
Useful, but usable?
Factors Affecting the Usability of APIs

Minhaz F. Zibran Farjana Z. Eishita Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9

Email: {minhaz.zibran, farjana.eishita, chanchal.roy}@usask.ca

Abstract—Software development today has been largely de-
pendent on the use of API libraries, frameworks, and reusable
components. However, the API usability issues often increase the
development cost (e.g., time, effort) and lower code quality. In
this regard, we study 1,513 bug-posts across five different bug
repositories, using both qualitative and quantitative analysis. We
identify the API usability issues that are reflected in the bug-
posts from the API users, and distinguish relative significance
of the usability factors. Moreover, from the lessons learned by
manual investigation of the bug-posts, we provide further insight
into the most frequent API usability issues.

I. INTRODUCTION AND MOTIVATION

These days, the process of creating software has changed
considerably; instead of creating functionality from the
scratch, much of today’s software development is about inte-
grating existing features and repacking them by writing client
code interfacing with the APIs (Application Programming
Interfaces) [7], [20]. Hence, effective APIs are important to
ensure better use of the concerned components, frameworks
or libraries. And, the usability of APIs demands increasing
interest these days than in the past [5].

Typically, an API can be considered useful, when it correctly
provides the desired functionality, and efficiency in terms
of performance (regarding resource consumption, speedup,
and so on). Earlier research unveiled that programmers while
writing client code are often challenged by the usability
problems of the APIs they use [1], [10], [17], [19]. Such us-
ability problems reduce programmer’s productivity and cause
unnecessary complexity in the client code.

Besides many competing goals (e.g., lower development
cost, market demand), API designers take into account design
criteria such as modularity, reusability, and evolvability, which
mainly benefit those who are involved in development and
maintenance of the APIs [10], [18]. But, there are many more
people using an API than the number of practitioners involved
in designing and maintaining it [6]. Therefore, API usability,
and research aiming to inform API usability, demand much
attention for the benefit of a much more larger community of
client code developers (users).

Once an API is deployed, it is hard to change, because any
change may break the client code necessitating corresponding
changes (migration from older an API to the newer) in all
applications that calls that API [16]. Practically the number
of such applications is not small. Moreover, unlike traditional
software tests, exhaustive API usability tests may be imprac-
tical. Hence, the design phase is the most appropriate time

to take into account the API usability issues. Therefore, API
designers and developers need a good understanding on API
usability and apply it in the design and development phases,
so that they can minimize the maintenance difficulties caused
by the usability issues associated with such APIs.

There are many different API usability attributes observed
and described by researchers and practitioners, though no one
attempted to enumerate them all [18], until Zibran [21], the
first author of this paper, presented a comprehensive list of 22
factors that affect usability of APIs. However, those flat set of
factors were sorted out solely based on the literature review,
and there is no indication of relative significance of one factor
over another.

In this regard, we identify API usability factors from a
different perspective. We study the API related bug-postings
from the bug tracking systems for five open-source projects,
and figure out which API usability attributes are reflected in
those postings. In presenting the results, this paper makes a
number of contributions. First, we examine those 22 usability
factors from a different perspective (users feedback) and
evolve them towards better completeness. Second, we rank
the API usability factors based on their pragmatic significance.
Third, the bug-reports we study can be reused as a reference-
corpus for carrying out further studies in future.

II. STUDY OF BUG-REPORTS FOR API USABILITY

Practitioners use different terminologies to refer to APIs
and related concepts such as frameworks, libraries, toolkits,
and SDKs (Software Development Kits). By the term ‘API’,
we refer to all of these, as such done by other prominent
researchers [5], [18] as well. Documentation by itself is not
an API, but it can be regarded as essential part of an API [18],
[21], and so do we. In Table I, we summarize the 22 API
usability factors identified by Zibran in an earlier literature
survey [21]. Note that, these factors are not mutually exclusive,
and at times, one may also cause another. The number of
examined bug-reports for the five open-source projects, and
their selection criteria are presented in Table II.

A. Approach

We studied the 1,513 bug-reports related to the various
components of Eclipse, GNOME, MySQL, Python 3.1,
and Android projects (Table II). For each of these bug-
reports, we first manually went through the title and the initial
description (first comment in the sequence of comments) to



TABLE I
SUMMARY OF THE API USABILITY FACTORS

Index Usability Factor Description
f-01 Complexity Increased size and complexity of the exposed features, concept, and architecture reduce usability.
f-02 Naming Convention followed in the naming of interface level functions and variables. Descriptive names

are preferable to abbreviate names.
f-03 Caller’s perspective Explicitly how the caller will invoke functions or features should be clear/intuitive to the user

for better usability.
f-04 Documentation Complete, clear, and up to date documentation and examples of usage increase usability.
f-05 Consistency Consistency in the design and adherence with common conventions increase usability.
f-06 Conceptual correctness Conceptual correctness in the design and naming of features is important for usability.
f-07 Parameter and return The number and types of parameters to functions and the return types have significant impact

on usability. Too many parameters reduce usability.
f-08 Constructor parameter The default (parameterless) constructor is often easier than parameterized constructor to

instantiate objects, specially to the beginners and intermediate programmers.
f-09 Factory pattern vs. con-

structor
Programmers naturally expect constructor to instantiate object, rather than factory methods.
Instantiating objects through factory methods sometimes cause difficulty.

f-10 Data types Types of the exposed objects and attributes. Data types should be chosen properly to avoid
unnecessary type-casting, resource consumption, and loss of precision.

f-11 Use of attributes Dispersion and functional dependencies of attributes. Cohesive implementation of functionality
increases usability.

f-12 Concurrency Proper implementation of concurrency and exposer of mutable elements. Unnecessary exposer
of mutable elements may raise thread-safety issues and increase pitfalls for misuse.

f-13 Error handling Mechanism for error prevention by information hiding, as well as proper handling of error
conditions through diagnosis information and mechanism for recovery.

f-14 Leftovers for client Availability of ready implementation of what the users may need reduces the users’ overhead.
f-15 Multiple ways to do one

thing
Availability of multiple ways (e.g., several methods offering the same functionality) to do the
same thing may puzzle the users in choosing from the alternatives.

f-16 Reference chain Long chain of method calls or inheritance hierarchy are difficult to track, and reduce usability.
f-17 Implementation vs. inter-

face dependency
Interface dependencies between components provide more flexibility and so those are recom-
mended over implementation dependencies.

f-18 Memory management Memory management (allocation and deallocation of memory) responsibilities left to the user
reduces API usability.

f-19 Technical mismatch Compatibility with the platform and other technologies in the functional environment is
important for usability.

f-20 API change Backward compatibility is needed for usability, while deprecation of common features may
surprise users.

f-21 API aging API aging occurs when the target platform changes but the API fails to keep pace with the
platform evolution, and consequently becomes unusable API.

f-22 Code intelligibility Readability of the client code affects maintainability.

TABLE II
BUG-REPORTS AND SELECTION CRITERIA SUBJECT TO THE STUDY

Selection Criteria # of posts
Project Component Stat. Date until All U

Eclipse JDT Core All 12 Oct’08 406 50
JDT UI closed 22 Oct’08 260 37

GNOME

Libxml++ All 09 Jan’09 12 09
glibmm All 09 Jan’09 28 24
gnomemm All 09 Jan’09 16 08
glade All 09 Jan’09 05 01
gnome-perl All 09 Jan’09 09 06
gnome-pyth. All 09 Jan’09 10 08
gtkmm All 09 Jan’09 44 33
java-gnome All 09 Jan’09 18 06
libsigc++ All 09 Jan’09 19 12
pyorbit All 09 Jan’09 02 01
pygobject All 09 Jan’09 85 61
pygtk All 09 Jan’09 122 97

MySQL C API All 07 Apr’10 50 12
closed

Python 3.1 All closed issues 15 Jan’09 102 75
Android All reviewed issues 07 Apr’10 325 122

(Here, U= API usability related) Total 1,513 562

determine whether the bug-post is relevant to API usability or
not. Thus, as many as 562 out of the 1,513 (37.14%) bug-
reports were identified as relevant to API usability issues.

Then, we further investigated the 562 usability related bug-
reports. This time, we manually examined the sequences of
comments in the body of each bug-report, determined the API
usability attributes reflected in the comments, and tagged those
bug-posts with appropriate labels representing the identified
usability factors. Note that, while tagging the bug-posts, we
applied the open coding technique and initially used labels
beyond the usability factors presented in Table I.

Next, we rearranged the labelling of the identified usability
factors. Those labels which are synonymously or meaningfully
covered by the factors in Table I, were renamed with the
corresponding usability factors in the table, while the rest left
as they were.

III. FINDINGS

In Figure 1, we present the percentage of API related bug-
posts reflecting different usability factors as identified from
our study.



Missing feature
Correctness

Documentation
Exposure of elements
Memory management

Function parameter and return
Technical mismatch

Dependency
Backward compatibility

Error handling 
Consistency
Concurrency

Complexity
Naming

Code intelligibility
Multiple ways to do one thing

Constructor parameter
Caller's perspective

Reference chain
Number of similar functions

Use of attributes

0 5.5 11.0 16.5 22.0 27.5 33.0 38.5 44.0

0.2%
0.2%
0.2%
0.2%
0.5%
0.5%
1.2%
1.9%
2.3%
2.8%
4.2%
4.9%
6.1%
6.5%
7.5%
8.2%
8.4%

10.3%
27.3%

31.1%
43.5%

Fig. 1. Percentage bug-posts reflecting different API usability factors

Let it be clear that Figure 1 demonstrates the relative
significance of different usability factors in terms of what
the bug-posts indicate. This relative significance does not
imply that a certain usability factor (e.g., documentation) is
absolutely more important than another (e.g., dependency). In-
stead, this indicates that those frequent usability issues are not
always properly taken care of by the API developers/designers;
enough tool support might not be available to minimize their
effect; the client code developers really care for those issues;
and therefore, the API developers/designers need to put more
effort to address those usability factors to make their APIs
more usable.

Note that, the set of API usability factors in Figure 1 are not
exactly the same as the usability issues summarized in Table I.
For example, from the study of the bug-reports, we did not find
indication of factors f-09 (Factory pattern vs. constructor) and
f-21 (API aging) of Table I. We understand that those usability
factors are so fine-grained and so high level respectively, that
may not be expected to have been captured in the bug-posts.
Hence, we do not suggest removal of those factors from the set
of API usability issues. However, we propose that f-20 (API
change) can be better labeled with “backward compatibility” to
make the label more explanatory. Similarly, f-10 (data types)
can be better explained with “exposure of elements”, while
“missing feature” can be a more suitable label for the factor
f-14 (leftovers for client). We also suggest that the factor f-06
(conceptual correctness) be labeled as simply “correctness” to
capture both conceptual and functional correctness. Similarly,
f-17 (implementation vs. interface dependency) can be better
labeled with simply “dependency” to capture dependencies
among program components as well as operational environ-
ment. Thus, we propose to combine the usability attributes f-17
(implementation vs. interface dependency) and f-19 (technical
mismatch) into one factor “dependency”.

Without surprise, as many as 43.5% of the usability related
bug-posts are found to be “feature requests”, and 31.1%
actually report true bugs, describing situations when the APIs
do not correctly do what they are excepted to, or described to
do in the documentation (where the documentation appears
to be correct). We also found additional factors such as
issues with performance and security. We understand that such

factors are more relevant to the usefulness rather than usability
of the APIs. From the remaining set of usability attributes, the
most significant factors are described below in the light of the
lessons we learned from the study of the bug-posts.

A. Documentation

More than a quarter (27.3%) of the usability related bug-
reports in our study reflect issues about documentation. This
indicates that the client code developers do consult the doc-
umentation while using the APIs. Around 34.94% of the
documentation related bug-posts actually report incorrectness
in the documentation. Besides minor typos, other types of in-
correctness include incorrect description (i.e., inconsistencies
between what the certain function is described to do and what
actually it did) of a certain function or feature, incorrectness in
the examples provided in the documentation, and the like. As
many as 22 out of the 117 documentation related bugs-postings
reported missing description of certain features or functions.
For example, the bug-report 550765 (GNOME pygtk binding)
states,

The functions gtk.gdk.error_trap_push
and gtk.gdk.error_trap_pop have no
documentation. They are not listed or even
mentioned in the doc page...

A number of the bug-posts also report the documentation
having description of certain features or functions, which
existed in the earlier versions, but no more exists in the current
version of the API. In six of the documentation related bug-
reports the users directly indicate outdated documentations.

Some of the documentation related bug-reports reveal in-
completeness or obtuseness in the description of certain fea-
tures of the APIs. For instance, the Issue4059 (Python 3.1)
states that the sqlite3 documentation misses Row and Cursor
description. A few of the bug-reports (e.g., bug-report 531601
for GNOME java-gnome binding) requested for beginners’
tutorial, or example demonstrating basic usage of the APIs.
Even some of the bug-reports contain just the users’ questions
on how to achieve a goal using the underlying API, or requests
for further explanation.

B. Exposure of Elements

As many as 10.3% of the usability related bug-reports in
our study, are related to the users’ concern about exposure of
elements. The study suggests two aspects regarding exposure
of elements: (1) exposure of functions, classes, and attributes
(e.g., class-members) based on their necessity for use by the
client code, and (2) the modifiability (mutation and extension)
of those exposed elements.

The first aspect is reflected in more than 24 bug-reports.
Almost all (23 out of 24) of such bug-posts reported the users’
requests to make certain functions publicly available as APIs.
More than 10 bug-reports reflect the users’ requests to make
certain classes available for public use. For instance, the bug-
post 126613 of Eclipse JDT Core says,

Internal class ...internal.core.SourceType
is required in TPTP for Source Opening
Action. We would like to request that this
be made public API.



The users’ concern about exposure of attributes and vari-
ables is also found in some of the bug-reports. For instance,
in the bug-post 540741 of the pyobject binding of GNOME,
the reporter states the need to make pygobject GOption types
public for gnome-python. Again, the Issue4812 (Python 3.1)
reports that a number of internal-use constants are dumped in
the main namespace, which should be fixed before people start
using them.

The second aspect of exposure of elements reflected in the
bug-reports addresses the users’ ability to modify the value
of a certain attribute, override a function, or extend a certain
class. For instance, the bug-post 105452 of Eclipse JDT Core
suggests that the synthetic accessor methods should be made
‘FINAL’.

C. Memory Management

Memory management issues are reflected in 8.4% usability
related bug-reports. For instance, the Issue4921 (Python 3.1)
reports a small Python program that exhausts (80MB) the pri-
mary memory. Besides reporting issues with exessive memory
consumption, many of the memory management related bug-
posts also report situations causing segmentation faults. For
example, the Issue4884 (Python 3.1) states,

... has a bug in gethostbyaddr_r
that assumes the buffer argument is
8-byte aligned... gcc seems to always
provide such alignment for the call in
socketmodule.c:socket_gethostbyaddr(), but
llvm-gcc (possibly only HEAD, not 2.4) does
not, which causes a segfault ...

D. Function Parameter and Return

As many as 8.2% of the usability related bug-reports reflect
aspects about function parameters and return types. In the
bug-post 506415 (glibmm binding of GNOME), we find an
interesting discussion between the bug poster and the API
developers. The reporter argues in favour of many parameters
to a function. Then one of the API developers expresses doubt
about the legitimacy of such need stating,

Do you have a real-world need for 9
parameters?

It is interesting to see that the API developer is aware of
the negative impact of too many parameters to a function.
Usability issues with functions’ return types and the specificity
of the types of parameters are also found in a number of bug-
reports. For example, the Android Issue2985 states,

Returning null in onCreateDialog(..)
should not result in an error. It should
be silently ignored.

E. Dependency

From the study of the bug-reports, we identify users’
concern about two types of dependency: platform dependency
and inter-component dependency.

7.5% of the usability related bug-postings reported users’
concern about platform dependency, which means technical
incompatibility of the APIs with the underlying operating
systems or external library/components that they are intended
to cooperate with. For example, the bug-report 528758 of

GNOME pygtk binding reports that openembedded.org has
a patch for compiling pygtk on headless machines, and it
is necessary to have X running when importing gtk for
compilation.

About 6.5% of the usability related bug-reports reflect issues
with inter-component dependency. A number of situations are
reported as bug-posts, where the users faced difficulty due
to unnecessary coupling among components, or lack of inte-
gration, or improper implementation of the inter-component
dependency. For example, the bug-post 229528 (Eclipse JDT
UI) suggests removal of dependency stating,

org.eclipse.jdt plugin has dependencies
on UI plugins: org.eclipse.ui.cheatsheets
and org.eclipse.ui.intro. Is it possible
to remove the dependencies or make the
requirement optional?

Although most of the dependency related bug-posts suggest
against coupling and inter-dependency, a few bug-reports are
also found, which suggest the opposite. For instance, in the
bug-post 120595 (GNOME pygtk binding) the reporter favours
coupling by stating,

...are there plans to integrate (parts of)
libegg into pygtk (perhaps only the very
stable stuff, like eggtreemodelfilter and
eggtrayicon)?

F. Backward Compatibility

Around 6.1% of the usability related bug-reports we studied
are concerned with backward compatibility. A couple of bug-
reports indicated missing functions in the newer version, which
used to exist in the earlier versions. For example, the bug-post
547058 of pygtk binding of GNOME states,

Using the pre-built win32 binaries
pyGTK 2.12.1-2 lacks the method
gdk.gtk.DragContext.get_source_widget().
It’s there in 2.12.1-1 though.

Surprisingly, the Issue4651 (Python 3.1) suggests the opposite,
saying that they can remove getopt.error since Python 3.x does
not have to be backward compatible with Python 2.x.

Some of the bug-reports (more than six postings) pointed
to API breakage, i.e., backward incompatibility of the new
version. For instance, the Issue4867 (Python 3.1) reports that
some code works fine in python 2.5 and 2.6, but does not work
in python 3.0.

A couple of bug-postings (e.g., bug-post 541296 for gtkmm
binding of GNOME) reported that deprecation of certain
functions caused loss of functionality. Some of the bug-
reports point to users inconvenience in getting warning or error
messages due to their use of deprecated methods. For instance,
in the bug-post 54398 (Eclipse JDT Core) the user reports that
implementation of deprecated method in an interface yields
compiler warning “Usage of deprecated API”, which does not
really help to avoid such warnings.

IV. THREATS

Our study may be subject to human errors, our ability to
accurately interpret the bug-reports. However, we attempted
our best in accurately interpreting and evaluating the bug-
reports, with many cases cross validation and group discussion.



To keep our study reliable and replicable, we have provided
all necessary details (the selection criteria with exact dates)
about the bug-posts in our study and our methodology.

One might argue, that the bug-reports in our study may
not be representative of all bug-posts pertaining to all APIs
in the universe, and the same study if conducted with bug-
reports from a different set of bug repositories may yield
different outcome. To minimize this issue, we carefully chose
bug repositories of different open-source projects of diverse
categories, and studied a significantly large number (1,513) of
bug-reports.

V. RELATED WORK

Many studies to date applied HCI (Human Computer In-
teraction) techniques such as user studies [1], [6], [9], [15],
[17], [19], field observations [9], [14], and surveys [9], [14],
[21] for identifying API usability factors and proposing guide-
lines [2], [11] for improved usability. Stylos and Myers [18]
mapped the space of competing design decisions and API
quality attributes. Clarke and Becker [4] proposed 12 cognitive
dimensions for describing and measuring API usability. Bore
and Bore [3] proposed seven measures for profiling usability
of APIs. Ratiu and Jürjens [13] proposed matrices to determine
how the domain concepts are internally represented in the
API, to help the API developer. McLellan et. al. [9] suggested
measuring five attributes for determining usability of an API.
http://www.apiusability.org was created in 2009 to provide
extensive resources on API usability.

While the proposed guidelines for designing usable APIs
and assessing usability are useful in many ways, those are
often at too high level [3], [4], [18] to practically map to
low level program components. Moreover, the implications are
often too specific to the individual APIs of interest [1], [17],
or too focused on individual usability attributes [6], [15], [19].
What was missing in the literature, is a comprehensive list of
low level API usability factors, similar to Nielsen’s usability
heuristics [12] that are widely used by the HCI community in
designing and evaluating usable user interfaces. In this regard,
Zibran [21], based on literature review only, proposed a flat
list of 22 API usability factors. Recently, Hou and Li [8]
manually analyzed 172 newsgroup discussions from the Java
Swing Forum, where 89 posts appeared to comprise questions
asking about how to use the API to achieve a certain goal.
However, our work significantly differs from theirs. Towards
better completeness, we studied 1,513 bug-reports from five
different bug tracking systems, identified a set of API usability
factors, and ranked those with their relative importance.

VI. CONCLUSION

In this paper, we have presented our study for identifying
the factors that affect the usability of APIs. We manually
investigated 1,513 bug-reports from the bug tracking systems
of five different open-source projects of diverse categories.
We followed up the work of Zibran [21], and refined his
proposed set of API usability factors towards completeness
and correctness. Many of the API usability issues identified

from our study were already unveiled before. But, there was no
quantitative indication about how important a usability factor
(e.g. documentation) is over another (e.g., dependency), until
this work, where we ranked those factors according to their
pragmatic importance based on how frequently the factors are
reflected in the bug-posts. We believe, this will be of immense
help to the community in designing and developing APIs with
better usability.

Generally, the huge number of bugs filed everyday, makes
it difficult for the API developers to quickly respond to those.
Interestingly, 37.14% of the bug-reports in our study are
found to be related to API usability, among which a major
portion is concerned with those few most frequent usability
issues. Hence, by properly taking care of those issues, the API
developers can significantly reduce the number of daily bug-
postings, which will consequently make their API maintenance
job easier.

Acknowledgement: The authors would like to thank Jonathan
Sillito for his valuable comments in the early stages of this
study.

REFERENCES

[1] J. Beaton, S. Jeong, Y. Xie, J. Stylos, and B. Myers. Usability challenges
for enterprise service-oriented architecture APIs. In VL/HCC, pages
193–196, 2008.

[2] J. Bloch. How to design a good API and why it matters. In OOPSLA,
pages 506–507, 2006.

[3] C. Bore and S. Bore. Profiling software API usability for consumer
electronics. In ICCE, pages 155–156, 2005.

[4] S. Clarke and C. Becker. Using the cognitive dimensions framework to
evaluate the usability of a class library. In Joint Conf. EASE & PPIG,
pages 359–366, 2003.

[5] J. Daughtry, U. Farooq, J. Stylos, and B. Myers. API usability: CHI’2009
special interest group meeting. In CHI, pages 2771–2774, 2009.

[6] B. Ellis, J. Stylos, and B. Myers. The factory pattern in API design: A
usability evaluation. In ICSE, pages 302–312, 2007.

[7] M. Henning. API design matters. ACM Queue, 5(4):24–36, 2007.
[8] D. Hou and L. Li. Obstacles in using frameworks and APIs: An

exploratory study of programmers newsgroup discussions. In ICPC,
pages 91–100, 2011.

[9] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi. Building more
usable APIs. IEEE Software, 15(3):78–86, 1998.

[10] B. Myers, A. Ko, S. Park, J. Stylos, T. LaToza, and J. Beaton. More
natural end-user software engineering. In WEUSE, pages 30–34, 2008.

[11] J. Niño. Introducing API design principles in cs2. J. Comput. Small
Coll., 24(4):109–116, 2009.

[12] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In
CHI, pages 249–256, 1990.

[13] D. Ratiu and J. Jürjens. Evaluating the reference and representation of
domain concepts in APIs. In ICPC, pages 242–247, 2008.

[14] M. Robillard and R. DeLine. A field study of API learning obstacles.
Empirical Softw. Engg., pages 1–30, 2010.

[15] J. Stylos and S. Clarke. Usability implications of requiring parameters
in objects’ constructors. In ICSE, pages 529–539, 2007.

[16] J. Stylos, S. Clarke, and B. Myers. Comparing API design choices with
usability studies: A case study and future directions. In AWPPIG, pages
131–139, 2006.

[17] J. Stylos, B. Graf, D. Busse, C. Ziegler, R. Ehret, and J. Karstens. A
case study of API redesign for improved usability. In VL/HCC, pages
189–192, 2008.

[18] J. Stylos and B. Myers. Mapping the space of API design decisions. In
VL/HCC, pages 50–60, 2007.

[19] J. Stylos and B. Myers. The implications of method placement on API
learnability. In FSE, pages 105–112, 2008.

[20] G. Wurster and O. Oorschot. Developer is the enemy. In NSPW, 2008.
[21] M. Zibran. What makes APIs difficult to use? J. Comp. Sci. Netw. Sec.,

8(4):255–261, 2008.


