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Abstract—Extracting code clone genealogies across multiple
versions of a program and classifying them according to their
change patterns underlies the study of code clone evolution.
While there are a few studies in the area, the approaches do
not handle near-miss clones well and the associated tools are
often computationally expensive. To address these limitations,
we present a framework for automatically extracting both exact
and near-miss clone genealogies across multiple versions of a
program and for identifying their change patterns using a few key
similarity factors. We have developed a prototype clone genealogy
extractor, applied it to three open source projects including the
Linux Kernel, and evaluated its accuracy in terms of precision
and recall. Our experience shows that the prototype is scalable,
adaptable to different clone detection tools, and can automatically
identify evolution patterns of both exact and near-miss clones by
constructing their genealogies.

Index Terms—clone genealogy extractor; mapping; clone evo-
lution.

I. INTRODUCTION

The investigation and analysis of code clones has attracted
considerable attention from the software engineering research
community in recent years. Researchers have presented ev-
idence that code clones have both positive [10], [22] and
negative [16] consequences for maintenance activities and
thus, in general, code clones are neither good nor bad. It is
also not possible or practical to eliminate certain clone classes
from a software system [10]. Consequently, the identification
and management of software clones, and the evaluation of their
impact has become an essential part of software maintenance.
Knowing the evolution of clones throughout a system’s history
is important for properly comprehending and managing the
system’s clones [9].

There has been quite a bit of research on studying code
clone evolution. Most of these studies investigate retrospec-
tively how clones are modified by constructing a clone ge-
nealogy. A clone genealogy describes how the code fragments
of a clone class propagate through versions during the evo-
lution of the subject system. Therefore, accurately mapping
clones between versions of a program, and classifying their
change patterns are the fundamental tasks for studying clone
evolution.

Researchers have used three different approaches to map
clones across multiple versions of a program. In the first
approach [2], [10], [20], clones are detected in all the versions
of interest and then clones are mapped between consecutive
versions based on heuristics. In the second approach [1],
clones are detected in the first version of interest, and then
they are mapped to consecutive versions based on change

logs provided by source code repositories such as svn. In
the third approach [15], [6], clones are mapped during clone
detection based on source code changes between revisions. A
combination of the first and second approaches has also been
used in some studies [3].

Although intuitive, each of these approaches has some
limitations. In the first approach, a number of the similarity
metrics used to map clones have quadratic time complexities
[9]. In addition, if a clone fragment changes significantly
in the next version and goes beyond the given similarity
threshold of the clone genealogy extractor, a mapping may not
be identified. In the second approach, only clones identified
in the first version are mapped. Therefore, we do not know
what happens to clones introduced in later versions. The
third approach (“incremental approach”) avoids some of the
limitations of the previous two approaches by combining
detection and mapping, and works well for mapping clones
in many versions. By integrating clone detection and clone
mapping this approach can be faster than the approaches that
require clone detection to be conducted separately for each
version. Although this incremental approach is fast enough
both for detection and mapping for a given set of revisions,
it might not be as beneficial at the release level [6] because
there might be a significant difference between the releases.
Furthermore, in the sole available incremental tool, iClones
[6] (available for academic purpose), when a new revision or
release is added for mapping, the whole detection and mapping
process should be repeated since clones are both detected and
mapped simultaneously. Clone management is likely being
conducted on a changing system, and it is a disadvantage for an
approach to require detecting clones for all revision/versions
each time a new revision/version is added. Another issue with
the incremental mapping is that it cannot utilize the results
obtained with a classical non-incremental clone detection
tool as the detection of clones and their mapping is done
simultaneously. Most of the existing clone detection tools are
non-incremental. There is also no representative tool available.
Depending on the task at hand and the availability of tools,
one might want to study cloning evolution with several clone
detection tools. It is thus important to have a clone evolution
analysis tool in place independent of the clone detection tools.
Scalability of the incremental approaches is another great
challenge because of huge memory requirements.

Again, while most of these approaches [1], [2], [3], [10],
[20] are based on the state of the art detection and mapping
techniques, they only focused on Type-1 and Type-2 clones.



Literature [19] shows that there are a significant number of
Type-3 clones (where statements might be added, deleted and
modified in the copied fragments) in software systems and thus
extracting the genealogies of such clones and understanding
their change patterns is equally important.

In this study, we propose a framework for extracting both
exact (Type-1) and near-miss (Type-2 and Type-3) clone
genealogies across multiple versions of a program, and iden-
tifying their change patterns automatically. The framework
works with any existing clone detection tool that represents
a clone fragment by its file name and begin-end line numbers.
Genealogies are constructed incrementally by merging current
mapping results with previously stored genealogies to give
a complete result. To validate the effectiveness of our pro-
posed framework, we developed a prototype clone genealogy
extractor (CGE), extracted both exact and near-miss clone
genealogies across many releases of three open source systems
including the Linux Kernel, adapted the CGE with other clone
detection tools, and evaluated the correctness of the mappings
reported by the prototype in terms of precision and recall. We
also compared our result qualitatively and quantitatively with
a result of an incremental clone detection tool, iClones [6].
The experimental results suggest that the proposed framework
is scalable and can identify the evolutionary patterns automati-
cally by constructing genealogies for both exact and near-miss
clones. We name our prototype as gCad.

The rest of this paper is structured as follows: Section II
briefly describes the model of clone genealogy. In Section
III we describe the proposed framework, whereas Section IV
outlines the details of our evaluation procedure. In Section V
we compare our method with others. Section VI discusses the
threats to the validity of our work. In Section VII we discuss
the related work to ours, and finally, Section VIII concludes
the paper with our directions for future research.

II. MODEL OF CLONE GENEALOGY

Kim et al. [10] defined a model of clone genealogy that
describes how each fragment in a clone class changes from
version to version with respect to other fragments in the
same clone class. Each clone genealogy consists of a set of
clone lineages that originate from the same clone class. A
clone lineage is a directed acyclic graph that describes the
evolution history of a clone class from the final release of the
software system to the version in which it originated. Based
on the change information and the number of fragments in
the same clone class in two consecutive versions, Kim et al.
identified six change patterns for evolving clones. We followed
their model of clone genealogy to design our framework.
However, we have adapted the definitions for some of the
change patterns since our primary objective is to deal with
Type-3 clones.

Let cci be a clone class in version vi. If cci is mapped
to cci+1 in vi+1 by a clone genealogy extractor, then the
evolution is characterized as follows (with Figure 1):

Same: each clone fragment in cci is present in cci+1, and
no additional clone fragment has been introduced in cci+1.

Fig. 1. Various evolutionary patterns of code clones

Add: at least one clone fragment has been introduced in
cci+1 that was not part of cci.

Delete: at least one of the clone fragments of cci does not
appear in cci+1.

Static: the clone fragments in cci+1 that were also part of
cci have not been changed.

Consistent Change: all clone fragments in cci have been
changed consistently, and thus all of them are again part of
cci+1. However, a clone class may disappear even though it
has been changed consistently. This could happen when the
resulting fragments of that clone class go beyond the minimum
line/token numbers set by a subject clone detection tool.

Inconsistent Change: all clone fragments in cci have not
been changed consistently. Here we should note that for Type-
3 clones where the addition and deletion of lines are permitted,
all the clone fragments of a particular clone class could still
form the same clone class in the next version even if one or
more fragments of that class have been changed inconsistently.
The dissimilarity between the fragments of a clone class
usually depends on the heuristics/similarity threshold of the
associated clone detection tools.

III. THE PROPOSED FRAMEWORK

In this section we discuss our proposed framework to build
a near-miss clone genealogy extractor (CGE). Usually a CGE
accepts n versions of a program, maps clone classes between
the consecutive versions, and extracts how each clone class
changes throughout an observation period. A version may
be a release or a revision. The approach has four phases:
(1) Preprocessing (2) Function Mapping (3) Clone Mapping,
and (4) Automatic Identification of Change Patterns. Figure
2 shows how these steps work together to construct clone
genealogies of a software system. At first we describe a naı̈ve
version of our CGE that maps clones between two versions
of a program. Then we will describe a complex CGE that can
deal with n versions of a program, and can work with various
clone detection tools.
A. Preprocessing

For two given consecutive versions, vi and vi+1 of a
software system, first we extract all the function signatures
from both the versions. For extracting functions we use TXL
[4], a special-purpose programming language that supports
lightweight agile parsing techniques. We exploit TXL’s extract
function, denoted by [ˆ ], to enumerate all the functions. For



Fig. 2. The proposed framework for two versions of a program
TABLE I

CHANGE SCENARIOS OF FUNCTIONS

Scenarios Signature Body Location
1 not changed not changed not changed
2 not changed not changed changed
3 not changed changed not changed
4 not changed changed changed
5 changed not changed not changed
6 changed not changed changed
7 changed changed not changed
8 changed changed changed

each function we store the function signature, class name,
file name, the start and end line number of the function in
the file, and its complete directory location in an XML file.
Certainly, one can use a tool other than TXL for extracting this
required information. Once the preprocessing is completed for
a particular version Vi, there is no need to preprocess it again.
B. Function Mapping

Once the preprocessing is done, we map the functions
of vi to those of vi+1 instead of mapping their clones. A
function is the smallest unique element of a software project
if we consider the signature of a function along with its class
name and complete file path. Therefore, we can use these
attributes as a composite key to map functions between two
versions. There are already a few great studies [23], [24]
where program elements are mapped based on the function
and file names. However, in practice some functions could
be renamed, or could move to different files or directories
during the evolution of the system. Table I summarizes all
possible change-scenarios of a function during evolution. We
have two advantages of mapping the functions before mapping
the clones. First, a very few functions are renamed in the next
version compared to the total number of functions in a version
[7], [11]. Therefore, most of the functions could be mapped by
only using their signatures which is computationally very fast.
Second, if a function name has not been changed in the next
version we can accurately map them even if the body of the
function has been changed significantly. This overcomes the
disadvantage of threshold based mappings that are dependent
on the text similarity of two functions. In the following
subsections, we discuss how we adapted and optimized some
established function mapping techniques [23], [24] to match
functions that are common between two versions, vi and vi+1

of a program.
1) When function names remain the same: This part of the

algorithm maps those functions for which the function names

have not been changed in the next version (change scenarios
1-4 in Table I). For each function, if its name occurs once in
vi and once in vi+1, it is considered the same function without
considering any further information. Thus even if the function
has been moved to another file or directory, our algorithm
would map it correctly. One might argue that a function foo
might be deleted from vi and a new function having the same
name could be inserted in the next version. However, our
experience suggests that such circumstances seem to occur
rarely. On the other hand, if two or more functions exist
having the same name in either one or both versions of the
program, our algorithm maps them applying the following
rules. For each of the functions we check the locations of
the functions. If they are from the same location, then their
signatures must be different, and they will be matched by their
signatures. In contrast, if they are from different locations,
then their locations will be used to resolve the mapping.
For example, sometimes it might happen that the method
signatures and file names both are the same. It indicates that
they are from different packages/directories. In this situation
we will consider the hierarchy level of their directory until we
find different names to map them properly.

2) When function names have changed: This part maps
those functions, which have been renamed in the next version
(change scenarios 5-8 in Table I). From the previous step,
the functions (D) of vi that have not been mapped into any
function in vi+1 are the possible candidates for being renamed.
That is, if O is the set of function names of vi, and N is
the set of function names of vi+1, D = O − N . Similarly,
the set of either new or renamed functions (A) in vi+1 is
N − O. Therefore, we need to find an appropriate mapping
between D and A. To find an appropriate mapping between
D and A, we use Kim et al.s’ [11] automatic detection of
origin analysis method. Kim et al. introduced eight similarity
factors to determine whether a function has been renamed
or not. They used all possible combinations of those factors
to find the renamed functions, and report that adding more
factors does not necessarily improve the accuracy of the origin
detection. They also noted that 90.2% of renamed functions
could be accurately mapped using only function name and
body, whereas the best accuracy was only 91% using more
factors. By further investigating their result we noticed that the
average number of renamed functions per version is very few;
less than 2%. Therefore, we use only the function name and
body to find the origin of functions in the set A because we can
achieve a considerable performance gain by sacrificing only
0.8% accuracy for the renamed functions, which is negligible
(0.016%) compared to the total number of functions.

We use the longest common subsequence count (LCSC)
similarity metrics to find the origin of a function because
only checking common parts of two fragments (function body)
or two names (function names) is not sufficient. We also
have to check that the common part also maintains the same
sequence as its origin. We use equation 1 to calculate LCSC
similarity metrics of two fragments, A and B where |A| and
|B| are the number of elements in A and B respectively. It



returns a value between 0 and 1 where 0 means no similarity
whereas 1 means exactly the same. LCSC calculates name
similarity at the character level and text similarity at the
line level. We use comment-free pretty-printed lines to ignore
formatting or commenting differences. Now for two functions
A ∈ vi and B ∈ vi+1, we identify A as the origin of B
if the average of (LCSC Similarity(nameA, nameB) and
LCSC Similarity(bodyA, bodyB)) is greater than 0.6 which
was found as one of the best thresholds by Kim et al [11]. If
we find more than one possible origins, we take the one that
gives the highest average. However, we did not consider any
split or merging of functions during function mapping.

LCSC Similarity = {
LCSCAB

|A|
+

LCSCAB

|B|
}/2 (1)

C. Clone Mapping
At this point we have the function mappings between

versions vi and vi+1. We also assume that the clones have
already been detected from these two versions using a clone
detection tool. Typically a clone detection tool reports results
as a collection of clone classes where each clone class has
two or more clone fragments. A clone fragment could be of
any granularities such as function, structural block, arbitrary
block and so on. Let CCi = {cci1, cci2, ..., ccin} be the reported
clone classes in vi where ccij = {CF i

j1, CF
i
j2, ..., CF

i
jm}.

Here CF i
jk refers to the clone fragments of the clone class

ccij where 1 ≤ k ≤ m. Now the algorithm attempts to map
each clone fragment CF i to its contained (parent) function,
F i in vi. We say that a clone fragment (CF ) is contained by
a function (F ) if both are in the same file, and the range of
line numbers of (CF ) is within the range of line numbers of
F . In algorithmic form,

boolean isContained(Block CF, Function F) {
return ((CF.FileName == F.FileName)

AND (CF.BeginLine >= F.BeginLine)
AND (CF.EndLine <= F.EndLine))}

We should note that we already have the required informa-
tion (i.e., file names and begin-end line numbers) for functions
from the Preprocessing phase (Section III-A) and for the clone
fragments from the subject clone detection tool.

Now let us assume a clone fragment CF i is mapped with a
function F i in version vi, and another clone fragment CF i+1

is mapped with a function F i+1 in version vi+1. Let us also
assume that F i is in fact mapped with F i+1 obtained from
the Function Mapping phase (Section III-B). If F i contains
only one clone fragment, CF i we can easily map that clone
fragment in vi+1 since we already know the corresponding
mapped function F i+1 in vi+1, and the mapped clone fragment
CF i+i should be found in vi+1 if it has not been disappeared.
However, if F i has more than one clone fragments, we attempt
to map each of the clone fragments between functions F i

and F i+1. For example, if F i has m clone fragments and
F i+1 is the corresponding mapped function, we map the clone
fragments in two ways. First, we calculate the LCSC Similarity
(Section III-B2) for each of the clone fragments of function
F i with the clone fragments of function F i+1. Second, based

on the similarity scores and the relative locations of the clone
fragments in the corresponding functions, we take the final
decision for mapping. There might be still some clones that
have not been mapped yet. They might be file clones, clones
that span more than one functions, clones in declarations,
or clones in C preprocessor code. We map such clones by
following the method discussed in Section III-B2 with the
exception that instead of using function names as one of the
attributes, we use file names of the clone fragments. Therefore,
we now have the mapping for each of the clone fragments
CF i

jk of version vi to a clone fragment in version vi+1 if it
has not been deleted in version vi+1. Because the functions
of versions vi and vi+1 are already mapped in the Function
Mapping phase (Section III-B), the mapping of function clones
is straightforward, and of course there is no question of
mapping blocks to their corresponding functions.

The next step is to map the clone classes of the two versions.
For each of the clone fragments CF i

jk of the clone class ccij in
version vi we find the corresponding clone fragment CF i+1

j′k′

in version vi+1. In principle, if ccij of version vi remains the
same or changed consistently in version vi+1, all the mapped
fragments of ccij in vi should be in the same clone class in
vi+1. However, if the consistent changes are made to the extent
that the size of the fragments is under the minimum clone size
threshold of the subject clone detector, the detector will not
detect this clone class. When we deal with Type-3 clones, all
these mapped clone fragments of CF i

jk could be found in the
same clone class in vi+i even though they have been changed
inconsistently but still their dissimilarity is under the given
threshold set by the subject clone detection tool. Of course, a
clone class may split due to the extensive inconsistent changes
between its clone fragments. Therefore, in order to find out
the mapping of the clone class ccij in vi+1, we find all the
clone class(es) {cci+1

x , cci+1
y , ...} from vi+1 that form clone

classes with any of the clone fragments of ccij of vi. If all the
clone fragments are mapped to the same class, cci+1

x , we map
ccij → cci+1

x . On the other hand if they are mapped to multiple
classes, {cci+1

x , cci+1
y , ...} we map ccij → {cci+1

x , cci+1
y , ...}.

D. Automatic Identification of Change Patterns

Automatic and accurate identification of change patterns
is one of the important features of a clone genealogy ex-
tractor. There is a marked lack of in-depth study in the
literature on this issue [9], especially for near-miss clones.
In this paper, we also attempt to deal with this important
issue. Among the change patterns (discussed in Section II,
the identification of Same, Add, and Delete change patterns
are fairly straightforward because these change patterns are
classified based on the appearances or disappearances of the
clone fragments of a clone class of version vi in version vi+1.
The clone classes of vi those are not spilt in vi+1 are the
candidate set for these sort of change patterns. Let us assume
that from the Clone Mapping phase we obtain a mapping,
ccij → cci+1

j′ , where ccij and cci+1
j′ have p and q number

of clone fragments respectively. Now if cci+1
j′ has m clone

fragments that have their origins in ccij , we can identify the



aforementioned patterns automatically as follows:

• if m = p = q then it is the Same change pattern.
• if q > m then it is the Add change pattern.
• if p > m then it is the Delete change pattern.

Here it should be noted that the Add and Delete patterns are
not mutually exclusive since additions and deletions of cloned
fragments in a clone class could take place simultaneously.
Unlike the above patterns, the identification of consistent and
inconsistent change patterns is challenging. It becomes more
complicated when we deal with Type-3 clones since for Type-
3 clone classes, all the clone fragments of a particular clone
class could form the same clone class in the next version even
if one or more clone fragments of that class have been changed
inconsistently. Therefore, we cannot conclude whether a par-
ticular change pattern is consistent or inconsistent even if all
the clone fragments of a clone class in vi form a clone class
in vi+1.

In order to deal with this issue, we use a multi-pass approach
that makes decisions in each pass, and identifies consistent
and inconsistent change patterns gradually. First, the program
identifies the clone classes that have not been changed in
the next version at all (Static), and those clone classes that
have been split. The program identifies the split clone classes
as inconsistent change because certainly their fragments have
been changed inconsistently, and thus they are part of two or
more clone classes in the next version. Identification of these
change patterns is straightforward and accurate because there
is no ambiguity in selecting them. Fortunately, our program
can make a decision for most of the change patterns during
the first pass because a large number of clone classes do not
change at all. We have shown this phenomena for Type-1 and
Type-2 clones at the release level in our previous study [20].
This seems to hold for Type-3 clones as well (see Table IV).

In the second pass, the program will make a decision for
Type-1 and those Type-3 clone classes where modifications of
different fragments of the same clone class are only limited
to line additions or deletions but do not have any variable
renaming. If ccij → cci+1

j′ is such a mapping, the program
computes the differences between each of the clone fragments
of ccij with the corresponding clone fragments of cci+1

j′ using
diff. If the differences for each of the fragment pairs (CF i

jk,
CF i+1

j′k′ ) are the same, then the clone class is classified as con-
sistent change, otherwise as inconsistent change. Inconsistent
reordering of statements are also considered as inconsistent
changes and thus the weakness of diff that it cannot detect
reordering of statements does not have any impact on our
results. One might argue that the changes in the gap in the
Type-3 clones should not be considered because they are
already not common between the clone fragments. However,
the gaps in Type-3 clones could be arbitrary, and a gap
between two clone fragments of a clone class might not be
the same compared to the other clone fragments of that same
clone class. Thus, a change might actually happen in a gap
with respect to one fragment (or more fragments) but in the
common parts of the rest of the clone fragments, which is

important to consider in classifying the change patterns.
In the third pass, the rest of the clone classes (Type-

2 clones, and Type-3 clones with identifiers renaming) are
considered. Since the clone fragments of these clone classes
have variations in their identifiers, we do not exploit diff
directly because the differences will not be the same even if
the fragments have been changed consistently. In order to deal
with this issue we consistently rename the identifiers of the
clone fragments using TXL. For example, if the first identifier
and all its occurrences in a fragment is replaced by x1, the
second identifier and all of its occurrences will be replaced
by x2 and so on. We then compute the differences. As before
if the differences are the same we classify the change pattern
as consistent change, otherwise as inconsistent change. All of
the identified mappings as well as their change patterns are
stored in an XML file for future use.

E. Construction of Genealogies
In order to keep the discussion simple, we have described

the algorithm only for two versions of a program . Now we
extend it for n versions to construct the clone genealogies. Let
us assume that CGE(vi, vi+1) is the algorithm for only two
versions, whereas CGE(v1, v2, ....., vn) is the algorithm for n
versions. Practically the n-version algorithm is the combined
result of CGE(v1, v2), CGE(v2, v3), ..., CGE(vn−1, vn).
Our mapping is thus incremental in nature where we can
easily integrate the mappings of the previous versions with
a new version. If a genealogy of a clone class propagates
through (p+1) versions, we call it a p-length genealogy. Now
if a p-length genealogy has any inconsistent change pattern(s)
during the propagation, it will be classified as Inconsistently
Changed Genealogy (ICG). Similarly, if a genealogy has any
consistent change pattern(s) but does not any inconsistent
change pattern(s) during the propagation, it will be classified
as Consistently Changed Genealogy (CCG). If a genealogy
has been never changed during the observation period, it will
be classified as a Static genealogy. Similarly, if a genealogy
has any Add or Delete change pattern(s), it will be classified
accordingly. We should note that most of the genealogies have
two types of change patterns. One pattern is based on how it
has been changed, such as Static, CCG, ICG, and another is
based on the addition or deletion of clone fragments in a clone
class such as Add, Delete, Same.

F. Time Complexity
In this section we provide the time complexity of the

proposed mapping algorithm for two versions v1 and v2 of
a program. We represent a version vi by (li, nfi, ncfi, ncci)
where li, nfi, ncfi, ncci denote the LOC, number of functions,
number of clone fragments, and number of clone classes
respectively in version vi. For function mapping, at first
the algorithm matches name signatures of the corresponding
functions of the two versions, v1 and v2. This step takes only
nf1 units of time because these mappings are done using a
hash map (Section III-B1). Let us assume that α number of
mappings are found after the execution of the previous step.
Certainly, min(nf1, nf2) ≥ α. Now the origin detection of



TABLE II
FEATURES SUPPORTED

Features Currently Suupported
Types of Clones Type-1, Type-2 and Type-3
Granularity of clones Block (Arbitrary + Structural), Function,
Clone Relation Clone Pairs, Clone Class, RCF [8]
Adaptability to Tools NiCad, CCFinderX, iClones
Adapt. to Languages C, C#, Java
Software Versions Revision level, Release level
Types of Genealogies Same, Add, Delete, Static, CCG, ICG
Scalability Large systems (e.g., Linux releases)

the remaining functions (Section III-B2) takes approximately
t = (nf1−α)×(nf2−α)×(l1/nf1)×(l2/nf2) units of time,
where li/nfi is the average length of a function in vi in terms
of lines of code. Therefore, the required time for function
mapping is nf1 + t units of time. Once all the functions are
mapped, the time complexity for mapping each clone fragment
to its contained function is also linear, which could be achieved
by constructing a multi-valued hash map where file name is
the key and the functions of the file are values.

For mapping the clone classes (Section III-C), the required
time is ncf1 units because we already have the mappings for
each of the clone fragments of the two versions. Therefore,
the speed of the whole process is inversely proportional to
the number of functions that do not change their names (here
the value of α) in the next version, and the number of clone
fragments that do not belong to any function. Therefore, for the
best case where all of the function names remained the same in
the next version (α = nf1) and each clone fragment belongs
to a function, the total time complexity is linear. However, it
is quadratic in the worst case where all of the function names
are changed in the next version (α = 0) and all the clone
fragments are outside of functions boundaries. Fortunately, on
average 98% of the functions do not change their names [11],
and from our experiment we found that only a few number
of clone fragments are on the outside of functions, which
indicates that the time complexity is almost linear.

IV. EVALUATION OF THE FRAMEWORK

In order to validate the efficacy of the proposed framework,
we have developed a prototype clone genealogy extractor,
gCad, as discussed in Section III. Currently, gCad can au-
tomatically extract both exact and near-miss clone genealo-
gies at function or block level across multiple versions of
a system, and classifies them automatically into meaningful
change patterns as discussed in Section II. Although it can be
easily adaptable to other languages for which a TXL grammar
is available, we tested it for three languages, Java, C, and
C#. gCad can deal with large systems such as the Linux
Kernel which ensures its scalability. Currently, gCad can work
with three clone detection tools, NiCad [18], CCFinderX1

and iClones [8]. However, since it relies on relatively little
information (e.g. file names and begin-end line numbers of
the clone fragments), it is adaptable to any clone detection
tools that provides such information. Table II summarizes the
features that are currently available in gCad.

1http://www.ccfinder.net/

TABLE III
SUBJECT SYSTEMS

Attributes ArgoUML Linux Kernel iTextSharp
Prog. Lang. Java C C#
Start Date Oct 4, 2008 Dec 14, 2009 Dec 8, 2009
End Date Jan 24, 2011 Jan 5, 2011 Feb 18, 2011
Start Release 0.27.1 2.6.32 5.0.0
End Release 0.32.beta2 2.6.37 5.0.6
# Releases 47 45 7
# Functions 14798 244311 8162
Cloned Functions 3238 39266 1226
Type-1 clone class 169 659 53
Type-2 clone class 226 4483 53
Type-3 clone class 422 9076 282

A. Experiment

In this section, we discuss the details of our experimentation
that we performed to evaluate gCad. We designed our case
study in such a way that validates each characteristic of gCad
as discussed above. We chose three open source systems,
ArgoUML2, the Linux Kernel3, and iTextSharp4. We have
selected these systems because they are developed in three
different popular languages (Java, C, and C#), their size varies
from medium to very large-scale in terms of lines of code.
Furthermore, the interval length between releases of each
system varies from a few days to several months. Table III
summarizes the key attributes of the last releases of these
systems that we considered.

Since currently gCad supports three clone detection tools,
we used all of them to extract genealogies and to validate the
result provided by gCad from different perspectives. Among
them NiCad provides us the facility to detect both exact
and near-miss clones at the function or block level. Because
one of our primary objectives is to construct and classify
near-miss clone genealogies, we used NiCad to detect code
clones in all of the subject systems with NiCad setting of
minimum clone size 5 LOC, consistent renaming of identifiers
and 30% dissimilarity threshold. With this setting we detect
a fairly good amount of near-miss clones because we allow
consistent renaming of identifiers as well as a dissimilarity
threshold of 30% which allows 30% dissimilarity of the
clone fragments in their pretty-printed normalized format. We
also used CCFinderX to detect code clones in two systems,
ArgoUML and iTextSharp, with its default settings to see
whether gCad works well with other clone detection tools or
not. Finally, we used iClones to compare the accuracy of our
mappings as discussed in Section V.

1) Result: We ran gCad on a Mac Pro that has a 2.93
GHz Quad-core Intel Xeon processor and 8 GB of memory
(though our program uses a single processing unit). Table
IV shows the results of our study for the different types of
genealogies including the execution time of gCad. Here the
execution time is the average time that is taken by gCad for
two consecutive versions of a given subject system. From the
first row we see that gCad takes less than a second to a couple
of minutes for mapping the clones across two versions and

2http://argouml-downloads.tigris.org/
3http://www.kernel.org/
4http://sourceforge.net/projects/itextsharp/



TABLE IV
TEST RESULTS

ArgoUML Linux Kernel iTextSharp
Change Patterns/Time Function Block Function Block Function Block

NiCad NiCad CCFinderX NiCad NiCad NiCad NiCad CCFinderX
Execution time/version 0.77s 2.02s 25s 1m18s 2m35s 0.50s 1.33s 3m38s
Same 893 1376 2266 16836 61362 479 821 959
Add 267 435 309 2255 9373 50 100 20
Delete 40 72 95 334 1603 17 18 14
Static 1350 2451 2019 18642 83295 500 840 897
CCG 33 41 307 1277 1796 20 52 83
ICG 463 719 510 4509 13535 102 136 20
Total Genealogies 1846 3211 2838 24428 98626 622 1028 1000

for finding different change patterns, depending upon the size
of the given system and the level of granularity. However,
the number of functions that have not changed their names
in the next version plays a key role in reducing execution
time. As we assumed, the number of renamed functions is
very few for all of the systems. Approximately 2% of total
functions have been renamed on average for the Linux Kernel,
whereas for ArgoUML and iTextSharp it is less than 0.5%.
We also found that functions are not renamed that much
between minor releases. Most of the related studies did not
report the execution time of their clone genealogy extractor
except Bakota et al. [2]. As they reported, their preparation
step took approximately 2 hours on an IBM BladeCenter LS20
machine equipped with 10 modules, each of them operating
with two AMD Dual Core Opteron 275 processors, running on
2.2 GHz containing 4 GB of memory each, and the other step,
construction of the evolution mapping, took approximately
three hours to complete on one processor core for Mozilla
Firefox having 12 versions. Since gCad is not exactly the same
as of theirs, we could not directly compare our execution time
with theirs. However, the execution time taken by gCad is far
less than theirs and looks reasonable enough to be used for
software maintenance purposes.

Identifying the evolving change patterns for Type-3 clones
is always challenging and time consuming. From the results
we see that most of the genealogies of all the systems at any
granularity level (approximately 76%-80% for function and
76%-81% for block ) did not change at all during the obser-
vation period, which is consistent with our previous results
[20] where only Type-1 and Type-2 clones were considered.
However, there is a large amount of ICG compared to CCG
which is surprising. Therefore, we evaluated gCad in terms
of mapping using different strategies. We will discuss the
evaluation procedure in detail in the next subsections.

B. Correctness of Mapping
Evaluating the correctness of clone mapping is important for

any clone genealogy extractor because all other calculations
(e.g., identifying evolution patterns) depends on it. To evaluate
the mapping (M ) of clones between two versions of a program
reported by a tool, the correct set of mappings (E) for
the given versions is needed. The requirement of E makes
the whole evaluation process challenging because it is very
difficult to determine. Our quantitative evaluation is based on
two criteria: precision and recall. While precision expresses
the percentage of mapping that are correct, recall gives the

percentage of correct mappings that the tool finds. We can
compute precision and recall with the following two equations:

Precision = |M ∩ E|/|M | (2)

Recall = |M ∩ E|/|E| (3)

While manual verification of each mapping gives us an idea
about the precision, it does not give any hints about recall.
Therefore, besides manually validating the genealogies, we
also performed a couple of automatic tests to measure both
the precision and recall artificially.

1) Identity test: In this step we have assumed that there
are two versions of a program that are identical, in other
words, there has been no change between these two versions.
Practically, the same program has been used as the inputs
of gCad. The major advantage of this test is that the oracle
mapping set (E) between these two versions of program
is known and it is one to one self-mapping of each clone
fragment. Therefore, the precision and recall for this step could
easily be computed. We conducted the test for each of the
versions we analyzed. For each of the tests, the value of both
precision and recall were 1.0. Thus this test ensures that the
gCad works well for scenario 1 in Table I.

2) Mutation/Injection Framework: We have adapted an
existing mutation/injection based framework for evaluating
clone detection tools [17] to evaluate the correctness of the
mapping detected by gCad. However, instead of completely
automating the framework we followed a semi-automated
approach and only for function clones to avoid errors. As the
original framework we also have two phases as follows:

a) Generation Phase: In the generation phase, we create
a number of mutated versions of the original code base. To
get a mutated code base, first we keep a copy of the original
code base as the starting version of the subject system. We
then make a second copy of the original code base, pick a
clone class randomly from it, and remove the selected clone
class from it. Once a clone class is selected, we change the
fragments of that class in such a way that mimics a developers
possible change scenarios following Roy and Cordy’s editing
taxonomy [17]. A TXL-based mutation process was used to
apply the changes (single or multiple) to mutate each of the
fragments to create a mutated clone class. Then we inject
the mutated clone class into copied code base randomly but
manually in such a way that the resulting code base is still
syntactically correct. Now we can consider this mutated code
base as the next evolving version of the original code base
where a clone class has been changed. In this way, we created



TABLE V
RECALL AND PRECISION OF THE PROTOTYPE (%)

Subject Block Clones Function Clones
Systems Manual Automated Manual

Precision Precision Recall Precision
ArgoUML 0.98 1.0 0.97 0.99

Linux Kernel 0.99 0.96 0.94 0.99
iTextSharp 0.99 1.0 0.98 0.99

70 mutated code bases for each of the systems (last version) for
scenarios 2-8 of Table I where each of the scenarios applied
to 10 mutated code bases. For each of the scenarios where
the function body was changed (scenarios 3,4,7, and 8), we
applied consistent changes on half of the clone classes and
applied inconsistent changes to the rest. All of these changes
are stored in a database, which works as the oracle (E) for
evaluating the correctness of the mapping. We then detected
the mappings (M) and identified the change patterns between
the original code base and the mutated code bases for each
of the systems. Now that we have the oracle (E) and the
detected genealogies (M), we can compute the precision and
recall using equations 2 and 3 above.

b) Tool Evaluation Phase: Table V summarizes the
results of our test cases. Among the 70 clone classes in
the 70 mutants of ArgoUML, 69 of them were detected by
NiCad because one of the clone classes was mutated beyond
the similarity threshold of NiCad. On the other hand, gCad
reported 67 genealogies. When we manually investigated why
the two genealogies were missing, we found that the name
and body of two clone classes were changed significantly.
Therefore gCad could not find the origins of their fragments.
However, all the detected genealogies were correct. In the
Linux Kernel, among the 70 test cases, gCad reported 69,
among which 66 were the correct mappings. We experienced
incorrect mappings for three of the test cases because their
corresponding clone classes were mapped incorrectly due to
extensive change in the function bodies and function names.
Similarly we found 69 correct mappings for iTextSharp.
Although this approach computes the precision and recall
artificially, it provides sufficient hints whether gCad works
well for those editing scenarios during clone evolution.

3) Manual verification: Besides the automatic testing dis-
cussed above, we also manually validated our result. Since it
is almost impossible to check manually all the mappings for
all the systems, we systematically analyzed all the mappings
across the last five versions for each system. At first, we
analyzed the Static genealogies. If the clone fragments of
such genealogies have not been moved, we did not need to
investigate their source code because they have not changed at
all. We manually checked all the Static genealogies for which
some of the clone fragments have been moved. However, we
did not find any false mapping for such genealogies. For all the
changed genealogies, at first we investigated the correctness
of the mapping by investigating their source code, function
names, and file paths. After confirming the correctness of the
mapping, we investigated the change patterns using a visual
diff. We were not quite sure about some of the mappings,
which were excluded from the calculations. During the manual
verification we noticed that gCad detected many genealogies

that where clone fragments changed in such a way that it
would have been difficult to detect them using any heuristic
or text-based similarity approach. For all of the systems
we found that at least 98% of both the reported mappings
and change patterns were correct. However, we found a few
incorrect mappings when a function was renamed or deleted
but a similar type of function was in the system. Table V
summarizes the result of our manual verification. However,
measuring the recall manually was out of scope.

V. COMPARING GCAD WITH OTHER METHODS
Besides the extensive manual verification and automatic

testing, we also compared the quality of the mappings and
change patterns from gCad with the mappings provided by
iClones, and our previous approach [20], which was actually
adapted from Kim et al. [10]. We have chosen the GNU
Wget5 as the subject system for this purpose because both the
clones and their mappings across seven versions of this system
detected by iClones are available online [21]. Furthermore, the
size of this system is reasonable enough to manually investi-
gate and compare each of the genealogies reported by the two
tools under consideration. Therefore, to compare the mappings
and the change patterns with iClones, at first we downloaded
the wget.rcf file from the Software Clones website [21] that
contains both the clones and their mapping information for
seven versions of the subject system. CYCLONE [8] is another
tool that can interpret the mapping information from iClones
and construct genealogies from it. We ran CYCLONE on
the wget.rcf to extract the clone genealogies. On the other
hand, we extracted only the clone classes from wget.rcf for
all the seven versions of the subject system, and applied
gCad on them to extract the clone genealogies. It means
that CYCLONE and gCad used the same clone classes to
construct genealogies but CYCLONE used the mappings from
iClones, whereas, gCad mapped the clone classes using our
proposed method. We found that CYCLONE reported 370
genealogies, whereas, gCad reported 374 genealogies along
with their change patterns. We then manually investigated each
of the genealogies from these tools. We found 364 genealogies
which were common between the two results. We investigated
the 6 genealogies that gCad missed but was detected by
iClones. We noticed that iClones returns some overlapping
clone classes (which could be considered as false positives
and should not have been detected), making two clone classes
using the same clone fragments with only minor differences in
the token sequence numbers of the fragments. While iClones
maps such clone classes gCad does not in the cases when
minor variations in token sequence numbers are within the
same line because of its line-based comparison. This is in fact
expected as such mappings can be considered false positives.

gCad also detected 4 more valid mappings than iClones.
Since iClones exploits the difference information of the mod-
ified files in mapping clones, it cannot map those clones
accurately in the cases where the functions/methods of the
associated clone fragments are re-ordered w.r.t. their source

5http://www.gnu.org/software/wget/



TABLE VI
COMPARISON RESULTS

Clone
Detector

Clone Mapping and Con-
struction of Genealogies

Number of
Genealogies

Common

iClones (iClones + CYCLONE)/gCad 370/374 364
CCFinderX Saha et al.[20]/gCad 75/81 75

coordinates within the same files in the next version. Our
manual investigation confirms that this is exactly the reason
why iClones missed these four mappings. Because gCad first
maps the functions/methods and then locates clone fragments
within the corresponding functions/methods, we have success-
fully detected these mappings

Our comparison results with iClones (considering its out-
put as benchmark) confirm that gCad is no less than
iClones/CYCLONE, rather is better both in terms of not
reporting the mappings of some false positive clones and accu-
rately mapping Type-3 clones. An independent comparison of
gCad with iClones by using a third party clone detection tool
for the detection of clones might have given a better picture
in comparing the accuracy of iClones and gCad. However,
such an experiment was not possible since iClones maps the
clones during the detection and thus adapting a third party
clone detection tool was not applicable.

Since iClones maps the clone classes incrementally during
the detection of clones, it is obviously faster than gCad. In
order to compare the scalability, we have run iClones with
the Linux Kernel versions, and experienced “Out of Memory”
error messages. We then attempted to run iClones only with
two versions of Linux Kernel and experienced the same error.
For this experiment we used a Mac Pro machine that has
a 2.93 GHz Quad-core Intel Xeon processor with 8 GB of
memory. However, when we talked to the author of iClones,
he suggested that he successfully worked with Linux Kernel
in a server machine of 64 GB memory. Unfortunately, we do
not have such a high configured server within our reach.

In order to compare gCad with our previous method [20]
we used CCFinderX for clone detection since it was based on
CCFinderX. We ran both gCad and our previous method sep-
arately on the detected clone classes to construct genealogies,
and found 81 and 75 genealogies respectively. All of the 75
clone genealogies detected by our previous method were also
detected by gCad. When we investigated the six additional
genealogies reported by gCad, we noticed that they are in fact
valid genealogies. Our previous method missed them because
the clone fragments were significantly changed to the extent
that their text similarities were less than the given threshold.
However, gCad was successful in accurately identifying those
fragments by first mapping the functions and then locating the
clone fragments within the functions. These comparison results
confirm that gCad not only can detect all the genealogies
reported by our previous approach but also can accurately
handle the mapping of Type-3 clones. The comparison results
are summarized in the Table VI.

CloneTracker is a great tool for tracking clones in the
IDE [5]. However, our work is fundamentally different from
that of CloneTracker both in terms of objectives and the
representation of clone fragments. We attempted to identify

clone genealogies and classify their change patterns. On the
other hand they attempted to assist developers in managing
clones in evolving software in the IDEs. CloneTracker can
neither construct clone genealogies nor can classify them.
However, we were still interested to see how well the CRDs of
CloneTracker can map clone classes of different versions of a
software systems. We experienced that it is not straightforward
at all. The authors also noted similar concerns and used several
heuristics for checking the robustness of CRDs for tracking
clones over versions. Using a dummy project we experienced
similar results as of them [5] that it can track about 95% of
Type-1 and Type-2 clones. However, in case of Type-3 clones
we experienced difficulty with CloneTracker. They also noted
that CloneTracker cannot handle Type-3 clones because of the
possible changes in the anchors of CRDs [5]. In contrast, our
approach is specifically designed for tracking Type-3 clones.

VI. THREATS TO THE VALIDITY

There are two potential threats to the validity of our result.
First, in our function mapping algorithm, we did not consider
the merging and splitting of functions. Therefore, if a function
splits in the next version, our algorithm first attempts to map
it to the part in the next version for which the function name
remains the same as of previous version. If the name of any
of the parts does not match, our algorithm maps it to the
part in the next version for which source code was more
similar to its origin. However, the effect of this situation should
be minimal on the results for clone genealogies and change
patterns because if any clone fragments of a clone class splits
in the next version then all fragments of that clone class should
be split accordingly for maintaining consistent change, and
gCad should map similar fragments in the next version and
thus will detect the change as consistent change, otherwise
will detect as inconsistent change. Second, there might have
been some unintentional errors during the manual verification
due to the lack of the domain knowledge or human errors.

VII. RELATED WORK

Extracting clone genealogies across multiple versions of a
software system is not a new topic. There have been several
such studies. While they differ significantly in many aspects,
they are also related to this study. Kim et al. [10] were the
first who mapped code clones across multiple revisions. They
used two metrics, text similarity and location overlapping to
map clones between two revisions. They implemented a CGE
that is able to extract and classify genealogies automatically.
However, they only considered Type-1 and Type-2 clones,
detected by CCFinder. Aversano et al. [1] extended Kim et
al.’s study, and investigated how clones are maintained when
an evolution activity takes place. However, they manually
investigated all the genealogies for finding change patterns and
mostly focused on Type-1 clones. We overcome the limitations
of these two studies by proposing a fast and scalable approach
that can extract not only Type-1 and Type-2 but also Type-
3 clone genealogies, works with different clone detection
tools and can automatically identify the change patterns at
both function and block levels. To understand the stability of



cloned code Krinke conducted two separate but related studies
[12], [13] for Type-1 clones. Like Aversano et al. he also
considered the clones of the first revision in the observation
period and examined the changes of clones by extracting the
changes from the source code repository. Thummalapenta et al.
[22] conducted a similar study to understand the maintenance
implications of clones.

Bakota et al. [2] proposed an AST based machine learning
approach for mapping clones across consecutive versions.
They used a number of similarity metrics such as file name,
position and lexical structure of the clone instances, and so on,
to find the appropriate mapping between two clone instances.
However, using a large number of similarity features makes the
mapping process computationally expensive. In contrast, we
used simple similarity metrics which ensured fast computation
while maintaining high accuracy.

As of Duala-Ekoko and Robillard [5] (Section V), Betten-
burg et al. [3] also used a CRD to map clones between two
versions. However, they did not identify the change patterns
of the genealogies automatically.

As of Göde and Koschke [6] (Section V), Nguyen et al. [15]
also introduced an incremental clone detection tool, ClemanX.
The advantages of both of the approaches mostly relies on
the tiny changes between revisions. Furthermore, though they
mapped clones across multiple versions, they did not classify
genealogies based on the change patterns as we did.

Lozano and Wermelinger [14] mapped clones’ imprint
across multiple versions. Like us they also mapped all the
functions/methods before mapping clone classes. However,
they did not consider Type-3 clones, whereas we applied a
sophisticated technique both for fast and efficient mapping of
Type-3 clones and identify the change patterns of such clones
with high precision and recall.

VIII. CONCLUSION

As for Type-1 and Type-2 clones, extracting the genealogies
of Type-3 clones and identifying the change patterns are
equally important, especially because there are a significant
number of such clones in software systems. However, mapping
Type-3 clones across multiple versions of a program and
automatically identifying their change patterns is challenging.
In this paper, we proposed a scalable and adaptable framework
that can extract both exact and near-miss (Type-2 and Type-
3) clone genealogies and can identify their change patterns
automatically. To validate the efficacy of the proposed frame-
work, we developed a prototype and experimented both with
multiple versions of three open source systems including the
Linux Kernel and a mutation/injection-based framework. We
also manually analyzed many detected genealogies including
their change patterns, and compared the mapping reported
by our prototype with that of an incremental clone detection
tool. Our experience suggests that the proposed method is
adaptable to other clone detection tools, and reasonably fast
while maintaining high precision and recall. Furthermore, it
can even tolerate significant changes between two versions and
thus could be effectively used to map clones at the release level
as well as at the revision level. We believe that this approach

would be useful for researchers and developers when studying
the evolution of both exact and near-miss clones. In future
we would like to conduct large scale empirical studies in the
evolution of near-miss clones both at the release and revision
levels and investigate the stability of inconsistent changes in
Type-3 clones compared to that of Type-1 and Type-2 clones
along with the intentionality of such inconsistent changes.
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