text file for each
potentially cloned source unit.

Structural transformations: Other transformations may be applied that actually change the
structure of the code, so that minor variations of the same syntactic form may be treated as sim-
ilar [59, 92, 104]. For instance, Kamiya et al. [59] remove keywords such as static from C
declarations.

3.3. Match Detection
The transformed code is then fed into a comparison algorithm where transformed comparison

units are compared to each other to find matches. Often adjacent similar comparison units are
joined to form larger units. For techniques/tools of fixed granularity (those with a predetermined
clone unit, such as a function or block), all the comparison units that belong to the target granular-
ity clone unit are aggregated. For free granularity techniques/tools (those with no predetermined
target clone unit) aggregation is continued as long as the similarity of the aggregated sequence of
comparison units is above a given threshold, yielding the longest possible similar sequences.

The output of match detection is a list of matches in the transformed code which is represented
or aggregated to form a set of candidate clone pairs. Each clone pair is normally represented as
the source coordinates of each of the matched fragments in the transformed code.

In addition to simple normalized text comparison, popular matching algorithms used in clone
detection include suffix-trees [68, 88, 6, 59], dynamic pattern matching (DPM) [41, 66] and hash-
value comparison [15, 87].

3.4. Formatting
In this phase, the clone pair list for the transformed code obtained by the comparison algorithm

is converted to a corresponding clone pair list for the original code base. Source coordinates of
each clone pair obtained in the comparison phase are mapped to their positions in the original
source files.



3.5. Post-processing / Filtering
In this phase, clones are ranked or filtered using manual analysis or automated heuristics.
Manual Analysis: After extracting the original source code, clones are subjected to a manual

analysis where false positive clones or spurious clones [72] are filtered out by a human expert.
Visualization of the cloned source code in a suitable format (e.g., as an HTML web page [104])
can help speed up this manual filtering step.

Automated Heuristics: Often heuristics can be defined based on length, diversity, frequency,
or other characteristics of clones in order to rank or filter out clone candidates automatically [59,
58].

3.6. Aggregation
While some tools directly identify clone classes, most return only clone pairs as the result.

In order to reduce the amount of data, perform subsequent analyses or gather overview statistics,
clones may be aggregated into clone classes.

4. Overview of Clone Detection Techniques and Tools

Many clone detection approaches have been proposed in the literature. Based on the level
of analysis applied to the source code, the techniques can roughly be classified into four main
categories: textual, lexical, syntactic, and semantic. In this section we summarize the state of the
art in automated clone detection by introducing and clustering available clone-detection tools and
techniques by category.

The techniques can be distinguished primarily by the type of information their analysis is based
on and the kinds of analysis techniques that they use. Table 1 provides a high-level overview of
the techniques and tools in the form of a taxonomy where the first column shows the underlying
approach of the tools/techniques, the second column shows their one sentence description, the
third column either shows the name of the corresponding tool or (if no tool name is found) the
last name of the first author has been used as the tool name, and the fourth column shows the
corresponding citation(s).

4.1. Textual Approaches
Textual approaches (or text-based techniques) use little or no transformation / normalization on

the source code before the actual comparison, and in most cases raw source code is used directly in
the clone detection process. Johnson pioneered text-based clone detection. His approach [53, 54]
uses “fingerprints” on substrings of the source code. First, code fragments of a fixed number of
lines (the window) are hashed. A sliding window technique in combination with an incremental
hash function is used to identify sequences of lines having the same hash value as clones. To
find clones of different lengths, the sliding window technique is applied repeatedly with various
lengths. Manber [85] also uses fingerprints, based on subsequences marked by leading keywords,
to identify similar files.

One of the newer text-based clone detection approaches is that of Ducasse et al. [41, 96]. The
technique is based on dot plots. A dot plot – also known as a scatter plot – is a two-dimensional
chart where both axes list source entities. In the case of the approach by Ducasse et al., comparison



entities are the lines of a program. There is a dot at coordinate (x, y) if x and y are equal. Two
lines must have the same hash value to be considered equal. Dot plots can be used to visualize
clone information, where clones can be identified as diagonals in dot plots. The detection of clones
in dot plots can be automated, and Ducasse et al. use string-based dynamic pattern matching on
dot plots to compare whole lines that have been normalized to ignore whitespace and comments.
Diagonals with gaps indicate possible Type-3 clones, and a pattern matcher is run over the matrix
to find diagonals with holes up to a certain size.

An extension of the Ducasse et al. approach is used by Wettel & Marinescu [114] to find near-
miss clones using dot plots. Starting with lines having the same hash value, the algorithm chains
together neighboring lines to identify certain kinds of Type-3 clones. SDD [78] is another similar
approach that applies an n-neighbor approach in finding near-miss clones.

NICAD [104, 99] is also text-based, but exploits the benefits of tree-based structural analysis
based on lightweight parsing to implement flexible pretty-printing, code normalization, source
transformation and code filtering. (Thus NICAD is essentially a hybrid technique.)

Marcus and Maletic [86] apply latent semantic indexing (LSI) to source text in order to find
high level concept clones, such as abstract data types (ADTs), in the source code. This information
retrieval approach limits its comparison to comments and identifiers, returning two code fragments
as potential clones or a cluster of potential clones when there is a high level of similarity between
their sets of identifiers and comments.

4.2. Lexical Approaches
Lexical approaches (or token-based techniques) begin by transforming the source code into a

sequence of lexical “tokens” using compiler-style lexical analysis. The sequence is then scanned
for duplicated subsequences of tokens and the corresponding original code is returned as clones.
Lexical approaches are generally more robust over minor code changes such as formatting, spac-
ing, and renaming than textual techniques.

Efficient token-based clone detection was pioneered by Brenda Baker. In Baker’s tool Dup[8,
6], lines of source files are first divided into tokens by a lexical analyzer. Tokens are split into
parameter tokens (identifiers and literals) and non-parameter tokens, with the non-parameter to-
kens of a line summarized using a hashing functor, and the parameter tokens are encoded using a
position index for their occurrence in the line. This encoding abstracts away from concrete names
and values of parameters, but not from their order, allowing for consistently parameter-substituted
Type-2 clones to be found. All prefixes of the resulting sequence of symbols are then represented
by a suffix tree, a tree where suffixes share the same set of edges if they have a common prefix.
If two suffixes have a common prefix, obviously the prefix occurs more than once and can be
considered a clone.

The technique allows one to detect Type-1 and Type-2 clones, and Type-3 clones can be found
by concatenating Type-1 or Type-2 clones if they are lexically not farther than a user-defined thresh-
old away from each other. These can be summarized using a dynamic-programming technique [9].
Kamiya et al. later extended this technique in CCFinder [59], using additional source normal-
izations to remove superficial differences such as changes in statement bracketing (e.g., if(a)
b=2; vs. if(a) {b=2;}). CCFinder is itself used as the basis of other techniques, such as
Gemini [112], which visualizes near-miss clones using scatter plots, and RTF [12], which uses a



Table 1: Taxonomy of Clone Detection Techniques and Tools

One Sentence Description Tool/1st Author References

Te
xt

-B
as

ed

Hashing of strings per line, then textual comparison Johnson [54, 53, 55]

Hashing of strings per line, then visual comparison using dotplots Duploc [41]

Finds similar files with approximate fingerprints sif [85]

Composes smaller isolated fragments of duplication with scatter-plot DuDe [114]

Data structure of an inverted index and an index with n-neighbor distance concept SDD [78]

Latent semantic indexing for identifiers and comments Marcus [86]

Syntactic pretty-printing, then textual comparison with thresholds Basic NICAD [99]

Syntactic pretty-printing with flexible code normalization and filtering, then textual
comparison with thresholds

Full NICAD [104]

Transformation to a middle format of atomic instructions and edit distance algorithm Nasehi [92]

Textual comparison with flexible options (e.g., ignore all identifiers) Simian [107]

To
ke

n-
B

as
ed

Suffix trees for tokens per line Dup [8, 7, 6]

Token normalizations, then suffix-tree based search CCFinder(X) [59, 58]

Distributed implementation of CCFinder for very large systems D-CCFinder [83]

Uses CCFinder’s non-gapped clones to find gapped clones in interactive and visual way
using a gap-and-clone scatter plot

GeX/Gemini [112, 58]

Flexible tokenization and suffix-array comparison RTF [12]

Data mining for frequent token sequences CP-Miner [84]

Real-time token comparison in IDEs with suffix-array SHINOBI [115]

Karp-Rabin string matching algorithm with frequency table of tokens CPD [29]

Normalized token comparison integrated with Visual Studio Clone Detective [37]

Normalized token comparison with suffix-tree clones [14, 72]

clones is adapted to detect clones over multiple versions at a time iClones [48]

Tr
ee

-B
as

ed

Hashing of syntax trees and tree comparison CloneDr [15]

Derivation of syntax patterns and pattern matching Asta [42]

Hashing of syntax trees and tree comparison cdiff [116]

Serialization of syntax trees and suffix-tree detection cpdetector [72, 43]

Metrics for syntax trees and metric vector comparison with hashing Deckard [52]

Suffix-tree comparison of AST-nodes Tairas [111]

XML representation of ASTs with frequent itemsets techniques of data mining CloneDetection [113]

XML representation of ASTs and anti-unification/code abstraction CloneDigger [20]

Token sequence of CodeDOM graphs with levenshtein distance C2D2 [74]

Token-sequence of AST-nodes and lossless data compression algorithm Juillerat [57]

Subtree comparison obtained from ANTLR SimScan [108]

Like cpdetector but works on the nodes of parse-trees clast [14]

Like CloneDr with a different intermediate representation [71] of ASTs ccdiml [16, 14]

AST to FAMIX and then tree matching Coogle [109]

M
et

ri
cs

-
B

as
ed

Clustering feature vector of procedures with neural net Davey [31]

Comparing metrics for functions/begin-end blocks [66, 87, 93, 67, 30, 89, 90, 1, 2]

Comparing metrics for web sites [23, 38]

G
ra

ph
-

B
as

ed

Approximative search for similar subgraphs in PDGs Duplix [75], GPLAG [81]

Searching similar subgraphs in PDGs with slicing Komondoor [65]

Mapping PDG subgraphs to structured syntax and reuse Deckard Gabel [46]



more memory-efficient suffix-array in place of suffix trees and allows the user to tailor tokenization
for better clone detection.

CP-Miner [84] is another state-of-the-art token-based technique, which uses frequent subse-
quence data mining to find similar sequences of tokenized statements. A token- and line-based
technique has also been used by Cordy et al. [28, 110] to detect near-miss clones in HTML web
pages. An island grammar is used to identify and extract all structural fragments of cloning inter-
est, using pretty-printing to eliminate formatting and isolate differences between clones to as few
lines as possible. Extracted fragments are then compared to each other line-by-line using the Unix
diff algorithm to assess similarity.

Because syntax is not taken into account, clones found by token-based techniques may overlap
different syntactic units. However, using either preprocessing [28, 47, 104] or post-processing
[50], clones corresponding to syntactic blocks can be found if block delimiters are known or
lightweight syntactic analysis such as island parsing [91] is added.

4.3. Syntactic Approaches
Syntactic approaches use a parser to convert source programs into parse trees or abstract syntax

trees (ASTs) which can then be processed using either tree-matching or structural metrics to find
clones.

Tree-matching Approaches: Tree-matching approaches (or tree-based techniques) find clones
by finding similar subtrees. Variable names, literal values and other leaves (tokens) in the source
may be abstracted in the tree representation, allowing for more sophisticated detection of clones.
One of the pioneering tree-matching clone detection techniques is Baxter et al.’s CloneDr [15]. A
compiler generator is used to generate a constructor for annotated parse trees. Subtrees are then
hashed into buckets. Only within the same bucket, subtrees are compared to each other by a toler-
ant tree matching. The hashing is optional but reduces the number of necessary tree comparisons
drastically.

This approach has been adapted by the AST-based clone detectors of Bauhaus [14] as ccdiml.
The main differences from CloneDr are ccdiml’s explicit modeling of sequences, which eases the
search for groups of subtrees that together form clones, and its exact matching of trees. Yang [116]
has proposed a dynamic programming approach for handling syntactic differences in comparing
similar subtrees. (cdiff is not a clone detection tool in itself but the underlying technique could be
used in clone detection). Wahler et al. [113] find exact and parameterized clones at a more abstract
level by converting the AST to XML and using a data mining technique to find clones. Structural
abstraction, which allows for variation in arbitrary subtrees rather than just leaves (tokens), has
been proposed by Evans et al. [42] for handling exact and near-miss clones with gaps.

To avoid the complexity of full subtree comparison, recent approaches use alternative tree
representations. In the approach of Koschke et al. [72, 43], AST subtrees are serialized as AST
node sequences for which a suffix tree is then constructed. This idea allows to find syntactic clones
at the speed of token-based techniques. A function-level clone detection approach based on suffix
trees has been proposed by Tairas and Gray based on Microsoft’s new Phoenix framework [111].

A novel approach for detecting similar trees has been presented by Jiang et al. [52] in their
tool Deckard. In their approach, certain characteristic vectors are computed to approximate the
structure of ASTs in a Euclidean space. Locality sensitive hashing (LSH) is then used to cluster



similar vectors using the Euclidean distance metric (and thus can also be classified as a metrics-
based techniques) and thus finds corresponding clones.

Metrics-based Approaches: Metrics-based techniques gather a number of metrics for code
fragments and then compare metrics vectors rather than code or ASTs directly. One popular
technique involves fingerprinting functions, metrics calculated for syntactic units such as a class,
function, method and statement that yield values that can be compared to find clones of these units.
In most cases, the source code is first parsed to an AST or control flow graph (CFG) on which the
metrics are then calculated. Mayrand et al. [87] use several metrics to identify functions with
similar metrics values as code clones. Metrics are calculated from names, layout, expressions, and
(simple) control flow of functions. A function clone is identified as a pair of whole function bodies
with similar metrics values. Patenaude et al. use very similar method-level metrics to extend the
Bell Canada Datrix tool to find Java clones [93].

Kontogiannis et al. [66] have proposed two different ways of detecting clones. One approach
uses direct comparison of metrics values as a surrogate for similarity at the granularity of begin−
end blocks. Five well known metrics that capture data and control flow properties are used. The
second approach uses a dynamic programming (DP) technique to compare begin− end blocks on
a statement-by-statement basis using minimum edit distance. The hypothesis is that pairs with a
small edit distance are likely to be clones caused by cut-and-paste activities. A similar approach
is applied by Balazinska et al. [10] in their tool SMC (similar methods classifier), using a hybrid
approach that combines characterization metrics with dynamic matching.

Davey et al. [31] detect exact, parameterized, and near-miss clones by first computing certain
features of code blocks and then training neural networks to find similar blocks based on the
features. Metrics-based approaches have also been applied to finding duplicate web pages and
clones in web documents [23, 38].

4.4. Semantic Approaches
Semantics-aware approaches have also been proposed, using static program analysis to provide

more precise information than simply syntactic similarity.
In some approaches, the program is represented as a program dependency graph (PDG). The

nodes of this graph represent expressions and statements, while the edges represent control and
data dependencies. This representation abstracts from the lexical order in which expressions and
statements occur to the extent that they are semantically independent. The search for clones is then
turned into the problem of finding isomporphic subgraphs (for which only approximate efficient
algorithms exist) [65, 75, 81]. One of the leading PDG-based clone detection tools is proposed by
Komondoor and Horwitz [65], which finds isomorphic PDG subgraphs using (backward) program
slicing. Krinke [75] uses an iterative approach (k-length patch matching) for detecting maximally
similar subgraphs in the PDG. Liu et al. [81] have developed a plagiarism detector based on PDGs.
Another recent study by Gabel et al. [46] maps PDG subgraphs to related structured syntax and
then finds clones using Deckard.

4.5. Hybrids
In addition to the above, there are also clone detection techniques that use a combination

of syntactic and semantic characteristics. Leitao [79] provides a hybrid approach that combines



syntactic techniques based on AST metrics and semantic techniques (using call graphs) in combi-
nation with specialized comparison functions.

5. Comparison of Tools

Clone detection tools are multivariate, and therefore their study requires a systematic scheme
for describing their properties. In this comparison, we will describe the properties of clone detec-
tion tools according to such a systematic classification. Our classification scheme is outlined first,
and then we classify and compare the techniques and tools using it.

The properties are organized into facets, each of which may have different, but not necessar-
ily disjoint attribute values. Related facets are grouped into categories. We first introduce the
categories, facets, and attributes and then classify the tools and techniques in this scheme.

In order to provide a comparison of both general techniques and individual tools, we gather
citations of the same category together using a category annotation, T for text-based, L for lexical
(token-based), S for syntactic (tree-based), M for metrics-based and G for graph (PDG)-based,
with combinations for hybrids. While the citations for the different facets and attributes in Tables
2 to 11 may not be complete , we provide the values for all facets and attributes of the individual
tools and techniques in Table 12.

5.1. Usage Facets
The category Usage groups facets relevant to the usage of a technique or tool. Table 2 lists the

usage facets. The second column in the table gives the full name of the facet, and the first column
gives the mnemonic abbreviation we use to refer to it. Unique identifiers for the facet’s attribute
values are found in the third column. The last column gives short descriptions of the attribute
values along with the citations of the corresponding techniques and tools.

Platform: The facet Platform describes the execution platform for which the tool is available.
External Dependencies: The External Dependencies facet states whether the tool requires a

special environment or additional other tools to work.
Availability: The Availability facet describes the kind of license under which the tool is made

available.

5.2. Interaction Facets
The interaction category deals with how a user interacts with the clone detection tool (cf.

Table 3), an important consideration when adopting a tool.
User Interface: This facet describes whether the tool supports interactivity or whether it is

used in batch mode.
Output: The Output facet indicates the kind of output supported by the particular tool. Some

tools provide cloning information textually with file name and begin-end line numbers of the
cloned fragments, some provide the original source of the cloned fragments in a suitable format,
some show the abstracted view of the cloned code (e.g., scatter-plot view) and some provide a
combination of these.

IDE Support: The Plug-in Support facet indicates whether the tool is part of an integrated
development environment (IDE). Only a few tools provide direct IDE support.



Table 2: Usage Facets
Abb. Facet Attr. Description

P.a The tool is platform independent T [78], L [29], S [20]
P.b The tool has been run on Linux/Unix T [104, 99], L [8], S [52], M [93]

P Platform P.c The tool has been run on Windows L [12, 76, 37, 115], LS [74], S [111, 113],
G [65, 81, 46]

P.d The tool has been run on both Windows and Linux/Unix T [107], L [59, 112],
S [14, 72, 15, 108]

P.e Others / Information not available T [55, 41, 86, 85, 114, 92], L [84], S [42,
116, 57], M [66, 87, 31, 67], G [75]

D D.a Possibly the tool has no external dependencies T [99, 41, 107, 104, 55, 85,
114, 78], L [59, 12, 112, 58, 8, 115], S [52, 116]

External
Depen-
dencies

D.b The tool seems to have external dependencies or to be a part of a larger tool
set T [86] (PROCSSI), T [92] (recoder), L [29] (PMD), L [84] (CloSpan),
L [37] (ConQAT), S [15] (DMS [13]), S [14] (Bauhaus), [20] (CPython,
ANTLR), S [111] (Microsoft Phoenix Framework), LS [74] (CodeDOM of
.Net), S [113](JAML), LS [72] (Bauhaus), S [42] (JavaML and lcsc), S
[108] (ANTLR), M [87, 93] (Datrix), G [75] (VALSOFT), G [65, 81, 46]
(CodeSurfer), G [75] (Krinke and Snelting validation framework)

D.c Others / Information not available S [57], M [66, 31, 67]
A.a The tool is open source T [78], L [29, 37], S [20]

A A.b The tool is freely available for research in binary form T [41, 107], L [59, 112,
58, 37], S [108]

Availability A.c The tool is commercially available S [15]
A.d There is a free evaluation license S [15, 14]
A.e Probably evaluation version is available on request T [104, 99, 114], L [8, 12,

84], S [72, 52], G [65, 81, 46, 75]
A.f Others / Information not available / Possibly not available T [55, 85, 86, 92],

L [115], S [42, 116, 111, 113, 74, 57], M [66, 66, 31, 93, 67]

5.3. Language Facets
The language category deals with the programming languages that can be analyzed using the

tool. Table 4 summarizes these facets and their attribute values.
Language Paradigm: The Language Paradigm facet indicates the programming paradigm

targeted by the tool.
Language Support: Facet Language Support refines Language Paradigm to the set of par-

ticular languages.

5.4. Clone Information Facets
The clone information category gathers facets that characterize the kinds of clone information

the tool is able to emit (cf. Table 5). The richer this information and more refined its structure, the
more useful it is for further processing.

Clone Relation: The Clone Relation facet concerns how clones are reported– as clone pairs,
clone classes, or both. Clone classes can be more useful than clone pairs, for example reducing the
number of cases to be investigated for refactoring. Techniques that provide clone classes directly



Table 3: Interaction Facets
Abb. Facet Attr. Description

U.a May be used as command line tool T [104, 114, 107], L [59], S [20]
U User Interface U.b Provides a graphical user interface T [78, 92], L [115] (Clone List and File

Info Views), L [112, 37], S [42], M [31]
U.c Both command line tool and graphical user interface (U.a) & (U.b) L [58,

59, 29, 14], S [15, 72, 108]
U.d Not precisely mentioned: See Table 12 for the remaining list

O O.a Emits results textually providing only the source coordinates of the cloned
fragments (e.g., file name and begin-end line numbers of the cloned frag-
ments) T [85, 86, 107], L [12], S [52, 72], M [24, 66, 67]

Nature of Out-
put

O.b Emits results graphically providing the original source of the cloned frag-
ments in a suitable format (e.g., HTML) or provides overall abstracted vi-
sual representation (e.g., dot-plot). T [25, 78, 92], L [28, 112, 115, 37], S
[116, 42, 20, 47, 111], M [23]

O.c Both textual source coordinates of the cloned fragments and original source
in suitable format or abstracted visual representation ( both O.a and O.b) T
[41, 104, 99, 114, 54, 55], L [58, 59, 8, 29, 14], S [15, 20, 108, 14, 16]

O.d Not precisely mentioned: See Table 12 for the remaining list
I I.a Is a Plug-in for Eclipse T [78, 39, 108, 51], S [20]

IDE Support I.b Integrated/Dependent in other IDE S [111] (MS Phoenix framework), L
[115, 76] (Visual Studio 2005), [108] (several IDEs)

I.c Others: All other tools (Table 12) except listed here possibly have no IDE
support

(e.g., RTF [12]) may therefore be better for maintenance than those that return only clone pairs
(e.g., Dup [8]) or require post-processing to group clones into classes (e.g., CCFinder [59]).

Clone Granularity: The facet Clone Granularity indicates the granularity of the returned
clones – free (i.e., no syntactic boundaries), fixed (i.e., within predefined syntactic boundaries
such as method or block) or both. Both granularities have advantages and disadvantages. For
example, techniques that return only function clones are useful for architectural refactoring, but
may miss opportunities to introduce new methods for common statement sequences. A tool that
handles multiple granularities may be more useful for general reengineering.

Clone Type: The Clone Type facet considers the types of clones that a technique can detect.
While all techniques can detect exact clones, only few tools (e.g., Dup [8]) can find parameterized
Type-2 clones. This issue is discussed in detail in the context of edit-based scenarios later in the
paper.

5.5. Technical Aspect Facets
The technical aspect facets category relates to the comparison algorithms, their complexity,

and their unit of comparison (cf. Table 6).
Comparison Algorithm: The Comparison Algorithm facet identifies the different algorithms

used in clone detection. For example, the suffix-tree algorithm finds all equal subsequences in
a sequence composed of a fixed alphabet (e.g., characters, tokens, hash values of lines) in linear



Table 4: Language Facets
Abb. Facet Attr. Description

LP.a Applied to only procedural languages T [55, 54, 85, 86, 104], S [116, 47, 111],
M [24, 31, 66, 67, 87], G [65, 75]

LP.b Applied to only object-oriented languages T [92], L [37], S [42, 20, 113, 74,
57, 108], M [93, 10],

LP.c Applied to both procedural and object-oriented languages T [41, 78, 99, 114,
107], L [8, 59, 12, 58, 112, 84, 115, 29], S [15, 52, 14, 43], G [81, 46]

LP Language
Paradigm

LP.d Applied to web languages T [107], [38, 36, 35, 95, 28, 23, 94, 77, 62, 49]

LP.e Applied to only functional languages [80]
LP.f Applied to modeling languages L [82] (Sequence Diagram), G [33] (Simulink)
LP.g Applied to Lisp-like languages SMG [79] (hybrid)
LP.h Applied to assembler code [26, 34, 32, 45]
LP.i Applied to Java Byte Code [5]
LP.j Applicable across different languages LS [74] (currently C# and Visual Ba-

sic.NET)
LS.a Is language independent T [78], T [107] (has several other language-specific

lexical options too) L [37] (has several other language-specific lexical options
too)

LS.b Experimented with “C” T [55, 41, 114, 54, 78, 86, 85, 104, 99], L [59, 8, 12,
58, 112, 84, 29], S [15, 116, 47, 52, 72, 14, 111], M [87, 66, 24, 31, 67], G
[65, 75, 81, 46]

LS.c Experimented with “C++” T [41], L [59, 58, 112, 84, 115, 29], S [14, 15, 113],
G [81, 46]

LS Language
Support

LS.d Experimented with “C#” T [97] L [115, 37], L [59, 58, 112], S [42], LS [74]

LS.e Experimented with “Java” T [41, 114, 78, 99, 92], L [59, 8, 12, 29], S [15, 42,
52, 14, 20, 43, 113, 57, 108], M [93, 10], G [81]

LS.f Experimented with “COBOL” T [41], L [59, 58, 112], S [14, 15]
LS.g Experimented with “Python” S [20]
LS.h Experimented with “HTML” L [28, 110]
LS.i Experimented with “Visual Basic” L [59, 58, 112, 115], S [74]

time and space, but can handle only exact sequences. On the other hand, data mining algorithms
are well suited to handle arbitrary gaps in the subsequences.

Comparison Granularity: Different techniques work at different levels of comparison gran-
ularity, from single tokens and source lines to entire AST subtrees and PDG subgraphs. The facet
Comparison Granularity refers to the granularity of the technique in the comparison phase. The
choice of granularity is crucial to the complexity of the algorithm and the returned clone types and
determines also the kinds of transformation and comparison required. For example, a token-based
technique may be more expensive in terms of time and space complexity than a line-based one
because a source line generally contains several tokens. On the other hand, a token representa-
tion is well suited to normalization and transformation, so minor differences in coding style are
effectively removed, yielding more clones. Similarly, although subgraph comparison can be very
costly, PDG-based techniques are good at finding more semantics-aware clones.



Table 5: Clone Facets
Abb. Facet Attr. Description

R.a Yields clone pairs T [41, 114, 78, 92], L [8, 59, 58, 29], S [15, 72, 14, 20, 42,
111, 74, 108], M [87, 23, 24, 66, 93, 67], G [65, 75, 81]

R Clone Re-
lation

R.b Yields clone classes T [104, 99, 55, 54, 85, 86, 107] L [12, 28, 115, 84, 37], S
[52, 113], M [10, 31], G [81, 33, 46]

R.c Yields both clone pairs and clone classes directly by the comparison algorithm
(note: None can directly find both clone pairs and clone classes.)

R.d Groups clone pairs in classes in post-processing T [41], L [59, 58], S [15, 111,
108, 14], M [10], G [65]

R.e Others S [116, 57]
G.a Free T [41, 54, 55, 114, 78, 86, 107], L [59, 58, 8, 12, 115, 29, 37], S [15, 42,

47, 52, 72, 14, 20, 113, 108], G [75, 65]
G.b Fixed, Function/Method T [99, 104], S [111, 74], M [87, 10, 31, 23, 24, 66,

67], G [65, 81, 46]
G Clone

Granularity
G.c Fixed, begin-end block T [99, 104], L [28], M [66]

G.d Fixed, any structured block T [99, 104], L [28]
G.e. Fixed, Class S [109]
G.f Fixed, File T [85], S [116]
G.g Others L [84] (Basic Block), S [57] (sub-statement)
CT.a Type-1 or subset of Type-1: All the tools/techniques listed in Table 12 can

detect such clones (or a subset) with some limitations.
CT.b Type-2 or subset of Type-2: Except some text-based techniques/tools [55, 41,

114, 78] and one tree-based [57], all others are able to detect such clones (or
a subset) with some limitations.

CT Clone
Types

CT.c Type-3 (near-miss) or subset of Type-3. Some techniques/tools might have
some limitations T [41, 114, 78, 85, 104, 99, 55, 86], L [84, 112], S [15, 52,
42, 47, 14, 20, 108], M [87, 10, 66, 92, 23, 24], G [65, 75, 81, 46]

CT.d Type-4 or subset of Type-4. Some techniques/tools might have some limita-
tions T [86], G [65, 75, 81, 46]

CT.e Others T [86] (ADT), T [25] (Visualization only), S [116] (Visualization only)

Worst Case Computational Complexity: The overall computational complexity of a clone
detection technique is a major concern, since a practical technique should scale up to detect clones
in large software systems with millions of lines of code. The complexity of an approach depends
on the kinds of transformations, the comparison algorithm used, and the granularity of its use. The
facet Computational Complexity indicates the overall computational complexity of a particular
technique/tool.

5.6. Adjustment Facets
The adjustments category relates to ways the tool allows a user to make adjustments to the

search. Adjustments are offered by way of heuristics that may be turned on and off, thresholds
that may be set, and various kinds of pre- and post-processing (cf. Table 7).

Pre-/Post-Processing: The facet Pre-/Post-Processing refers to any special pre- or post-
processing (e.g., pretty printing) as outlined in Sections 3.1 and 3.5 that are required other than



Table 6: Technical Facets
Abb. Facet Attr. Description

CA.a Suffix tree L [59, 8, 37], S [20, 72, 111], G [82]
CA.b Suffix array L [115, 12]
CA.c AST-based Suffixtree S [72, 111]
CA.d dotplot/scatter plot T [114, 25], L [112]
CA.e Dynamic pattern matching T [41], M [10, 24, 66]

CA Comparison
Algorithms

CA.f Data Mining L [84] (Frequent Sub Sequence), S [113] (Frequent Itemset)

CA.g Information Retrieval [86] (Latent Semantic Indexing)
CA.h Hash-value comparison S [15, 52, 14]
CA.i Fingerprinting T [55, 85, 54]
CA.j Neural Networks M [31]
CA.k Graph matching G [75, 81], G [65] (slicing), G [33] (model)
CA.l Sub-tree matching S [15] (hashing), S [14]
CA.m Euclidean distance M [67, 38]
CA.n Levenshtein distance LS [74]
CA.o Other sequence matching T [78] (n-neighbor), T [104] (similar to Unix

diff), T [92] (Edit distance), L [28] (diff), S [116, 47] (dynamic program-
ming),

CA.p Hybrid SMG [79]
CA.q Others T [107], L [29] (Karp-Rabin string matching), S [57] (lossless

data compression), S [42, 108], M [87] (discrete comparison), [93], G
[46] (Locality sensitive hashing)

CU.a Line T [41, 114, 25, 104, 107], L [28], L [8] (p-tokens of line)
CU.b Substring/fingerprint T [54, 55, 85] (multi-line), T [78] (multi-word)
CU.c Identifiers and Comments T [86]

Comparison
Granularity

CU.d Tokens L [59, 12, 8, 115, 29, 37, 14], S [72, 111] (tokens of suffix trees),
S [74] (Tokens of codeDOM graph), S [57] (Tokens of ASTs)

CU CU.e Statements L [84], S [113]
CU.f Subtree S [15, 14, 116, 42, 52, 14, 20, 108]
CU.g Subgraph G [65, 75, 81]
CU.h Begin-End Blocks M [66]
CU.i Methods S [111], M [87, 10, 23, 93, 24, 66, 67]
CU.j Files T [85], S [116]
CU.k Others T [92] (Atomic instructions) L [112] (uses non-gapped clones),

Worst Case CC.a Linear T [78], L [59, 8, 12, 115, 37, 14], S [72], [72, 43]
CC Computational

Complexity
CC.b Quadratic T [41, 104] (wrt. no of lines/potential clones), L [112] (wrt.

no. of non-gapped clones), S [15, 14, 52, 116, 47, 111, 20, 113], M
[10, 23, 24, 66, 87, 31, 93, 67],(wrt. no. of methods/begin-end blocks)

CC.c Polynomial G [75, 65, 81, 33]
CC.d Others/Not precisely defined T [55, 85, 114, 86, 92, 107], L [84, 29], S

[42, 74, 57, 108]

the usual filtering of whitespace and comments with light-weight parsing or regular expressions
[41, 114].

Heuristics/Thresholds: The Heuristics/Thresholds facet indicates whether there are any



thresholds or heuristics used by a particular technique/tool that may be manipulated by a user.

Table 7: Adjustment Facets
Abb. Facet Attr. Description
PP Pre-/Post- PP.a Pre-processing T [114, 78], L [28, 104, 99, 41, 92], S [47, 116]

Processing PP.b Post-processing T [85], L [8, 59, 112, 84, 115], S [72, 52], G [65, 46]
PP.c Others/Possibly none T [55, 86, 107], L [12, 29, 37, 14], S [15, 42, 111, 113,

20, 74, 57, 108, 14], M [10, 23, 24, 66, 87, 31, 93, 67], G [75, 81]
H.a On clone length T [41, 114, 14], T [78] (4 words), T [54, 55] (50 lines), L

[8] (15 lines), L [59, 58, 112, 12, 115, 37] (e.g., 30 tokens), LS [72]
H Heuristics/

Thresholds
H.b On code similarity T [99, 104, 114, 86, 92], L [8, 59, 84, 12, 28, 115], S

[15, 52, 14, 42, 20, 108], LS [74], M [10, 23, 24, 66, 87, 31, 93, 67], G
[81, 46]

H.c On gap size T [41, 78, 114, 99, 104, 85], L [84, 112, 29], S [52, 42, 47, 113],
M [10], G [75, 46]

H.d On pruning T [41, 54, 55, 114], L [59, 12]*, L [84], S [72], G [81, 46]
H.e Others/Possibly none T [107], S [116, 111, 57], G [65]

5.7. Processing Facets
The processing category includes facets that characterize the ways a tool analyzes, represents,

and transforms the program for the comparison.
Basic Transformation/Normalization: Noise (e.g., comments) filtering, normalization and

transformation of program elements are important steps in clone detection tools, helping both
in removing uninteresting clones (filtering), and in finding near-miss clones (normalization and
transformation). The Basic Transformation/Normalization facet deals with this issue (cf. Table 8).

Table 8: Basic Transformation/Normalization Facet
Attr. Description
T.a No normalization of source code T [78, 86, 85, 114] (whitespace and single brackets) M [23]
T.b Remove comments and whitespace with regular expressions or light-weight parsing T [41, 54, 114],

L [8, 12]
T.c Remove comments and whitespace in parsing and apply some kind of pretty-printing/text-processing

to remove formatting differences between similar fragments. T [104, 99]
T.d Comments are not removed but also taken into consideration for comparison T [86, 54]*, M [87]
T.e Apply normalizaition of identifiers, types and literal values T [107], L [59, 58, 112, 84, 115, 37]
T.f Identifier names (and comments) are kept and compared for finding clones T [86]
T.g There is flexible normalization of the identifiers (different options are provided to the user) T [104],

L [12, 29], S [52]
T.h Several language dependent transformation rules are applied T[104] (Example like TXL transforma-

tion rules), T [92] (Semantic preserving transformation rules to get sequence of atomic instructions),
L [59] (Token transformation rules)

T.i Comments and whitespace are ignored in parsing or while generating graphs T [104, 99], S [15, 52,
116, 42, 47, 14, 72, 111, 113], M [10, 24, 66, 67, 93], G [65, 75, 81, 46]



Code Representation: The Code Representation facet refers to the internal code representa-
tion after filtering, normalization and transformation (cf. Table 9). The complexity of the detector
implementation, the bulk of which is the normalization, transformation and comparison, depends
a great deal on the code representation. One should note that we have already generally classified
the techniques based on overall level of analysis in Section 4. Here we attempt a finer-grained
classification based on the actual representation used in the comparison phase. For example, al-
though a tree-based technique, the actual code representation of cpdetector [72] is a serialized
token-sequence of AST-nodes, improving the computational and space complexities of the tool
from quadratic to linear using a suffix-tree based algorithm.

Table 9: Code Representation Facet
Attr. Description
CR.a Raw source without any changes: Possibly none
CR.b Filtered Strings: Effective lines of code after removing comments and whitespace (possibly line

breaks are not removed) T [41, 114, 78, 55, 54], L [28]
CR.c Line breaks are also removed in filtered strings: Most token-based tools do this
CR.d Filtered subtrings with comments, whitespace and line breaks may or may not be removed T [54, 85]

(fingerprint), L [115]
CR.e Fingerprinting of substrings with comments, whitespace and line breaks may or may not be removed

T [107]
CR.f Normalized strings/Token sequence with comments, whitespace and line breaks may or may not be

removed T [41, 40], L [59, 58, 112, 12, 115, 37, 14] (token sequence)
CR.g Parameterized strings/Token sequence with comments, whitespace and line breaks may or may not

be removed L [8, 6], (p-token sequence), L [14]
CR.h Words in context T [86]
CR.i Metrics/Vectors S [52] (characteristic vector), M [87] (IRL), M [66, 10, 93, 23, 24, 67, 31], G [46]
CR.j Abstract Syntax Tree (AST) or Annotated AST or AST nodes are in another form S [15, 116, 108],

S [14](IML), S [42](XML), S [47](string alignment), S [72, 111](suffix-trees)
CR.k PDG or variants of PDG G [65, 81] (PDG), G [75] (PDG+AST)
CR.l AST/Parse-tree is in another form S [20, 113] (XML), LS [74] (CodeDOM), S [57](Tokens of AST-

nodes), M [87] (IRL)
CR.m Pretty-printed text without comments T [99],
CR.n Normalized/transformed Text T [104] (also pretty-printed), L [84] (Mapping statements to numbers)
CR.o Hybrid SMG [79] (AST+Metrics+call graph)
CR.p Others T [92] (sequence of atomic instructions), L [29] (Frequency table of tokens) G [33] (normal-

ized graph*),

Program Analysis: The facet Program Analysis indicates the kind of program analysis re-
quired for a particular technique in order to produce the intermediate representation (cf. Table 10).
While most text-based techniques work directly on source code and token-based techniques gen-
erally require only lexical analysis, other techniques/tools can be very language-dependent (e.g.,
requiring a full parser).

5.8. Evaluation Facets
Empirical validation of tools is important, especially in terms of precision, recall, and scalabil-

ity. The evaluation category deals with evaluation aspects (cf. Table 11). These facets can assist



Table 10: Program Analysis Facet
Attr. Description
PA.a Nothing, completely language independent T [85], T [107] (has several other language-specific op-

tions too)
PA.b Only needs some regular expressions for removing comments and whitespace or so T [114]
PA.c Only needs lightweight parsing for removing comments, whitespace and pretty-printing (or so) of

the code T [41, 54, 55, 78, 86], M [23]
PA.d Needs a lexer at least for removing comments / whitespace and to tokenize the source L [59, 58, 112,

6, 8, 12, 115, 29, 37, 14],
PA.e Needs a full-fledged parser or IDE to generate parse tree/AST or to find another representation of

the source L [84], S [15, 116, 42, 47, 72, 14, 20, 111, 113, 74, 57, 108, 16, 14], M [87, 10, 24, 66,
67, 31, 93],

PA.f Needs specialized tool to generate Call Graphs, traditional PDGs or annotated special PDGs G [65,
75, 81], SMG [79] (call graph)

PA.g Needs language dependent transformation rules also T[104] (full NICAD), T [92], L [59] (lexical)
PA.h Needs only a context-free grammar for the language dialect of interest T [99] (Basic NICAD) (in

TXL), L [28] (in TXL), S [52]

in choosing a well validated tool/technique, in comparing a new tool with one that has existing
empirical results, or in choosing a commonly used subject system as a benchmark. They may
also encourage empirical studies on promising tools and techniques that are as yet inadequately
validated.

Empirical Validation: This facet hints at the kind of validation that has been reported for
each technique.

Availability of Empirical Results: The facet Availability of Empirical Results notes whether
the results of the validation are available. If the results are available, other researchers may be able
to replicate, compare and extend them with additional studies.

Subject Systems: The Subject Systems facet notes which systems have been used in the
validation. If researchers conduct their empirical studies on the same systems, results can be
compared more meaningfully.

5.9. Tool Classification and Attributes
In this section we provide the attribute values for the facets for each of the individual tools

in our study. Table 12 presents a detailed overview of the available tools and techniques in the
form of a taxonomy where the first column (Col. 1) groups by the underlying approach, and
the second column (Col. 2) lists each tool / technique by name (or first author name for those
technique without a tool name) and citations. The third column (Col. 3) gives the attribute values
for the Usage facets of Table 2 that apply to the tool / technique, and the remaining columns
give the attribute values for the other facets, Interaction, Language, Clones, Technical Aspects,
Adjustments, Basic Transformation/Normalization, Code Representation, Program Analysis and
Evaluation, as described in Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 respectively.

A particular tool / technique can have multiple attribute values for a facet, represented as a
sequence of attribute letters. For example, the attribute value “acg” for facet F refers to attributes



Table 11: Evaluation Facet
Abb. Facet Attr. Description

E.a Yes, validated empirically in terms of precision, recall, memory and time and
compared with other tools S [72, 43]

E E.b Validated enough in support of the claim T [41, 114, 86, 92, 104], L [8, 6, 83,
84], S [42, 15, 52], M [10, 66, 87, 67], G [81, 46]

Empirical
Validation

E.c Validated by other means or third party comparison study T [104, 99] (with an
automatic validation framework [98, 101]), T [41] (with Bellon’s experiment
[18]), L [6] (with Bellon’s experiment [18]), L [59] (with Bellon’s experiment
[18]), S [15] (with Bellon’s experiment [18]), M [87] (with Bellon’s experi-
ment [18]), G [75] (with Bellon’s experiment [18]),

E.d Others (Possibly not validated exhaustively) T [78, 54, 55, 85, 107], L [12, 28,
115, 29, 37, 14], S [116, 111, 113, 74, 57, 108], M [23, 31, 93], G [65, 75]

AR AR.a Yes, complete results T [99, 104] (see at [100]), S [20] (see at [21]), Experi-
ment [18] (see at [17])

Availability
of Results

AR.b Enough/Partial results as in the published paper (or online documents) T [54,
41, 85, 114, 78, 86, 25, 92, 107], L [8, 59, 83, 112, 58, 12, 84, 115, 29, 37,
14, 72, 48], S [15, 42, 116, 72, 43, 52, 111, 113, 74, 57, 108, 14, 16, 109], M
[66, 87, 31, 93, 67], G [65, 75, 46, 81]

S.a Linux Kernel/part (C, 3M LOC ) T [99], L [12, 59, 84, 14, 72], S [52], M [24],
G [46]

S S.b JDK/Part (Java, 204K LOC) T [99, 114, 78, 107], L [59, 4, 29, 14, 72], S
[52, 113, 108], M [10, 93], Experiments [18]

Subject
Systems

S.c SNNS (C, 115K LOC) T [99, 114], L [4, 14, 72], S [72, 4], Experiments [18]

S.d postsql(C, 235K LOC) T [99, 114], L [84, 16, 4, 14, 72], S [72], Experiments
[18, 4], G [46]

S.e Apache httpd or part(C, 261K LOC) T [99, 78], L [14, 72, 84]
S.f FreeBSD (C, 3M LOC) L [83, 84, 59]
S.g Others T [41, 85, 55, 92], L [115, 37], S [15, 42, 116, 111, 20, 74, 57, 16, 14],

M [66, 67, 87, 31], G [75, 65, 81]

F.a, F.c and F.g. In order to focus the comparison, we have restricted this summary comparison
to methods for procedural and object-oriented languages and have not listed tools and techniques
aimed at other paradigms (such as web applications) in this summary.

6. Scenario-Based Evaluation of the Techniques and Tools

Clone detection techniques are often inadequately evaluated, and only a few studies have
looked at some of the techniques and tools [18, 105, 106, 22]. Of these, the Bellon et al. [18]
study is the most extensive to date, with a quantitative comparison of six state-of-the-art tech-
niques, essentially all of those with tools targeted at C and Java. However, even in that careful
study, only a small proportion of the clones were oracled, and a number of other factors have been
identified as potentially influencing the results [4]. The general lack of evaluation is exacerbated
by the fact that there are no agreed upon evaluation criteria or representative benchmarks. Finding



Table 12: Tools Attributes
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10
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such universal criteria is difficult, since techniques are often designed for different purposes and
each has its own tunable parameters.

In an attempt to compare all clone detection techniques more uniformly, independent of tool
availability, implementation limitations or language, we have taken a predictive, scenario-based
approach. We have designed a small set of hypothetical program editing scenarios representative
of typical changes to copy/pasted code in the form of a top-down editing taxonomy. Deriving such
scenarios is itself challenging, since the definition of clones is inherently vague in the literature
[102, 73]. Baxter et al. [15] give the most general definition, defining clones simply as segments
of code that are similar according to some definition of similarity. Kamiya et al. [59] define clones
as portions of source file(s) that are “identical” or “similar” to each other, where by identical they
mean exact copy, but similar is undefined. A similar definition is used by Burd et al. [22], where a
code segment is termed a clone if there are two or more occurrences of the segment in the source
code with or without “minor” modifications, where minor is undefined. Several authors, including
Baxter et al. [15], have defined “similar” using detection-dependent definitions in terms of dif-
ference thresholds [60, 67, 84], and it has been proposed that automatically combining multiple
detector result sets can help overcome such similarity definition problems [18, 67]. Categorization
in the form of clone taxonomies has been suggested as a way to avoid such ambiguities in defini-
tion [10, 87]. However, these taxonomies are limited to function clones and still use vague terms
such as “similar” [87] and “one/two/three long difference” [10].

Intuitively, in most cases the “clones” we are looking for are those created as a result of copy-
/paste/modify actions by programmers. In our work we begin with this assumption, and use it as
the basis of a top-down theory of clones, which we have formalized into a taxonomy of editing
scenarios that a programmer may undertake in the intentional creation of a clone. Our taxonomy
is not simply guesswork - it is derived from the large body of published work on existing clone
definitions [15, 46, 59, 65, 84], clone types [18, 67], clone taxonomies [10, 60, 87], a study of
developer copy/paste activities [63] and other empirical studies [3, 11, 61, 64]. We have validated
the taxonomy by studying the copy/paste patterns of function clones [100] from an empirical study
that analyzed 17 open source C and Java systems including the entire Linux Kernel (6,265 KLOC
C, 154,977 functions), Apache httpd (275 KLOC C, 4,301 functions) and j2sdk-swing (204 KLOC
Java, 10,971 methods) [99].

Figure 2 demonstrates the use of our proposed editing taxonomy for code fragments at the
function level of granularity. The taxonomy is demonstrated on a simple example original function
(in the middle, labeled “Original Copy”) that calculates the sum and product of a loop variable and
calls another function with these values as parameters. Although the editing steps are demonstrated
at function-level granularity, they are general enough to be applicable to any granularity of code
fragment. We assume that our primary intention is to find true clones, that is, those that actually
result from copy-and-edit reuse of code. Figure 2 shows four scenarios, Scenario 1, Scenario
2, Scenario 3 and Scenario 4, where each scenario has several sub-scenarios. Mapping to the
literature (Section 2), we call the clones created by these scenarios Type-1, Type-2, Type-3 and
Type-4 clones respectively.

From a program comprehension point of view, finding such true clones (those are created as
per the scenarios) is useful since understanding a representative copy from a clone group assists in
understanding all copies in that group [54]. Moreover, replacing all the detected similar copies of a



 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 
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void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
 for (int i=1; i<=n; i++) 
         {sum=sum + i;    
          prod = prod * i;     
          foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1’ 
float prod =1.0; //C   
for (int i=1; i<=n; i++)  
     {sum=sum + i;   ’ 
      prod = prod * i;     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) { 
      sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
  {prod = prod * i;     
   sum=sum + i;     
   foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
int i=0; 
 while (i<=n)  
    { sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod);  
       i++ ;   }} 
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void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
 { if (i%2) sum+= i;    
    prod = prod * i;     
    foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
     {sum=sum + i;    
      //line deleted     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
    {sum=sum + i;    
     prod = prod * i;     
     if (n % 2)==0 { 
     foo(sum, prod);} }} 

void  sumProd(int n){  
float  s=0.0; //C1 
float p =1.0;   
for (int j=1; j<=n; j++)  
    {s=s + j;    
     p = p * j;     
     foo(p,  s); }}   

void  sumProd(int n){  
float  s=0.0; //C1 
float p =1.0;   
for (int j=1; j<=n; j++)  
     {s=s + j;    
      p = p * j;     
      foo(s, p); }} 

void  sumProd(int n) {   
int  sum=0; //C1 
int prod =1;   
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
  {sum=sum + (i*i);    
   prod = prod*(i*i);     
   foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
  {sum=sum + i;    
   prod = prod * i;     
   foo(sum, prod, n); }} 

Original  Copy 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
 {sum=sum + i;    
  foo(sum, prod)     
  prod=prod * i; }}  

void  sumProd(int n) {   
float prod =1.0;   
float  sum=0.0; //C1 
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 

C
opy &

 Paste 

C
opy &

 Paste 

Copy & Paste 

Copy & Paste 

Figure 2: Taxonomy of Editing Scenarios for Different Clone Types

clone group by a function call to the representative copy (i.e., refactoring) can potentially improve
understandability, maintainability and extensibility, and reduce the complexity of the system [44].
These scenarios could also be used to guide the development of forward clone management tools
(e.g., CReN [51]).

Based on these hypothetical scenarios, we have estimated how well the various clone detection
techniques may perform based on their published properties (either in the corresponding published
papers or online documentation). In order to estimate maximal potential, we have assumed the
most lenient settings of any tunable parameters of the techniques/tools. Thus, this is not an actual
evaluation, rather it provides an overall picture of the potential of each technique and tool in
handling clones resulting from each of the scenarios. Our comparison is not intended to be a
concrete experiment, and could not be comprehensive or truly predictive and qualitative if it were
cast as one, bound to target languages, platforms and implementations.

Table 14 provides an overall summary of the results of our evaluations, where the symbols



represent an estimate of the ability of each technique/tool to accurately detect each (sub-) scenario
with both high precision and high recall. For example, a very well (denoted with  ) rating for
a particular sub-scenario of a particular tool means that the subject tool (or the corresponding
technique used in that tool) is capable of detecting (i.e., about 100% recall) that scenario without
any false positives (i.e., about 100% precision) as per our understanding. When a tool’s tunable
parameters are set to detect a sub-scenario of a particular scenario, detection of the other sub-
scenarios of that scenario is not counted as false positives.

However, detecting the sub-scenarios of other scenarios may be considered as false positives.
Because the taxonomy is created as a top-down theory of clones from Scenario 1 to Scenario 4,
when a tool is set to detect a sub-scenario of a lower numbered scenario (e.g., Scenario 1), any
detection of sub-scenario(s) of a higher numbered scenario (i.e., scenarios 2, 3 or 4) is considered
as a false positive. On the other hand, when the tool is set to detect a sub-scenario of a higher
numbered scenario (e.g., Scenario 3), the detection of the sub-scenarios of the lower numbered
scenarios (i.e., scenarios 1 and 2) is desirable (for high recall) and should not be considered as
false positives. Table 13 summarizes the meanings of the symbols we have used in the evaluation.

For Scenario 2, we also expect that a tool may provide different tunable parameters to detect
the different sub-scenarios separately. For example, there may be a separate option for detecting
consistently renamed clones from renaming where consistency is not maintained. This is important
because some tools use the same technique but differ with respect to the tunable parameters for
different types of clones. Moreover, some tools yield syntactic clones while others do not, leading
to the lower ratings for a (sub)-scenario.

Given the fact that not all tools actually produce the expected output in practice, we have also
employed our experience in tool comparison and knowledge gained from other tool comparison
experiments and individual tool evaluations where applicable. Thus, the ratings in Table 14 for
each (sub)-scenario is a balance of what is expected and what is achieved (where applicable)
using a particular tool, potentially hinting the overall ability of the tool with respect to the (sub)-
scenarios. Although the scenarios are represented in the language C, when we evaluate a tool that
supports only object-oriented languages (e.g., Java), we imagine similar scenarios on that language
to evaluate the tool (the adaptability/portability is a separate issue and discussed in the previous
section).

An asterisk (*) indicates a technique/tool with special limitations (or that has some other main
purpose other than clone detection) such as whole file comparison, visualization only, plagiarism
detection, IDE support or other special issues discussed as applicable. In the following subsec-
tions, we consider each scenario and outline our reasoning in estimating the ability of the tech-
niques to accurately detect them using the information from Section 5.

6.1. Scenario 1
Scenario 1: A programmer copies a function that calculates the sum and product of a loop

variable and calls another function, foo() with these values as parameters three times, making
changes in whitespace in the first fragment (S1(a)), changes in commenting in the second (S1(b)),
and changes in formatting in the third (S1(c)) (Figure 2).

An ideal clone detection technique should recognize all three copy/pasted/modified fragments
as clone pairs with the original or form a clone class for them along with the original. The third



Table 13: Meanings of the rating symbols
Symbols Meaning Description

Detects the clones with high accuracy and confidence, i.e., with high precision
and recall.
Has tunable parameters for different types of clones (i.e., can detect clones of
different scenarios separately).
In case of Scenario 2, has separate tunable parameters for detecting clones of the
sub-scenarios.
When detecting clones of a sub-scenario of scenario k (except for Scenario 2),
detection of the clones of other sub-scenarios of k is desirable for high recall.

 very well The scenarios are on a top-down fashion and thus, when detecting clones of sce-
nario k, detection of clones of (sub-)scenario l where k < l is not expected (for
high precision). However, detection of clones of (sub-)scenario j where j < k is
desirable.
The tool either has an option for detecting different granularities (e.g., method
or begin-end block) of clones or applies several pre-/post-processing activities to
avoid spurious clones [72] or at least (if the tool finds clones of free granularity)
subsumes the clones of the (sub-)scenario in question.
The tool is capable of detecting the clones of the (sub)-scenario with reasonable
time and space (not in months for example)
To our knowledge there is no empirical studies that shows that the subject tool
was not capable (or performed poorly) of detecting the clone type in question.
Detects the clones of the (sub-)scenario but may return few false positives.

H# well May also miss some of the clones.
Does not meet one or more of the criteria of the first row (for very well).

G# medium Detects the clones of the (sub-)scenario but may return many false positives (about
50% for example).
Does not meet many of the criteria of the first row (for very well).
Detects with lots of false positives (low precision).

	 low Also may miss many of the similar clones (low recall).
Does not meet many of the criteria of the first row (for very well).
Although there is no empirical or other sort of evidence, the underlying technique
of the technique/tool might be capable of detecting clones of the (sub-)scenario in
question.

� probably
can

The tool/technique might generate lots of false positives (very low precision).

The tool/technique might miss some clones (very low recall).

# probably
cannot

We are not sure but as per the underlying technique of the subject technique/tool,
it might be impossible to detect the clones of the (sub-)scenario in question.
We do not think there are empirical studies or any sort of evidence that shows that
the subject tool is capable of detecting the clones of the (sub-)scenario in question.

◦ cannot As per the underlying technique of the subject technique/tool, it is impossible to
detect the clones of the (sub-)scenario in question.
There is no empirical study or any sort of evidence that the subject tool was capa-
ble of detecting the clones of the (sub-)scenario in question.



column under the Scenario 1 heading of Table 14 summarizes how well each technique is likely
to work in these scenarios.

Among the text-based techniques and tools, only NICAD [99, 104] is expected to do very
well on all the sub-scenarios, in part because it was designed with them in mind. NICAD applies
a standard pretty-printing normalization that removes comments (scenario S1(b)) and formatting
differences (scenario S1(c)), and uses a whitespace insensitive (Scenario S1(a)) text line-wise com-
parison to find clones. Although, linear in space and scalable [99], NICAD has a quadratic time
complexity with respect to the number of extracted code fragments for comparison. Moreover,
NICAD is parser-based and thus language specific. While adapting to a new language, one at least
needs to get a TXL [27] grammar for that language. Other text-based tools, such as Duploc [41],
DuDe [114] and Simian [107] also detect scenarios S1(a) and S1(b) very well. Unlike NICAD,
Duploc does not rely on robust parsing – instead it uses lightweight lexical analysis to remove
comments (scenario S1(b)) and whitespace (scenario S1(a)) within lines and detects clones using
string-based dynamic pattern matching. DuDe and Simian do similar things by applying regular
expressions (i.e., lexical analysis again). However, all of these line-based techniques / tools are
sensitive to format alterations and thus may not detect scenario S1(c). Marcus’s text-based LSI
approach [86] is not designed to detect scenario S1(b), since it compares comments (and identi-
fiers) in finding clones. Among the other text-based techniques, Johnson’s approach [53, 54, 55]
should detect all three of these sub-scenarios well. Johnson applies several options for keeping/re-
moving whitespace and comments (thus, scenarios S1(a) and S1(b) might be detected well) and
uses fingerprints of substrings for finding clones (thus might not be affected by formatting, leading
to detect scenario S1(c)). SDD [78] applies n-neighbor approach (i.e., allows gaps in similarity)
and thus might detect these sub-scenarios too. However, allowing gaps might lead to detect false
positive clones even for these exact clones.

Among the token-based techniques/tools, RTF [12] and clones [72] should detect all three Sce-
nario 1 sub-scenarios well. RTF applies flexible tokenization and clones has a post-processor that
can distinguish different types of clones by comparing identifier values and can differentiate other
similar scenarios (e.g., sub-scenarios of Scenario 2). However, clones has problems if superflous
brackets are added in the copied fragment as it compares only the sequence of tokens and does not
remove brackets before comparison. Token-based techniques and tools (e.g., CCFinder) in gen-
eral cannot differentiate between clones of Scenario 1 and Scenario 2. Moreover, these techniques
often return non-syntactic and spurious clones [72]. Baker’s Dup can also detect clones of scenar-
ios S1(a) and S1(b) very well but cannot detect clones of scenario S1(c), since Dup summarizes
all tokens of a line at a time and thus is sensitive to formatting changes. Most other token-based
techniques are not sensitive to formatting changes since they compare token-by-token.

Tree-based techniques (e.g., cpdetector) ignore formatting differences and comments and should
detect all Scenario 1 sub-scenarios very well if they look for exact subtrees without ignoring tree-
leaves (in most cases they ignore leaves and thus a post-processing step is required to distinguish
clones of Scenario 1 and Scenario 2). However, some tree-based techniques use alternative repre-
sentations of the parse-tree/AST (e.g., Deckard works on characteristic vectors of the parse tree)
and may not detect them accurately (a post-processing step is required to differentiate them).
Moreover, a recent study [104] shows that an AST-based exact matching function clone detection
technique [111] can even miss some exact function clones.



Table 14: Scenario-Based Evaluation of the Surveyed Clone Detection Techniques and Tools

 very well H# well G# medium 	 low � probably can # probably cannot ◦ cannot

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Citation a b c a b c d a b c d e a b c d

Te
xt

-B
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ed

Johnson [55, 54]   H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Duploc [41]   ◦ ◦ ◦ ◦ ◦ H# H# ◦ ◦ G# ◦ ◦ ◦ ◦
sif [85]* G# G# G# ◦ ◦ � � � � ◦ ◦ ◦ � � � ◦
DuDe [114]   � ◦ ◦ ◦ ◦ H# H# G# G# G# ◦ ◦ ◦ ◦
SDD [78] H# H# G# ◦ ◦ ◦ ◦ H# H# 	 	 	 ◦ ◦ ◦ ◦
Marcus [86]* G# ◦ G# ◦ ◦ G# 	 G# G# ◦ ◦ ◦ G# G# G# ◦
Basic NICAD [99]    � � � � H# H# H# H# H# � � � ◦
Full NICAD [104]     H# H# H# H# H# H# H# H# � � � ◦
Nasehi [92] G# G# G# G# G# G# G# G# G# 	 	 	 # # # G#

Simian [107]   # G# G# G# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

To
ke

n-
B

as
ed

Dup [8]   ◦  ◦ H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CCFinder(X) [59, 58] H# H# H# H# H# H# ◦ � � ◦ ◦ ◦ ◦ ◦ ◦ ◦
Gemini [112]* H# H# H# H# G# H# ◦ G# G# G# G# G# � � � ◦
RTF [12]    H# H# H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CP-Miner [84] H# H# H# H# H# H# 	 H# H# G# G# G# � � � ◦
SHINOBI [115]* H# H# H# H# H# H# ◦ � � ◦ ◦ ◦ ◦ ◦ ◦ ◦
CPD [29]  #  G# G# G# # ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Clone Detective [37] H# H# H# H# H# H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
clones/iClones [14, 72]   H#  H# H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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CloneDr [15]       	 G# G# 	 G# G# � ◦ ◦ ◦
Asta [42]    G# G# G# G# G# G# ◦ ◦ ◦ ◦ ◦ ◦ ◦
cpdetector/clast [72, 14]    H# H# H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Deckard [52] H# H# H# H# H# H# ◦ G# G# G# G# G# ◦ ◦ ◦ ◦
Tairas [111] H# H# H# # # G# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CloneDetection [113] H# H# H# H# H# H# ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CloneDigger [20]    H# H# H# H# H# H# ◦ ◦ # ◦ ◦ ◦ ◦
C2D2 [74] G# G# G# G# G# G# G# G# G# # # # ◦ ◦ ◦ ◦
Juillerat [57]    ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
SimScan [108]    H# H# H# � � � � � � ◦ ◦ ◦ ◦
ccdiml [16, 14]       ◦ G# G# 	  G# ◦ ◦ ◦ ◦
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Kontogiannis [66] H# H# H# H# H# H# 	 	 	 	 	 	 G# G# G# 	
Mayrand [87] H# ◦ H# H# H# H# G# G# G# 	 	 	 G# G# 	 ◦
Dagenais [30]* G# G# G# G# G# G# G# G# G# � � � G# G# � #
Merlo [89, 90] H# H# H# H# H# H# 	 G# G# 	 	 	 G# G# 	 ◦
Davey [31] H# H# H# H# H# H# 	 G# G# � � � G# 	 	 #
Patenaude [93] H# H# H# H# H# H# 	 	 	 	 	 	 � � � ◦
Kontogiannis [67] H# H# H# H# H# H# 	 	 	 	 	 	 	 	 	 	
Antoniol [1, 2] H# H# H# H# H# H# G# G# G# 	 	 	 G# G# 	 ◦

G
ra

ph
-B

as
ed Duplix [75] H# H# H# H# H# H# G# G# G# G# G# G# H# G# 	 ◦

Komondoor [65] H# H# H# H# H# H# 	 	 � 	 � � H# H# 	 ◦
GPLAG [81]* H# H# H# H# H# H# 	 	 	 G# G# G# H# H# 	 G#

Gabel [46] H# H# H# H# H# H# H# H# H# G# G# G# G# G# G# ◦



Metrics-based techniques may return the same metrics values for other scenarios of our tax-
onomy and for other different fragments and thus may return false positives in our sense. Among
the metrics-based approaches, Mayrand et al. [87] provide a fine-grained set of metrics for detect-
ing function clones (and possibly also clones of begin-end blocks). Others (e.g., Antoniol et al.
[2, 1] and Merlo et al. [90, 89]) also provide similar metrics with some minor differences and are
expected to do well on these scenarios.

In theory, graph-based techniques should be good at all Scenario 1 sub-scenarios. However, in
practice they yield many variants of the actual clone pairs and that there might be similar graphs
for dissimilar code blocks, reducing precision. Thus in our view they do not do well on these
scenarios. However, a new variant of the Deckard tool maps PDG subgraphs to related structured
syntax before comparison and thus might do well [46].

6.2. Scenario 2
Scenario 2: The programmer makes four more copies of the function, using a systematic

renaming of identifiers and literals in the first fragment (S2(a)), renaming the identifiers (but not
necessarily systematically) in the second fragment (S2(b)), renaming data types and literal values
(but not necessarily consistent) in the third fragment (S2(c)), and replacing some parameters with
expressions in the fourth fragment (S2(d)) (Figure 2).

Once again, an ideal clone detection technique should detect all four modified fragments as
clone pairs with the original or should form a clone class for them along with the original. Needless
to say, code fragments created from Scenario 1 might also form clone pairs or a clone class with
the code fragments of this scenario. The fourth column under the Scenario 2 heading of Table 14
summarizes how well each technique may work on these scenarios.

Text-based techniques and tools are not good at detecting clones created by these (sub)-scenarios.
For detecting such scenarios token normalization / abstraction / transformation is required to
remove the differences between differing identifiers and literals. Of the text-based techniques,
only NICAD [104], Nasehi’s approach [92] and Simian [107] can detect such scenarios (although
Simian cannot detect scenario S2(d)). NICAD can detect consistently renamed clones (scenario
S2(a)) and other renamed clones (scenarios S2(b) and S2(c)) efficiently, and using flexible code
normalization thus can detect scenario S2(d) as well. An extended version of Duploc [40] can also
detect scenarios S2(b) and S2(c), but not S2(a) and S2(d). However, although these tools (i.e.,
NICAD, Nasehi’s approach or Simian) find clones by textual comparison, they actually use source
transformations (in NICAD’s case, code abstraction and in Nasehi’s approach, a transformation
of program code to atomic units) and thus a syntactic / semantic analysis is required that may not
be easily adaptable to other languages. The remaining text-based techniques cannot do well with
these scenarios since they normally compare program text without normalization or transformation
and are therefore fragile to identifier renaming.

Token-based techniques/tools are well suited to detecting clones created by Scenario 2. Almost
all token-based techniques and tools can detect scenarios S2(a), S2(b) and S2(c) well, but are likely
to also have many false positives due to their identifier and literal normalizations (or abstractions)
and the detection of spurious clones [72]. However, only Dup [6] and clones/iClones [48] are rated
to be robust in detecting consistently parameter-substituted clones (scenario S2(a)) because of their
use of parameterized suffix trees. Most of the tools (except Dup, RTF [12] and clones/iClones)



cannot differentiate between Type-1 (clones of Scenario 1) and Type-2 (clones of Scenario 2). RTF
and clones/iClones can also differentiate between the sub-scenarios of Scenario 2. None of the
token-based techniques (except possibly CP-Miner [84] that allows arbitrary gaps in comparison)
can detect clones of scenario S2(d) because they neither apply structural abstraction to the program
code nor allow gaps in their comparison.

With the exception of Juillerat’s approach [57], which detects only exact clones, and Tairas’s
approach [111], which detects exact clones and a small subset of Type-2 clones, almost all tree-
based techniques may also detect scenarios S2(a), S2(b) and S2(c) very well, because these tech-
niques normally ignore identifiers and literals when comparing. However, like some of the token-
based approaches, some syntactic tools do not differentiate between clones of Type-1 and Type-2.
The tools CloneDr [15], ccdiml [14], cpdetector [72] and clast [14] are known to differentiate
these types. For scenario S2(d), the tree-based tools Asta [42] and CloneDigger [20] seem to be
well suited, as they can apply structural abstraction to arbitrary subtrees.

Metrics-and graph-based techniques can also detect these scenarios, but metrics-based ap-
proaches may return many false positives because our other scenarios can yield similar metrics
values. Graph-based techniques are also expected to do well in these scenarios. However, they
normally return many variants of the ideal clones and that dissimilar code fragments can lead to
similar graphs leading to low precision.

6.3. Scenario 3
Scenario 3: The programmer makes five more copies of the function and this time makes small

insertions within a line in the first fragment (S3(a)), small deletions within a line in the second
fragment (S3(b)), inserts some new lines in the third fragment (S3(c)), deletes some lines from
the fourth fragment (S3(d)), and makes changes to some whole lines in the fifth fragment (S2(e))
(Figure 2).

We hope that an ideal clone detection technique would detect all five fragments as clone pairs
with the original and form a clone class for them. Again, code fragments of Scenario 1 and
Scenario 2 might also form clone pairs / classes with the code fragments of this scenario. The fifth
column under the Scenario 3 heading of Table 14 summarizes how well each technique may work
on these scenarios.

In general, text-based techniques and tools are not good at detecting Type-3 near-miss clones
created using Scenario 3 unless they apply threshold-based comparison or combine smaller Type-
1 and Type-2 clones in a post-processing phase. Duploc transforms program text to a condensed
form (removing whitespace and comments) then applies string-based dynamic pattern matching
with gaps, and hence can detect changes within a line. Therefore, Duploc is expected to do well on
scenarios S3(a) and S3(b) (and possibly S3(e)). Although DuDe [114] is text-based, it can combine
small duplicated segments to form larger ones by allowing gaps in its scatter plot visualization.
Both Basic NICAD [99] and Full NICAD [104] detect these scenarios well as they allow size-
sensitive threshold-based comparison of the extracted and pretty-printed potential clones. Full
NICAD [104] also uses flexible code normalization and filtering that removes many of the small
differences between code fragments and thus can also detect Type-3 clones. Nasehi’s approach
[92] transforms code to semantically equivalent atomic units and uses an edit distance algorithms



with allowable thresholds. Thus, this approach is also expected to detect scenarios S3(a) and S3(b)
well, and possibly also scenarios S3(c), S3(d), and S3(e).

Among the token-based techniques, only Gemini [112] (a post-processor / visualizer for CCFinder
[59]) and CP-Miner [84] are likely to work well with these scenarios. CP-Miner uses a frequent
subsequence data mining algorithm which allows it to tolerate gaps in cloned segments. Gem-
ini on the other hand, uses output (Type-1 and Type-2 clones) from CCFinder and scatter plot
visualization to detect such near-miss clones, much like DuDe.

Among the tree-based techniques, only Deckard [52] and Asta [42] are likely to do well
for these scenarios. Asta derives syntax-tree patterns with placeholders for complete subtrees,
which supports structural abstraction. Deckard uses the novel idea of a characteristics vector (thus
Deckard can also be classified as a metrics-based tool) to approximate the structural information
from ASTs in the Euclidean space. However, as with metrics-based approaches, such an approx-
imation is challenging and vector values from two quite distinct code fragments may be similar,
indicating that Deckard could return many false positives in detecting such clones. Other tree-
based tools, such as CloneDr [15] and ccdiml [14], may detect scenarios S3(a) and S3(b) if their
underlying similarity measure for inexact tree matching is set to tolerate them. In CloneDr, a
compiler generator is used to generate an annotated parse tree (AST) and compares its subtrees by
characterization metrics based on a hash function. Source code of similar subtrees is then returned
as clones. The hash function enables one to do parameterized matching and to detect gapped
clones, especially if the gaps are within a line. ccdiml is a variant of CloneDR that has a different
intermediate representation with explicit modeling of sequences, which helps in finding near-miss
clones created from these scenarios.

Metrics-based techniques can find clones in these scenarios, but may yield many false posi-
tives, since many other code fragments may have similar metrics values, resulting in lower overall
accuracy. However, scenarios S3(a) and S3(b) can likely be accurately detected by at least some
of the metrics-based approaches, notably Mayrand’s [87], Dagenais’s [30], Merlo’s [90] and An-
toniol’s [2].

Graph-based approaches primarily use control and data flow information and thus are expected
to detect these scenarios well. In fact, in Bellon’s experiment [18], the graph-based tool Du-
plix [75] was found to detect a small proportion of such near-miss clones. However, in general
graph-based tools may return many variants of the ideal clones, and some of these variants can be
considered as false positives, yielding a lower overall accuracy. Only the recent semantics-based
approach by Gabel et al. [46] has been demonstrated to scale. Instead of comparing subgraphs
of the PDGs, Gabel’s approach maps subgraphs to related structured syntax and then finds clones
using Deckard technique.

One should also note that although Kamiya [59], Krinke [75], Mayrand/Merlo [90, 87], and
Rieger [41] mention that their approaches can also find clones of Type-3, according to Bellon et
al.’s study [18] in practice only Krinke’s Duplix actually does. In Duplix, however, clones of other
types are found with very low recall.

6.4. Scenario 4
Scenario 4: The programmer makes four more copies of the function and this time reorders the

data independent declarations in the first fragment (S4(a)), reorders data independent statements



in the second (S4(b)), reorders data dependent statements in the third (S4(c)), and replaces a
control statement with a different one in the fourth (S4(d)) (Figure 2).

Again, we expect that an ideal clone detection technique should be robust enough to detect
such modified code fragments as clone pairs with the original or form a clone class for them.
Once again, code fragments of Scenario 1, Scenario 2 and Scenario 3 might form clone pairs/clone
classes with the code fragments of this scenario. The sixth column under the Scenario 4 heading
of Table 14 summarizes how well each technique is likely to work in these scenarios.

Among the text-based techniques, only Marcus’s LSI approach [86] is likely to do well with
scenarios S4(a), S4(b) and S4(c). Marcus’s approach considers only comments and identifier
names in the comparison. When statements of copied fragments are reordered, comments and
identifiers may not be changed and thus their approach may detect these scenarios. Nasehi’s
approach [92] performs a semantics-preserving transformation for different syntactic variants of
a language to the same atomic units. Thus, the representation of the atomic units of the original
function with the for loop might be similar to the atomic representation of the copied function
with while loop of scenario S4(d). Moreover, this approach uses an edit distance based algorithm,
which allows for dissimilarity thresholds in the comparison. We therefore expect that Nasehi’s
approach may be able to detect clones created by scenario S4(d). NICAD probably can detect the
reordering scenarios S4(a), S4(b) and S4(c) if the total gap created by the reordering of statements
is within the allowable size-sensitive difference thresholds. However, increasing the threshold
might lead to false positive clones.

Unfortunately, there is no token-based technique that can detect clones created in these sce-
narios well. This is obvious since these techniques/tools use exact matching on normalized token
sequences and do not allow for any gaps. Reordering statements (scenarios S4(a), S4(b) and S4(c))
or replacements of one control by another equivalent variant (scenario S4(d)) obviously breaks the
token sequences between the original and copied code fragments. However, some token-based
tools, such as Gemini and CP-Miner, might detect scenarios S4(a), S4(b) and S4(c). Gemini uses
scatter plot visualization of Type-1 and Type-2 clones from CCFinder and thus might detect sce-
narios S4(a), S4(b) and S4(c) by allowing gaps. CP-Miner allows for arbitrary gaps in cloned
segments and thus might also detect scenarios S4(a), S4(b) and S4(c). However, there is no token-
based technique that can detect scenario S4(d).

The situation is worse in the case of tree-based techniques. There is no tree-based technique or
tool that can be expected to detect these scenarios, with the possible exception that CloneDr may
be able to detect clones of scenario S4(a) since its subtree characterization can ignore declaration
statements.

Metrics-based techniques should be able to detect scenarios S4(a) and S4(b) well, since re-
ordering of data-independent statements might not change the metrics values. However, met-
rics values might change when reordering happens between data-dependent statements (scenario
S4(c)) due to the underlying metrics definition. When control replacement is performed on the
copied fragment (scenario S4(d)) metrics values might change significantly and thus metrics-based
techniques either cannot detect scenario S4(d) or will detect it with many false positives, yielding
a low overall accuracy.

It appears that only PDG-based techniques are likely to work well with scenarios S4(a) and
S4(b). PDG-based techniques use data and control flow information, which remains unchanged



across reordering of declarations and data independent statements. Reordering of data dependent
statements may change the data and control flow graphs however, so they may not do as well
with scenario S4(c). To detect scenario S4(d), exhaustive source transformation may be necessary.
However, an alternative approach is proposed in the plagiarism detection tool GPLAG [81] for
finding plagiarized code similar to those created by scenario S4(d).

7. An Example Use of the Study

Our survey and evaluations are not just intended for experts in clone detection, but also for
users and builders of tools based on clone detection techniques. As a demonstration of how this
study can help, we provide two example user intentions and suggest a tool or set of tools to meet
their requirements. Of course, many other combinations of the tools can be derived based on user
requirements, both in terms of different scenarios and the techniques used. Such a combination
might help one to understand how to design a hybrid approach to be robust across all types of
clones or how to employ a set of different tools to achieve a better result. Our NICAD tool [104] is
an example of such a hybrid, combining tree-based structural analysis with text-based comparison.

Intention 1: A tool user would like to find all types of clones (as outlined in this paper) in a
large C system (the Linux kernel) with reasonable performance.

Here, the primary objective is the ability to handle large C systems while doing well in finding
all the kinds of clones that may be created by the various editing scenarios outlined in Section
6. Let us first look for individual tools that rate reasonably well for the scenarios. From Table
14 we see that the obvious set is Gabel [46], GPLAG [81], Kontogiannis [66], C2D2 [74], CP-
Miner [84], Gemini [112], Nasehi [92]. Although none of these tools is able to handle all of the
scenarios, they all seem to do well with most of the scenarios.

The second requirement is that the tool should handle C systems. According to our findings
in Section 5 (column 5 of Table 12), only Gabel [46], GPLAG [81], Kontogiannis [66], CP-Miner
[84], and Gemini [112] meet this requirement.

As a third requirement, the user needs a tool capable of handling large systems. From the 7th
column with column heading Technical Aspects and from the corresponding facet table (Table 6),
the user can get an idea of the algorithms used and their associated complexities. In particular
from the sub-column Computational Complexity of Table 12 and from the last row (CC (Worst
Case Computational Complexity) of Table 6, we see that of the set we have chosen only Gemini
seems computationally efficient. However, although Gemini uses CCFinder in the background for
finding smaller Type-1 and Type-2 clones which is linear w.r.t. the size of the program, finding
combination of Type-1 and Type-2 clones to form Type-3 clones may require superlinear time;
often dynamic programming is used for this combination, which is not linear. Furthermore, Gemini
is mainly a visualization tool and thus might not fully meet our user’s requirements.

The question now remains as to whether there are other tools in our candidate set that can
handle large systems despite having non-linear (worst case) computational complexities. We can
find this information from the 10th column (with column heading Evaluation) of Table 12. In
particular, from the sub-column with heading Subject Systems and the corresponding Evaluation
facet table (Table 11) we see that fortunately both CP-Miner and Gabel have been evaluated even
with Linux Kernel, one of the largest C systems. The question again remains whether the results



of their studies are available, especially for the Linux Kernel. We can see this information in the
same column Evaluation with sub-column Availability of Results and the corresponding facet table
(with row heading AR (Availability of Results) in Table 11). We see that complete results are not
available for Linux Kernel. Moreover, Linux is changing every day and thus results for the intended
version might not be available anyway.

As the results are not available, the user needs to run the tool (either CP-Miner or Gabel) to
find clones in Linux. The next crucial question now is whether the tools are available for third
party use. From the Availability facet of Usage category in Table 12 and in more detail in Table 2,
we observe that neither of them is available online but an evaluation version may be available on
request.

The remaining question is, which tool to request first? The user can ask for both tools, or can
be more specific in determining who might actually be able to release their tool. In particular,
we can look to see whether the tool is standalone or has any external dependencies or is a part of
required larger tool set. If the tool is standalone, it is more likely that the tool will be available upon
request, otherwise it is likely that the tool may not be available, or even if available may be hard to
use by a third party. Unfortunately, we see (from the same tables above) that both the tools have
external dependencies. With a closer look in the description of the row External Dependencies in
Table 2 we see that CP-Miner is dependent on CloSpan and Gabel is dependent on CodeSurfer.
Given that both tools are dependent on other systems, the user might contact both the tool authors
or may choose to undertake further studies on the dependencies by reading the details in Section
4 or the corresponding papers before contacting the tool authors. The user might also reconsider
other tools because neither of the chosen two can actually detect all types of clones. Using our
study and evaluations in this paper, one can identify options quickly and with minimal effort.

Intention 2: A user wants to detect clones from many systems in different languages. The user
does not aim to detect all types of clones but the intention is to detect as many types as possible.
The user is also willing to do some adaptation work for different languages if the tool is really
good. Computational complexity should be reasonable but need not be ideal.

Here, the primary concern of the user is that the tool should be either language-independent
or adaptable to other languages with a reasonable amount of effort. However, there is a trade-off
between the adaptability to different languages and the quality (e.g., cabability of dealing with
different types of clones) of the tool. The user is also comfortable with computationally expensive
tools, within reason (i.e., not taking weeks or months to process systems).

From Table 10 we find that text-based tools are either language-independent or easily adaptable
to other languages but the computational complexity depends on the algorithm used. Token-based
tools are in most cases language-dependent (needing a lexer at least) but computationally efficient.
As the concern is adaptability (and not the complexity), the user looks for a text-based tool (or set
of tools) in Table 14 that covers most of the scenarios. Such a set of tools is Full NICAD [104]
and Nasehi [92]. Before taking the final decision of which tool should be chosen, the user needs
to look at some details of the tools. In particular, the user needs to know whether the chosen tools
have any language dependencies or not, and in case there is any language dependency, how much
effort it might take to adapt to other languages.

From Section 5 we know that the Program Analysis facet under category Processing has infor-
mation regarding language dependencies. Two other facets (Transformation and Code Represen-



tation) of category Processing further hint about the adaptability of a tool to a different language.
From the sub-column Program Analysis of the 9th column of Table 12 we see that both tools
have attribute value g for the Program Analysis facet. Table 10 tells us that this means that both
of the tools use language-dependent transformation rules. Thus even though they are text-based
techniques, they might not be easily adaptable to other languages since they apply advanced trans-
formation rules on the program text before the comparison. These transformations obviously need
syntactic (or semantic) analysis of the source code.

In order to gain further insight into the tools, we examine the attribute values of the other two
facets, Transformation and Code Representation, and find that while NICAD uses example-like
code normalization rules, which may easily port to other languages, Nasehi applies semantics-
preserving transformations to yield an equivalent set of atomic instructions, which may not be as
easy to adjust. Thus NICAD may require less work to adapt than Nasehi.

In this situation the user may choose NICAD or may compare other attributes of the two tools
to come to a final decision. In particular, the user can examine the Language facets (Language
Paradigm and Language Support) of the two tools. From the 5th column of Table 12 (and the
associated facet Table 4) we see that while NICAD can handle both procedural (e.g., C) and
object-oriented (e.g., Java) systems, Nasehi works only with object-oriented systems (Java) and
thus, Full NICAD may be a better choice than Nasehi for this purpose. Of course, other facet
attributes should also be examined for a final decision.

Alternatively, the user may look for token-based tools. At a first glance at Table 14, we see
that CP-Miner [84] covers most of the clone types/sub-scenarios. However, after examining its
attribute values from Table 12 (and the associated facet tables) we find that a full-fledged parser
is required when it needs to be adapted to a different language, and that it depends on an external
system (CloSpan). The user thus cannot choose CP-Miner.

Instead of giving up on which tool to choose (there are about 40 tools out there), the user can
examine the Program Analysis facet table (Table 10) first. This table shows the different attributes
(with description) of language dependency and citations to the corresponding tools. Fortunately,
we see that attribute PA.h: Needs only a context-free grammar for the language dialect of interest
has three citations, one text-based (denoted with T ) tool, Basic NICAD [99], one token-based
(denoted with L), Cordy [28], and one tree-based (denoted with S) tool, Deckard [52]. Among the
three tools, Cordy only works with HTML pages and thus cannot be chosen as the user wants to
find clones in different procedural and object-oriented systems.

The question now remains whether to choose the text-based Basic NICAD or the tree-based
Deckard. The user then has to examine which tool covers most of the clone types. From Table 14
we see that Deckard covers more clone types/sub-scenarios than Basic NICAD. Furthermore, even
though a tree-based tool, Deckard needs only a context-free grammar to adapt to a new language.
Basic NICAD also only needs a context-free grammar, but has to be written in TXL [27] format.
Of course, the user has to examine the other associated attribute values of the two tools before
coming to a conclusion.

These two examples demonstrate some of the ways how our study can be used to assist in
understanding the alternatives when faced with a need for clone detection. Depending on the par-
ticular intentions, a range of possibilities may present themselves, but using our summary tables,
alternatives can be quickly narrowed down to focus on the one or two most appropriate to the



application.

8. Related Work

Although there is no work in the literature that provides a property-based comparison and
scenario-based evaluation of the techniques and tools similar to this study, several tool comparison
experiments have been conducted to estimate the abilites of the tools in terms of precision, recall,
and time and space requirements.

One of the first experiments was conducted by Bailey and Burd [22], who compared three
state-of-the-art clone detection and two plagiarism detection tools. They began by validating all
the clone candidates of the subject application obtained with all the techniques of their experiment
to form a human oracle, which was then used to compare the different techniques in terms of
several metrics to measure various aspects of the reported clones.

Although they were able to verify all the clone candidates, the limitations of the case study in
terms of a single subject system, modest system size and validation subjectivity may make their
findings less than definitive. Moreover, the intention of their analysis was to assist in preventative
maintenance tasks, which may have influenced their clone validation process.

Considering the limitations of Burd and Bailey’s study, Bellon et al. set out to conduct a
larger tool comparison experiment [18] on the same three clone detection tools used in Burd and
Bailey’s study and three additional clone detection tools. They also used a more diverse set of
larger software systems, consisting of four Java and four C systems totaling almost 850 KLOC.
As in the study of Burd and Bailey, a human oracle validated a random sample of about 2% of the
candidate clones from all the tools evenly and blindly. While their study is the most extensive to
date, only a small proportion of the clone candidates were oracled and several other factors may
have influenced the results [4]. Bellon’s framework has been reused in experiments by Koschke et
al. [72, 43] and Ducasse et al. [40] (partially), but without any improvements to the framework.

Rysselberghe and Demeyer [106, 105] have evaluated prototypes of three representative clone
detection techniques, providing comparative results in terms of portability, kinds of duplication
reported, scalability, number of false matches, and number of useless matches. However, they
did not make a reference set, used relatively small subject systems (under 10 KLOC) and did
not provide the reliability of the judge(s) that validated the found clones. Moreover, rather than
quantitative evaluation of the detection techniques, their intention was to determine the suitability
of the clone detection techniques for a particular maintenance task (refactoring) which might have
influenced their clone validation.

Another interesting study has been conducted by Bruntink et al.[19], in which several clone
detection techniques are evaluated in terms of finding known cross-cutting concerns in C programs
with homogeneous implementations.

9. Conclusion

In this paper, we have focused on clone detection techniques and tools, providing a concise but
comprehensive survey and a hypothetical evaluation based on editing scenarios. A more detailed
review of the entire range of clone detection research can be found in our technical report [102].



Koschke’s Dagstuhl report [73] and the corresponding book chapter [70] also provide an excellent
brief overview.

We hope that the results of this study may assist new potential users of clone detection tech-
niques in understanding the range of available techniques and tools and selecting those most appro-
priate for their needs. We hope it may also assist in identifying remaining open research questions,
avenues for future research, and interesting combinations of techniques. The evaluation results of
this paper are based on estimating the performance of techniques using the most lenient values of
all tunable parameters, and thus our findings differ from the results of empirical studies such as
Bellon et al. [18].

While in this study our goal was predictive rather than empirical, we are currently undertaking
an experiment using our editing scenarios as the basis for generating and injecting thousands
of artificial mutants which can be used to empirically compare actual tools on a similar basis
[98, 101].
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