
Java Bytecode Clone Detection via Relaxation on Code Fingerprint

and Semantic Web Reasoning

Iman Keivanloo
±
, Chanchal K. Roy

*
, Juergen Rilling

±

±
Department of Computer Science

Concordia University, Canada

{i_keiv, rilling@cse.concordia.ca}

*
Department of Computer Science

University of Saskatchewan, Canada

croy@cs.usask.ca

Abstract—While finding clones in source code has drawn

considerable attention, there has been only very little work in

finding similar fragments in binary code and intermediate

languages, such as Java bytecode. Some recent studies showed

that it is possible to find distinct sets of clone pairs in bytecode

representation of source code, which are not always detectable

at source code-level. In this paper, we present a bytecode clone

detection approach, called SeByte, which exploits the benefits

of compilers (the bytecode representation) for detecting a

specific type of semantic clones in Java bytecode. SeByte is a

hybrid metric-based approach that takes advantage of both,

Semantic Web technologies and Set theory. We use a two-step

analysis process: (1) Pattern matching via Semantic Web

querying and reasoning, and (2) Content matching, using

Jaccard coefficient for set similarity measurement. Semantic

Web-based pattern matching helps us to find method blocks

which share similar patterns even in case of extreme

dissimilarity (e.g., numerous repetitions or large gaps).

Although it leads to high recall, it gives high false positive rate.

We thus use the content matching (via Jaccard) to reduce false

positive rate by focusing on content semantic resemblance. Our

evaluation of four Java systems and five other tools shows that

SeByte can detect a large number of semantic clones that are

either not detected or supported by source code based clone

detectors.

Keywords-clone detection; Semantic Web; Java bytecode

I. INTRODUCTION

Two code fragments that share some degree of similarity
are considered typically a clone pair. The major similarity
types that can be distinguished are: (1) Syntactic and (2)
Semantic similarities. Syntactical similarity refers to the
situation where clone pairs share similar code pattern which
leads to type-1, 2, and 3 clone types [1, 2]. Semantic
similarities focus on pairings’ functionality [2] regardless of
their code patterns. Different definitions exist on what
constitutes such semantic clones in the literature, e.g. Roy et
al. [1] considered them to be type-4 clones. Yoshioka et al.
[3] proposed a more general definition, with semantic clones
being code fragments which are semantically identical or
syntactically (i.e. pattern) similar.

Fig. 1 shows a snapshot of two similar method blocks,
each block shown in one column. Although the first 30 lines
of the both methods are the same and therefore easy to detect
as similar code fragments, code similarities in the remaining
part of the methods are much more difficult to detect. For
example, there is an offset (gap) of 45 lines within the two

code fragments, before the second similarity occurs. This
second similarity within the method is based on semantically
similar sub-blocks which are not only once but twice
repeated in the right code fragment. The last similarity can
be found at the end of the two method blocks, involving two
similar blocks which have some dissimilarity due to
repetition and re-ordering. The arrows show the similarity
relationships among the method sub-blocks.

Classical clone detection tool might be able to detect that
the two methods in Fig. 1 are a type-3 clone by using
extreme thresholds settings in these tools (e.g. set the gap
threshold to 45 lines). However, such extreme configuration
will decrease the precision drastically due to the high number
of false positives it will generate. Alternatively, it is possible
to call the clone pair in Fig. 1 a semantic clone according to
Yoshioka et al.’s definition [3], since these two method
blocks are both semantically and to some extent also
syntactically similar.

This example shows clearly that humans can quite easily
detect both syntactic and semantic similarities of these two
methods. However, automated detection of semantic
similarities at method level is a non-trivial task, especially
for semantic clones being an undecidable problem [2].

In this paper, we present SeByte, a Java binary code
clone detection approach that classifies two method blocks as
clones if they are either similar in their patterns or
functionalities or both. Our objective is to find semantically
similar methods (based on Yoshioka et al.’s semantic clone
definition [3]) by comparing their functionality and pattern
similarities.

--
-- ……

No Gap

… …

45 LOC Gap

… …
…

…

29LOC

6LOC

27LOC

7LOC

Gap Gap

Method B (65 LOC)Method A (124 LOC)

Similar blocks (both semantic and pattern)
but pattern dissimilarity is high
(e.g. re-ordering and repetition)

6LOC

7LOC

19LOC

29LOC
Similar

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Repeated

Figure 1. Two cloned method blocks that share both sytactic (i.e. pattern)

and semantic (i.e. functionality) similarities.

A- Converting to text

Java Type Repository

(Dimension #1)

Method Call

Repository

(Dimension #2)

 674: invokevirtual #50 // Method Player.getEurope()
 677: ifnull 852
 680: aload 12
 682: invokevirtual #51 // Method Player.initializeHighSeas()
 684: invokevirtual #50 // Method Player.getEurope()
 687: invokevirtual #50 // Method Player.getEurope()
 690: invokevirtual #52 // Method Europe.getUnitList()
 693: invokeinterface #70 // InterfaceMethod List.iterator()
 698: astore 13
 700: aload 13
 702: invokeinterface #71 // InterfaceMethod Iterator.hasNext()
 707: ifeq 52
 710: aload 13
 712: invokeinterface #72 // InterfaceMethod Iterator.next()
 717: checkcast #53 // class Unit

Java Bytecode in text format

Java Bytecode

Files

Input

B- Fingerprinting

{Player, Player, Player,

Europe, List, Iterator,

Iterator, Unit}

{getEurope,

initilizeHighSeas,

getEurope, getEurope,

getUniList, …}

Java Type
Fingerprints

Method Call
Fingerprints

C- Sematic Web repository population

Relaxation on fingerprinting

Knowledge Bases
 (2 Dimensions)

Metric #1
Java Type Pattern Similarity

Metric #2
Java Type Fingerprints Similarity

Metric #3
Method Call Pattern Similarity

Metric #4
Method Call Fingerprints Similarity

Comparison
Methods

2

1

Pattern Matching
(Semantic Web-Reasoning&Querying)

Content Matching
(Set Theory-Jaccard measure)

4

3

Metrics

D- Metric calculation for each candidate

Relaxation ignores machine

low-level instructions etc.

Figure 2. Our approach overview

Fig. 2 shows a schematic diagram of our approach. First
it converts binary files to textual format (step A). To achieve
high recall, we introduce two heuristics for Java bytecode
clone detection. First relaxation on code fingerprint, which
means only certain token types, will be considered for the
clone detection (step B). Second, the clone detection method
will be applied independently on each token type (a.k.a.
dimension) previously saved in the knowledge bases (step
C), which is referred as multi-dimensional matching.

Matching extreme dissimilarities such as large gaps or
repetitions (Fig. 1) is a major challenge. We address this
issue using Semantic Web based transitive closure querying
and reasoning. As a result, our pattern matching mechanism
(Fig. 2 step D) can handle extreme dissimilarities. Moreover,
in order to guarantee the semantic relevancy of the candidate
clone pairs, we use a Set theory function (Jaccard coefficient)
to apply semantic comparison (semantic matching), which is
shown in Fig. 2 step D (the bottom process). At the end, the
combination of two data sources (i.e. dimensions in step C)
and two clone detection types (step D) will result in four
similarity values for each candidate clone-pair. SeByte is
considered to be a metric-based clone detection approach
(according to Roy et al.’s [1] definition), which uses
Semantic Web for pattern matching to achieve high recall
and Set theory for similarity matching to keep the precision
(step D) high as well. Therefore, we use similarity matching
to cancel out the pattern matching deficiency (high false
positive rate). Like Juergens et al. [4] pointed out, the
reduction of false positives is often essential to increase the
usability and acceptance of a clone detection approach.

 Our research questions being addressed in this paper are
as follows:
1. Can semantic clones at method blocks be detected using

code fingerprint relaxation and the metric-based
matching on Java bytecode?

2. What is the performance of the approach with respect to
precision and recall?

3. What are the limitations of the presented approach?

The remainder of this paper is organized as follows:
Section II discusses basic challenges. Section III reviews
Java bytecode. Heuristics, our approach, Semantic Web-
based pattern matching, and evaluation results are presented
in Sections IV, V, VI and VII respectively. Related Work is
reviewed in Section VIII with conclusions in Section IX.

II. CHALLENGES: MAJOR PATTERNS IN METHOD

LEVEL CLONE MATCHING

In this research, we are interested to find semantic clone-
pairs which also share some degrees of syntactical
resemblance. Fig. 3 illustrates seven examples of such clone-
pairs.

Subset pattern with no repetition
 and missing the if block
starting from the middle

void contact(){

print(“hello”);

print(“”);

i++;

j=i;

if(i>0)

{

copy(a,b);

copy(b,c);

}

send(a);

send(b);

send(c);

flush();

close();}

C. Ordered bag
+Gapped

void

contact(){

print(“hello”

);

print(“”);

send(a);

send(b);

send(c);

flush();

close();}

void

contact(){

print(“”);

send(c);

flush();

close();}

F. Ordered set
+Gapped

void

contact(){

i++;

send(a)

flush();

close();}

void contact(){

if(i>0)

{

 copy(a,b);

 copy(b,c);

}

send(a);

send(b);

send(c);}

A. Ordered bag
+ Sliding

Void

contact(){

i++;

j=i;

If(i>0)

{

 copy(a,b);

}

send(a);

flush();

close();}

B. Ordered Set
 +Sliding

E. Ordered set
void

contact(){

print(“”);

i++;

j=i;

if(i>0)

{

 copy(a,b);

}

send(a);

flush();

close();}

Exact subset
starting from middle

Subset with no repetition
starting from middle

Subset with missing the if block

Exact pattern
 with no repetition

Subset starting from middle
 and missing the if block

D. Ordered bag
 +Sliding +Gapped
void

contact(){

i++;

j=i;

send(a);

send(b);

send(c);

flush();

close();}

G. Ordered Set
 +Sliding +Gapped

Subset pattern
with no repetition

and missing the if block

Target Method

Figure 3. Seven interesting parings matched with the target method. Note

the extreme differences due to repetitions, slidings, and gaps.

The seven clone-pairs are chosen and categorized based
on their sources of syntactical dissimilarities. The major
sources are repetition, sliding, and gaps (marked by
asterisk). We use ordered bag and ordered set to denote the
presence or absence of repetitions. Note that in this paper,
sliding indicates upwards or downwards block shifting in the
source code between a pairing which leads to finding the
matching points. For example in Fig. 3 code block A is an
exact copy (i.e. ordered bag with no gap) of a part of the
target method. It is possible to match the two blocks, by

sliding block A through the target method. Block B requires
not only the sliding but also ignoring of repetitions (i.e.
ordered set with no gap) to establish the similarity. Code
block E illustrates a case where both blocks have the same
ordered set of statements, whereas in block F we have
distinct set of commands from the beginning and ending of
the target method including a gap in between. Blocks C, D,
and G represent some possible combinations of blocks A, B,
E and F. Further, we aim to detect not only these seven
patterns but also all their possible combinations, making the
detection method an inherently more challenging task.

III. JAVA BYTECODE OVERVIEW

Similar to other low level languages (i.e., machine level),
Java bytecode uses machine instructions to simulate basic
functionalities such as conditions and loops. There exist
several approaches to convert Java bytecode to a structured
format from which facts can easily be extracted. These
approaches include, (1) Java’s environment native
commands (used in our approach), (2) Jimple [5] which
provides a three address code presentation, and (3) Davis et
al.’s Javap2 [6]. Fig. 2 shows an example output of the first
approach that we used. Different types of tokens such as Java
virtual machine instructions, strings, method names and Java
type names are available in the bytecode representation.
These tokens form the code fingerprint in our case. In the
following, we use Java bytecode, bytecode, and binary
keywords interchangeably to refer to any content similar to
the one in Fig. 2 (output from step A).

Opportunity. Clone detection at bytecode level can
detect clone pairs, which might not be syntactically similar at
source code level but are in fact semantically similar. Since
through the compilation of the source code to a binary format
a unified representation of source code is generated. At the
bytecode level (1) method inlining has taken place, and (2)
syntactic dissimilarities of various loops and conditional
blocks in the source code have been transformed to unified
format. As a result, bytecode can eliminate some of the
challenges for semantic clone detection.

Challenge. While compilation techniques such as
method inlining are useful in semantic clone detection, they
also introduce new challenges. Fig. 4 shows one of these
clone detection challenges caused by method inlining in
bytecode. In this example, the size of the method send() in
the first fragment is large in terms of lines of code and it has
been considered for inlining. The resulting dissimilarity
between the two fragments at bytecode level will increase by
several folds, making the detection of these methods as clone
pairs inherently difficult.

IV. FROM CODE FINGERPRINTING RELAXATION TO

MULTI-DIMENSIONAL COMPARISON

A major part of the clone detection involves matching
source code content (e.g., from AST). The state of the art is
to consider the sequence of source code statements as a
single fused information source to be compared.

Contrary to the state of the art in clone detection and
search, we established in our approach a novel heuristic

called Relaxation on Code Fingerprint which leads to a
Multi-dimensional Comparison approach (2-dimensional in
our case). Instead of comparing code content as sole fused
fact sequence, we extract two data families (i.e., sequences),
each of which constitutes a dimension. Each dimension
represents only part of the method block’s characteristics.
We then compare these generated dimensions independently
using the clone detection algorithm to detect candidate clone-
pairs. Clone-pairs detected for each dimensions are then used
as input to a decision making function for final results.

Fig. 2 step B shows an example for such a relaxation on
code fingerprinting. In the bytecode column, Java type
fingerprints are marked as bold and method names are
underlined. The first dimension contains the names of
accessed Java types denoted by . The second dimension
only contains the name of called methods denoted by .
Both dimensions contain ordered sequences, based on their
actual appearances in the bytecode (e.g., Fig. 2). Due to our
relaxation heuristic, we ignore everything else such as strings
and virtual machine instructions.

The underlying rationale of the relaxation on code
fingerprint is to develop a robust clone detection approach
that can survive even extreme dissimilarities. Using our 2-
dimensional matching, we can increase the recall for
semantic clones by comparing each data family
independently.

Our 2-dimensional approach also reduces input data size
for the clone detection process since for each dimension only
a subset of the available data is considered for comparison –
either the names of the called methods or Java types. Fig. 5
shows the effectiveness (i.e. reduction) of our approach in
terms of number of token to be analyzed. Using this
fingerprinting approach for our bytecode datasets (Table 1),
we were able to achieve a reduction in data size of 50-80%.
The size reduction is an important for our approach, since its
computation complexity is high (e.g.,). Therefore, our
2-dimensional approach not only allows for the (1) detection
of clone-pairs with extreme pattern dissimilarity but also (2)
increases performance of our approach by several folds.

Void method_original(){

a.copy(a);

send(a);

a.flush();

a.close();

}

Void method_cloned(){

a.copy(b);

a.flush();

b.close();

}

Suppose, send() is a static method
which will be considered for
inlining during compilation

Figure 4. The dissimilarity at source code level is only one line, at the
binary level due to method inlining, it depends on the size of method send()

TABLE I. DATASETS

Dataset Size (#file) Application Context

Bytecode Source code

EIRC 83 64 Network-based comm. client

Freecol (server) 220 79 Server application

Freecol (full) 1120 570 A strategy-based game

Apache (DB) 1093 448 Database system

Figure 5. Effects of the code fingerprint relaxation on data reduction (with

respect to the number of tokens)

0 100000 200000 300000

ERIC

Freecol (srv)

Freecol

hbase
Method name fingerprint

Java type fingerprint

Regular ByteCode

V. OUR APPROACH

In what follows we introduce SeByte, our novel hybrid
approach for Java bytecode clone detection. SeByte
combines metric-based clone detection [1] with pattern based
clone detection. This approach computes the similarity
independent measures [7, 8] (e.g. LOC) to find clone pairs
and then use a similarity threshold to determine the actual
clone pairs. In pattern-based clone detection (e.g., [9]), on
the other hand, dissimilarity thresholds (e.g., number of
consecutive dissimilar tokens) play a major role in the
detection of clones. SeByte takes advantage of both metric
and pattern based approaches, by engaging the pattern-based
clone detection as one of the similarity metrics. The major
steps being applied by SeByte are:

Repository Preparation. Based on our fingerprinting
relaxation and 2-dimensional heuristics, we extract
fingerprints for Java types and names of called methods,
which we publish to two Semantic Web repositories (Fig. 2).

Pattern Similarity. Using Semantic Web based
techniques, we find candidate clone-pairs based on their
pattern resemblance. Note, we consider patterns as similar, if
their order of tokens is identical. The objective of this phase
is to detect clone pairs that share similar code patterns (i.e.
fingerprints). As a result of our Semantic Web-based
approach, SeByte can detect clone-pairs even in scenarios
with very gapped clones such as, method pair
 and . Our approach
also can survive repetitions with high frequency within a
code block, such as and . It
also supports sliding for clone detection such as
 and More importantly,
its search power is not limited to these three separated
examples, but also supports combinations of them for every
single token in the sequence (similar to Fig. 3 samples and
their combinations thereof). The resulting search (detection)
approach is very comprehensive and finds various types of
similar method blocks based on these patterns. However, due
to the number of possible matches, it also increases the false
positive rate.

Content Similarity. As part of our detection of semantic
clones, we also consider content similarity values, to allow
for the removal of false positive results detected during the
pattern matching step. Instead of using primitive measures
such as LOC, we utilize Set theory functions. We measure
the content resemblance among two method blocks using the
Jaccard Coefficient (1) as a comparison function. We denote
 and as the method dimension or type dimension for
the two subject code fragments respectively. Note is a set
therefore neither repeated elements nor orderings between
elements exist. The key responsibility of content similarity
process is to calculate the semantic resemblance of two
method blocks based on their contents (e.g., tokens)
regardless of the order of the elements in them. We should
note that the ordering of elements has already been addressed
in the pattern match part of our approach above.

 (1)

Metric-based Clone Detection. In this step, we combine

the Jaccard and pattern similarity results for each of the two

dimensions (the Java types and method calls) to detect final

clone pairs. We thus have four metrics (presented in the last

column of Fig. 2) for detecting the similarity between two

code fragments, which are either numerical (content

similarity) or ordinal (pattern matching). In particular, we

calculate the overall similarity of two code fragments, and

 using the function (2) where we use the

intersection of four sub-functions for each of the metrics.
denotes the input method block, with its extracted dimension

method and Java type . In our approach we calculate

approximately twenty pattern similarity values for each of

the clone pair candidates in order to cover the cases shown in

Fig. 3, and their combinations thereof. The number of

queries is denoted by q in (2). The first boolean function

considers clone pair as candidates, as long as one of the

queries using the union operator returns a positive value. We

designed our Jaccard similarity functions (i.e., js) to report its

final result as a boolean. It means that the degree of

similarity of the candidate parings must be more than a static

value denoted by , and to be detected as clone pair by js

functions. Finally, the intersection of boolean values for js

and query functions determines whether the candidate clone

pair is selected or discarded. The computation complexity of

this approach is where is the largest method size.

However, can be considered as a constant therefore our

actual complexity is .

 (2)

VI. TRANSITIVITY VIA SEMANTIC WEB QUERYING AND

REASONING

The Semantic Web
1
 provides an open scalable logic-

based computation platform, which has evolved over the last
10 years from a pure research to an actual industrial strength
technology. Its primary goal is to bring openness to
knowledge modeling and reasoning. Based on its theoretical
aspects, several data modeling languages for graphs and
querying languages have been proposed, implemented, and
standardized. OWL is the primary modeling language which
supports up to First-Order logic with SPARQL being the
standard OWL compatible graph-based query language. One
of the unique features of the Semantic Web compared to
relational databases is its native support for transitive closure
computation. Significant progress has been made in the last
couple of years in enhancing the performance of Semantic
Web reasoners by optimizing them both for in-memory and
disk-based computation of scalable transitive closure.

In this section, we discuss how the Semantic Web can be
applied towards pattern matching in clone detection. The use
of Semantic Web technologies simplifies not only the
creation of queries to model patterns in a target code block,
but also queries can also be executed against an existing

1 http://www.w3.org/standards/semanticweb/

pattern knowledge base. A sample query code fragment and
its corresponding simplified SPARQL query are shown in
Fig. 6. By default, the query finds all blocks with the same
nodes {RootBCE} (considering their order).

In order to detect similar patterns with minor or extreme
dissimilarities, the query engine (including the inference
engine) takes advantage of the transitive property (i.e.,

hasConnectionTo). Executing the same query with
reasoning enabled configuration will detect approximately
similar code blocks with gaps, repetitions and sliding (e.g.,
Fig. 6 Root_2 method block). Note that in this example we
only used single query to model some aspects of exact and
approximate code pattern matching to illustrate the power of
the Semantic Web. In order to support all possible
dissimilarities, a combination of several queries is required.

M
a

tc
h

e
d

M
e

th
o

d
 B

lo
c

k
s

S
P

A
R

Q
L

q
u

e
ry Select ?block where{

?block hasConnectionTo B .
B hasConnectionTo C .
C hasConnectionTo E .

}

Automatic
Conversion

b c e
Root

The method block under investigation

Query
Execution

b c d e

With ReasoningRoot_2

b c e

No ReasoningRoot_1

Figure 6. Code pattern matching using Semantic Web reasoning

VII. CALIBRATION AND EVALUATION

For the evaluation of our bytecode clone detection
approach, we selected projects from different application
domains and of different sizes (Table 1). Datasets were
manually extracted and checked for completeness. For each
dataset, we created two equivalent subsets, (1) the bytecode
and (2) the source code collections. Given the compilation
effects, the corresponding collections contain different
number of files, but their overall contents remain very
similar. Note that, we adopted the EIRC source code set
from Bellon et al.’s [10] oracle.

A. Calibration

In SeByte, we used two different thresholds to evaluate
the resemblance of method content. The two thresholds are
(1) (Jaccard threshold for method similarity) and (2)
(Jaccard threshold for Java type similarity). The objective of
our calibration process is to determine the values for and
 through an empirical analysis such as that the precision
and recall can be optimized. In what follows we describe the
major steps of this calibration approach.

Step 1. We manually created an oracle for bytecode
clones, by annotating 700 candidate semantic pairings
(including both true and false positives) using EIRC’s binary
representation. The similarities of these pairings were then
verified against EIRC’s source code level similarities. From
this analysis we then manually determined if a clone pair

should be considered a semantic clone pair (true positive) or
not (false positive).

Step 2. In order to determine the optimum combination
values for and , we calculated the F-measure for all
observed combinations (~ 6400 cases) based on
 and with our window size being equal
to 0.01. Fig. 7 shows the F-measure from the front and back.

From the calibration experiment, we were able to identify
the values for the and where the F-measure peaked in
Fig. 7 (both precision and recall were optimized). The
optimum combination for the dimension thresholds are
 . It means that if the pairing’s contents
are ~50% and ~20% similar (according to the comparison
function) for method calls and Java type dimensions
respectively, the candidate is true positive from the semantic
similarity point of view with high confidence.

Step 3. As a part of the validation phase, we further
validated the selected range for thresholds by random clone-
pair checking on three other datasets (Table 1). We evaluated
around 500 clone pairs manually, in order to determine if we
can find a configuration (other than the one in Step 2), which
might lead to better results, and experienced that Step 2
combination was the best.

w

F-measure (front)
The peak

w

F-measure (back)

Recall
w

φ
φ

wφ φ
Precision

Figure 7. The F-measure, precision and recall using all combinations of

two thresholds based on the manually made clone oracle for Java bytecode

B. Evaluation

Run-time. After determining the threshold settings, we
conducted some performance evaluation in terms of run-time
performance and agreements on the results. Fig. 8 shows the
processing time for some major queries (with and without
reasoning enabled), and processing steps including Jaccard
similarity computation. The results show that for medium
size projects, our approach can complete the clone detection
process within a few minutes. Moreover, it also shows that
the bottleneck is not the computation of the transitive closure
for pattern matching, which is an essential observation to
support our Semantic Web approach to clone detection.

Scalability. Apparently, the semantic similarity could be
a potential threat to SeByte (Fig. 8). For the investigation of
our approach we used several large enterprise Java projects

as input data. We successfully used SeByte to detect clones
on binary code as large as 300 KLOC on a desktop computer
with single core CPU and 3 GB RAM. For larger projects,
additional memory is required and our built-in reasoner
should be replaced with a Semantic Web inference engine
that scales well up to tera-byte data (e.g., [11]).

Figure 8. Processing time report categorized based on the computation

type. It shows that the time increases significantly for semantic similarity.

Comparison. In the next step of our evaluation, we
assessed the performance of SeByte in terms of agreements.
The goal was to see whether SeByte is able to detect clones
that are missed by other clone detection tools and vice versa.
We compared its result with the tools listed in Table 2.

TABLE II. SUMMARY OF CLONE DETECTION TOOLS AND

COMPARISON METHOD DETAILS

Tool Input

Data

Given Input

Type

Comparison

Method

Tool

Granularity

Tool Original Purpose

NiCad [9] Table 1 Source Code Automatic
Method-

level

Near-Miss Source Code

Detection

Merlo dataset

(From Bellon

Dataset [10])

 Bellon

 Oracle
Source Code Automatic

Method-

level

Metric-based Method-

Level Type-3 Source

Code Clone Detection

Scorpio [12]

 Table 1 Source Code

Manual

(sampling)

Line-level

(token)

Gapped Clones on

Source Code PDG

JCD [13] Table 1 Binary
Manual

(sampling)

Line-level

(pcode)

Type-3 Binary Clone

Detection

SimCad [14]
 Table 1 Binary

Automatic
Method-

level

Near-Miss Source Code

Detection

Note that, we have used NiCad (near-miss clone detector)

and Scorpio (semantic clone detector) on the source code
level, and JCD (type-3 on Java binary) and SimCad (source
code based near-miss clone detector) on bytecode level. Note
that, SeByte detects clone-pairs at method-level, so in theory
it is only feasible to compare its result automatically with
tools working at the same granularity. Therefore, NiCad,
Merlo’s clone set from Bellon et al. [10], and SimCad are
only options for automatic comparisons. However, we
attempted to manually compare with other tools with their
different capabilities.

The agreements/disagreements with NiCad including a
detailed report is shown in Table 3. As expected the
agreement percentage is not so high, since each one has been
designed to detect different types of clones. Moreover, this
observation complies with earlier studies both by Selim et al.
[15] and Davis and Godfrey [13], that the disagreement in
clones is due to differences between binary and source code.
Table 3 also shows that there are no relations between
agreement values and project size in this experiment.
Moreover, SeByte detects usually large number of clone-
pairs since it does not filter out very small-size method
blocks. We also used SimCad, originally designed for source

code clone detection on binary (based on the approach by
Selim et al. and Baker and Manber [16]). Again, as expected
the agreement between SeByte and SimCad was very low,
less than 20% on average. Finally, we compared SeByte with
Merlo’s clone detection tool (CLAN) [10]. The total
observed agreement for Type 1 and 2 clones was about 18%
while for Type 3 was negligible.

TABLE III. SEBYTE AND NICAD RESULT COMPARISION

 Runtime (second) # Clone pair # Clone class Agreement

 (~%) SeByte
Distributed

SeByte
Single core

 SeByte NiCad SeByte NiCad

EIRC 0.4 1.9 198 63 24 17 40%

FreeCol (server) 4 16 708 43 46 19 70%

Freecol (full) 135 414 1593 1339 149 305 60%

Apache (DB) 132 491 26955 15378 190 297 30%

Furthermore, we manually compared SeByte with JCD
on binary, and Scorpio on source code content. We used JCD
1.0.10 using the same configuration recommended by its
authors. Since Scorpio requires large amount of memory for
Java heap and stack, we executed it on dedicated hardware
with 24 GB RAM. As noted earlier, we were unable to
automate the comparison process for JCD and Scorpio since
both of them detect clones at finer granularity levels than
SeByte. We therefore manually verified whether results from
SeByte (i.e. cloned methods) are detected by them within a
reasonable coverage. For JCD the agreement ratio was
~40%, whereas for Scorpio it was negligible.

Summary. The primary reason for the low agreement
ratio was due to different search approaches, goals,
objectives, and input data. While each tool achieves an
acceptable recall/precision based on the tool specific
definition of a clone, each tool reports different clone-pairs
compared to other tools. While for example SeByte and
Scorpio support specifically semantically similar and gapped
clones, their different heuristics and input information
(source code vs. bytecode), result in almost completely
different result sets.

C. Answers to the Research Questions

In what follows we revisit our original research questions
listed in the Introduction. From our experimental evaluation,
we were able to observe that SeByte can detect semantic
clones that are missed by other source code or bytecode
based tools. As a result, the semantic clones reported by
SeByte are complimentary to existing clone detection tools.

Quality. According to the result in the calibration phase
(Fig. 7), 92% is the best recall that SeByte can achieve for
semantic clones at method-level using bytecode content.
Note that, this recall is for the clones that can actually be
detected using only binary information – and might not
reflect the clones that can be detected in the source code. We
also measured the precision of our approach by manually
checking 500 randomly selected clone pairs from our two
large datasets. The achieved average precision was around
79%. This observed precision matches the results from our
6400 experiments, which we performed during our
calibration step. Since, there are no other clone detection
approaches for Java bytecode which support semantic clone

0.1

1

10

100

100 200 300 400 500 600 700 800 900 1000

R
u

n
-t

im
e

(S
e

co
n

d
)

Lo
ga

ri
th

m
ic

File

Simple Query-based
Pattern Matching

Query-based Pattern
Matching including
Sliding Reasoning

Query-based Pattern
Matching Including
Sliding and Gap
Reasoning
Semantic Similarity

detection at method-level, there is no other way to evaluate
SeByte on a head to head comparison.

Threats to Validity and SeByte Limitations. We
calibrated SeByte based on a manually annotated dataset
which we created. Therefore, it is possible that the selected
thresholds are not the best due to bias or error in our oracle.
Regarding the last research question, the mediocre
agreements in Table 3 illustrates a major limitation (and
strengths) of our approach. It shows that our approach is able
to detect clones, which are missed by other tools, at the same
time, it misses clones detected by other tools. Therefore, we
consider SeByte to be a complimentary approach to improve
the overall recall of the state of the art clone detection tools.

VIII. RELATED WORK

Metric-based clone detection [7, 8, 17] is one of the
scalable approaches. Unique features of metric-based
approach are evaluated by Bellon et al. [10]. There are also
several semantic clone detection approaches [3, 12, 18]
proposed in the literature. However, two main challenges
remain for this research domain. First, there is no well-
established definition for semantic clones. Second, the
problem in general is undecidable [2]. Recently, diverse
approaches are proposed such as (1) a formal method-based
approach for embedded systems [18], (2) clustering of
entities in different granularities to achieve scalability [3].

Binary code clone detection has not been a major
research focus in the clone detection community. Baker and
Manber [16] used a combination of three comparison based
approaches such as Diff on almost the similar bytecode
representation that we have used (e.g. Fig. 2 Section B) to
detect syntactical clone (e.g. type 3). The JCD project [13]
developed by Davis and Godfrey uses a combination of hill
climbing and greedy algorithms to detect the maximum
coverage (including a pretty-printing tool [6]). There is also a
proposal to use process algebra on bytecode [19]. Selim et al.
[15] converted bytecode to the Jimple format [5] and used
third-party tools (originally designed for source code) on the
Jimple content. They reported maximum of 49% and 78%
agreements between clones from bytecode and source code.
This agreement ratio is similar to ours between SeByte and
NiCad and also supports the fact that clone detection at
source code and bytecode lead to diverse but complementary
results. Nevertheless, we showed that SeByte also detects
diverse results from such approach (i.e., Selim et al. [15]) by
comparing SeByte with SimCad on bytecode. The
comparison not only shows the usefulness of using bytecode
for clone detection but also highlights the strengths of our
heuristics and Semantic Web in clone detection.

IX. CONCLUSION AND FUTURE WORK

In this research, we introduced the idea of relaxation on
code fingerprint which leads to a 2-dimensional code
fragment comparison. The motivation was to find semantic
clones which hold high and moderate similarity degrees from
semantic and syntactic perspectives respectively. In other
words, it helps the search algorithm to survive in case of
extreme syntax dissimilarities to find semantic similarities.
We devised a metric-based approach with two major criteria:

(1) Pattern similarity, which is done using Semantic Web
querying and reasoning, and (2) Content similarity, which is
achieved using Jaccard coefficient. In general, SeByte
provides the first metric-based approach for semantic clone
detection on Java bytecode. By comparing to five tools with
different clone detection algorithms, we showed that our
approach is able to detect clones which are missed by them.
As future work, we plan to (1) apply SeByte on large-scale
subject systems not only on binary but also source code
levels, (2) compare with other state of the art tools, and (3)
examine whether certain combinations of the source code
and binary detection produce satisfactory results.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach”,
Science of Com. Prog., vol. 74, no. 7, May 2009, pp. 470-495.

[2] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using
Abstract Syntax Suffix Trees”, Proc. WCRE, 2006, pp. 253-262.

[3] S. Yoshioka, N. Yoshida, K. Fushida, and H. Iida, “Scalable
Detection of Semantic Clones Based on Two-Stage Clustering”, Proc.
ISSRE, 2011, pp. 3-4.

[4] E. Juergens and N. Göde, “Achieving Accurate Clone Detection
Results”, Proc. IWSC, 2010, pp. 1-8.

[5] Soot Framework, http://www.sable.mcgill.ca/soot/, (Jan 2012).

[6] Javap2, http://www.swag.uwaterloo.ca/javap2/index.html, (Jan 2012).

[7] Mayrand, C. Leblanc, E. Merlo, “Experiment on the Automatic
Detection of Function Clones in a Software System using Metrics”,
Proc. ICSM, 1996, pp. 244–253.

[8] J. Patenaude, E. Merlo, M. Dagenais, B. Lague, “Extending Software
Quality Assessment Techniques to Java Systems”, Proc. IWPC,
1999, pp. 49–56.

[9] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization”, Proc. ICPC, 2008, pp. 172-181.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools”, Tran. Soft.
Eng. vol. 33, no. 9, 2007, pp. 577–591.

[11] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal,
“OWL Reasoning with WebPIE: Calculating the Closure of 100
Billion Triples”, Proc. ESWC, 2010, pp. 213–227.

[12] Y. Higo and S. Kusumoto, “Enhancing Quality of Code Clone
Detection with Program Dependency Graph”, Proc. WCRE, 2009, pp.
315-316.

[13] I. J. Davis and M. W. Godfrey, “From Whence It Came: Detecting
Source Code Clones by Analyzing Assembler”, Proc. WCRE, 2010,
pp. 242–246.

[14] S. Uddin, C.K. Roy, K.A. Schneider, and A. Hindle, “On the
Effectiveness of Simhash for Detecting Near-Miss Clones in Large
Scale Software Systems”, Proc. WCRE, 2011, pp. 13-22.

[15] G. M. K. Selim, K. C. Foo, and Y. Zou, “Enhancing Source-Based
Clone Detection Using Intermediate Representation”, Proc. WCRE,
2010, pp. 227-236.

[16] B. S. Baker and U. Manber, “Deducing Similarities in Java Source
from Bytecodes”, Proc. ATEC,1998, pp. 179-190.

[17] T. Lavoie and E. Merlo, “Automated Type-3 Clone Oracle Using
Levenshtein Metric”, Proc. IWSC, 2011, pp. 34-40.

[18] B. Al-Batran, B. Schätz, and B. Hummel, “Semantic Clone Detection
for Model-based Development of Embedded Systems”, Proc.
MoDELS, 2011, pp. 258-272.

[19] A. Santone, “Clone Detection through Process Algebras and Java
Bytecode”, Proc. IWSC, 2011, pp. 73-74.

