
Visualizing the Evolution of Code Clones

Ripon K. Saha Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan

Saskatoon, SK, Canada S7N 5C9
{ripon.saha, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT
The knowledge of code clone evolution throughout the his-
tory of a software system is essential in comprehending and
managing its clones properly and cost-effectively. However,
investigating and observing facts in a huge set of text-based
data provided by a clone genealogy extractor could be chal-
lenging without the support of a visualization tool. In this
position paper, we present an idea of visualizing code clone
evolution by exploiting the advantages of existing clone visu-
alization techniques that would be both scalable and useful.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Measurement, Experimentation

Keywords
Clone evolution, visualization, scatter plot

1. MOTIVATION
Despite a decade of active research, it is still not clear

whether code clones are harmful in the maintenance and
evolution of software systems. There are a good number of
recent studies which contradict themselves on this issue and
call for further research. What the community agrees is that
we need to extensively study the evolution of clones should
we want to study the impacts of clones in software mainte-
nance. It is also commonly agreed that whether clones are
useful or harmful, we need an efficient and cost-effective way
to mange the clones. This again calls for studying the evo-
lution of clones because without studying the evolutionary
behaviour of clones, it is indeed not possible to have a good
clone management system [2]. For example, if there is a bug
in a clone fragment, the programmer may want to examine
whether all the fragments similar to it have been changed
consistently in the past, or for example, before refactoring a
particular clone class, the programmer may want to see how
that clone class has been changed from its birth to predict

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00.

Figure 1: Genealogy Browser (from [1])

its future behaviour. Programmers also may want to exam-
ine the inconsistently changed clone classes of a particular
file or directory to check whether those inconsistent changes
have been made intentionally or accidentally. Considering
the importance researchers also study the evolution of clones
to draw hypotheses; to develop new tools and techniques for
managing clones properly. However, an enormous amount
of data (mostly textual) reported by a clone genealogy ex-
tractor makes those tasks challenging both for programmers
and researchers. We believe that effective visualization of
code clone evolution in terms of change patterns can help
tackle these issues promptly and efficiently.

Although there are a number of tools and techniques for
analyzing and visualizing clones within a single version, visu-
alizing the evolution of clones has not gained much attention
yet. So far, only Adar and Kim [1] demonstrated a tool, Soft-
GUESS, to analyze evolutionary behaviour of code clones in
software systems. They implemented three browsers to un-
derstand the clone evolution and navigate clone genealogies.
The first one is the genealogy browser (Fig. 1) that visual-
izes the simple form of genealogies. The second one is the
encapsulation browser that visualizes a tree representing the
hierarchical containment of clone snippets from the snip-
pet itself, through method, class, and package definitions.
And the last one is the dependency browser that visualizes
the genealogy graph augmented with the dependency edges.
Although these views work well for small systems, they may
not be suitable for large systems where thousands of genealo-
gies are involved. In this position paper, we present an idea
that could be incorporated into some existing clone visual-
ization techniques for efficiently visualizing the evolution of
clones even in large systems with thousands of genealogies.

2. OUR PROPOSAL
Since one of the primary objectives of studying the evolu-

tion of clones is to understand how clones have been changed

in a given period of time, programmers or researchers usu-
ally start from the last version of the observation period to
analyze clone genealogies. But certainly they could choose
any reference version of interest, and could investigate which
clone classes have been changed inconsistently in the past,
which have remained same throughout the evolution period,
how inconsistently changed clone classes are distributed in
the system and so on. These questions are not simply guess-
work, rather these are the fundamental questions of many
research studies on clone evolution. In our previous study
[5], we experienced huge difficulties to find the clone classes
of interest by manually investigating all the genealogies. We
can significantly offset the required manual efforts by visu-
alizing code clones in the desired version with the informa-
tion of their change patterns and could answer the afore-
mentioned questions fairly easily. This can be achieved by
adapting existing clone visualization tools and techniques
for single version clone visualization with or without some
minor modifications.

We explain the concept with an example of one of the
most popular clone visualization techniques - enhanced scat-
ter plot [3]. Scatter plot visualizes clones in the form of two-
dimensional charts where all major software units are listed
on both axes. A dot or a line segment is used in the common
space of two software units if they are similar to each other.
Scatter plots are useful to understand the density and re-
lationship of clones in very large systems [4]. One can also
identify all the clone pairs of a particular clone class by just
clicking on any of the clone pairs of that class. We can eas-
ily exploit these advantages of the scatter plot to visualize
the evolution of clones in an abstract level and then go for
in-depth analysis if necessary.

Since a clone genealogy extractor provides the change his-
tory of all the clone classes in any particular version during
an observation period, each clone class in that version could
be visualized in the form of clone pairs using an appropri-
ate colour based on its previous change pattern in a scatter
plot. Fig. 2 shows such a scatter plot for a fictitious program
having three files in a directory where function/method (m1,
m2, ..) has been considered as a unit. Let us assume that
this program has four clone classes. Among them two have
been changed consistently, one has been changed inconsis-
tently while the remaining one has not been changed at all.
We use black, gray, and white colours to show inconsistently
changed, consistently changed and same (‘no change’) ge-
nealogies respectively. Also dotted circles are indicating that
those clone pairs are from same clone class. With this the
users can see a more detail picture of code clones to under-
stand their evolution. Similarly, users can see any particular
class of interest such as only consistently changed genealo-
gies, or inconsistently changed genealogies, or the genealo-
gies in which clone fragments are added, or any pattern of
interest (if the tool provides these features). Furthermore,
scatter plots are useful to select and view clones, as well
as zoom in/out any particular region of the plot. This fa-
cilitates users to analyze genealogies in a particular file or
directory more rigorously.

While a scatter plot is useful for higher level analysis, ge-
nealogy browser (Fig. 1) could be helpful to investigate a
particular genealogy. For example, let us consider the sce-
nario where a programmer wants to see the transition point
when a particular clone class has been changed inconsis-
tently. A scatter plot can help here to find out the target

Figure 2: Scatter plot showing change patterns of
clone classes

genealogy and can provide a platform to invoke the geneal-
ogy browser for investigating that found genealogy for fur-
ther in-depth analysis. For example, if a user double-clicks
on a particular clone pair over the scatter plot, the geneal-
ogy of its clone class could be loaded in a genealogy browser,
and in this way users can find out the point where code has
been actually changed. This is how a programmer can in-
vestigate clone genealogies from a very high level view to
lower level details.

3. SUMMARY
Manual investigation of clone genealogies is always chal-

lenging and time consuming. In this position paper, we
presented a way of visualizing large scale clone evolution
that may be practical and useful both for developers and
researchers. The major advantage of this approach is that
existing tools and techniques for single version clone visu-
alization can be plugged into a clone genealogy extractor
[5] to visualize the evolution of clones. We hope that this
paper will motivate further research in this direction and
eventually we will have a suitable clone evolution visualizer.

Acknowledgements: This work is supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

4. REFERENCES
[1] E. Adar and M. Kim. SoftGUESS: Visualization and

exploration of code clones in context. In Proc. ICSE,
pp. 762–766, 2007.

[2] J. Harder and N. Göde. Modeling clone evolution. In
Proc. IWSC, pp. 17–21, 2009

[3] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Code
clone analysis methods for efficient software
maintenance. Tech report, SE Lab in Osaka University,
10 pp., 2004.

[4] S. Livieri, Y. Higo, M. Matushita, and K. Inoue.
Very-large scale code clone analysis and visualization of
open source programs using distributed CCFinder:
D-CCFinder. In Proc ICSE, pp. 106–115, 2007.

[5] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy,
and K. A. Schneider. Evaluating code clone genealogies
at release level: An empirical study. In Proc. SCAM,
pp. 87–96, 2010.

