Connectivity of Co-changed Method Groups: A Case Study
on Open Source Systems

Manishankar Mondal

Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Canada
{mshankar.mondal, chanchal.roy, kevin.schneider } Qusask.ca

Abstract

Software maintenance is an important and
challenging phase of the software develop-
ment life cycle because changes during this
phase without proper awareness of dependen-
cies among program modules can introduce
faults in the software system. There is also a
common intuition that cloned code introduces
additional software maintenance challenges and
difficulties. To support successful accomplish-
ment of maintenance activities we consider two
issues: (i) identifying coding characteristics
that cause high source code modifications, and
(ii) guidance for minimizing source code modi-
fications.

Focusing on these two issues we investigated
the effects of method sharing (among different
functionality) on method co-changeability and
source code modifications. We proposed and
empirically evaluated two metrics, (i) COMS
(Co-changeability of Methods), and (ii) CCMS
(Connectivity of Co-changed Method Groups).
COMS measures the extent to which a method
co-changes with other methods. CCMS quan-
tifies the extent to which a particular function-
ality in a software system is connected with
other functionality in that system. In other
words CCMS measures the intensity of method
sharing among different functionality or tasks

Copyright (©) 2012 Manishankar Mondal, Chanchal
K. Roy, and Kevin A. Schneider. Permission to copy is
hereby granted provided the original copyright notice is
reproduced in copies made.

(defined later). We investigated the impact of
CCMS on COMS and source code modifica-
tions. Our comprehensive study on hundreds
of revisions of six open source subject systems
covering three programming languages (Java,
C and C+#) suggests that - (i) higher CCMS
causes higher COMS as well as increased source
code modifications, (ii) COMS in the cloned re-
gions of a software system is negligible as com-
pared to the COMS in the non-cloned regions,
and (iii) in-spite of some issues (described later)
cloning can be a possible way to reduce CCMS.

1 Introduction

The software maintenance phase of the soft-
ware development life cycle is undoubtedly im-
portant and challenging. According to some
recent statistics [30], about 60 to 90 percent of
annual software expenditures involves mainte-
nance to existing software systems. The main-
tenance phase consists of those changes that
are made to a software system after it has been
deployed to the client upon client acceptance.
The changes occurring in this phase are some-
times extremely challenging because changes
without proper consideration of the impact
and the underlying dependencies among re-
lated program modules can introduce faults in
the software system. Low couplings or depen-
dencies among program modules is always de-
sirable [24]. A well designed software system
always minimizes coupling [23].

Existing studies have focused on program-
mer awareness of dependencies among pro-
gram artifacts. There are numerous studies
on: (i) the detection of class, method or file
level interdependencies and co-change patterns
[5-7,12,31,33], (ii) visualization of these de-
pendencies and patterns [2—4], (iii) impacts of
changing program components [7, 8], and (iv)
propagation of changes [14] based on the soft-
ware evolution history. However, none of these
studies focused on the following two points.

(1) Minimization of changes: FEach of
these studies support programmer awareness
about which other entities might need to be
modified while modifying a particular entity.
But, none of these studies investigated the rea-
sons why some software systems exhibit higher
changeability than others. None of these stud-
ies provide a way to reduce the number of mod-
ifications.

(2) Minimization of module dependen-
cies: None of these studies provide a way
to minimize dependencies (couplings) among
program modules. Intuitively, higher depen-
dency among program modules makes the mod-
ifications to the modules more difficult. There
are many refactoring mechanisms but these
cannot remove complex dependencies in many
situations. Suppose a particular user-defined
method is being used by two different function-
alities (or tasks). While making changes to this
method we should be concerned about all other
methods implementing these two functionali-
ties. In a real scenario, a particular method
might be used by many functionalities or tasks
(defined in Section 3) and in that case, mod-
ifications to the shared method will become
more difficult. If we cannot eliminate such com-
plex dependencies, the software may become
increasingly complex over time, and may go be-
yond the point of maintainability. None of the
existing studies shows possible ways of mini-
mizing module dependencies.

Focusing on these two issues we performed
an in-depth empirical study with the following
contributions.

(1) Our study discovers a potential cause of
increased modifications to program artifacts.

(2) We propose a possible way to minimize
module dependencies (or couplings) as well as
source code modifications.

We performed our investigation consider-
ing method level granularity. We introduce
two metrics: (1) COMS (Co-changeability of
Methods), and (2) CCMS (Connectivity of Co-
changed Method Groups). COMS quantifies
the extent to which a particular method co-
changes with other methods. CCMS measures
the sharing of methods among different func-
tionalities or tasks. In other words, CCMS is a
measure of dependencies (or couplings) among
methods. In this paper, we extensively investi-
gated the influence of CCMS on both COMS
and source code modifications.

We performed a case study with hundreds of
revisions of six open source software systems
written in three different languages and eval-
uated the introduced metrics in three ways:
(i) for the whole software system, (ii) for
the cloned regions of the system, and (iii)
for the non-cloned regions of the system. We
also measured a change related metric CMP
(Code Modification Probability) and observed
whether higher connectivity among co-changed
method groups causes increased source code
modifications.

According to our experimental results, (i)
higher CCMS causes higher COMS, (ii)
higher CCMS is also a possible cause of in-
creased source code modifications as well as
efforts in the maintenance phase (empirically
evaluated with statistical support), (iii) the
COMS in the cloned regions of a software sys-
tem is negligible as compared to the COMS in
the non-cloned regions and (iv) cloning can
be a possible way of minimizing CCMS for
those situations where functionalities or tasks
are connected but are likely to evolve indepen-
dently.

The rest of the paper is organized as fol-
lows. Section 2 discusses related work. Sec-
tion 3 explains some terminology including
task, co-changed method group, COMS and
CCMS. Section 4 describes the co-changeability
of methods in cloned and non-cloned code. Sec-
tion 5 discusses our methodology. Section 6
and Section 7 contain the experimental setup,
results and analysis of results. Section 8 dis-
cusses the minimization of co-changeability and
some possible validity threats are discussed in
Section 9. Finally in Section 10, we conclude
the paper mentioning our future work.

2 Related Work

Studying the impacts of co-changes is not a new
topic. Jafar et al. [16] performed a comprehen-
sive study on macro co-changes considering file
level granularity. They introduced two metrics
MCC (macro co-changes) and DMCC (diphase
macro co-changes) and using their proposed ap-
proach Macocha they detected how many files
exhibit MCC and DMCC. Their introduced
metrics can assist in mainly two ways: (i) by
managing development teams, and (ii) by man-
aging bugs and change propagations.

Zimmermann et al. [33] implemented a tool
called ROSE and integrated it with ECLIPSE
as a plugin to achieve three aims: (i) prediction
of future changes, (ii) determination of compo-
nent (file, method, variable etc) couplings that
are difficult to detect by program analysis, and
(iii) prevention of errors because of incomplete
changes. Their ROSFE prototype could predict
which files need to be modified for a particular
change request for 26% of cases.

Beyer [3] implemented and described a co-
change visualization tool CCVISU that can ex-
tract the underlying clustering of artifacts in
a software system by analyzing CVS log files.
CCVISU can help us in two ways: (i) under-
standing the relationships among different soft-
ware artifacts such as files, classes, methods
and packages which is useful for reverse engi-
neering, and (ii) helpful guidance of changes
happening in the maintenance phase.

Canfora and Cerulo [7] proposed an impact
analysis approach that retrieves the set of af-
fected source files from a change request by
mining the information stored in the bug track-
ing and versioning systems.

Ying et al. [31] proposed and developed a
method which was capable of recommending
relevant source files for a particular modifica-
tion task by querying previously stored change
patterns. The change patterns were extracted
by mining data from a software configuration
management (SCM) system by applying an as-
sociation rule mining algorithm. Their recom-
mendation system is intended to reveal valu-
able dependencies among files.

Gall et al. [11] introduced an approach of dis-
covering logical dependencies and change pat-
terns among different program modules by us-

ing the information in the release history of
a system. Their logical coupling identification
approach is intended to be used to restructure
systems to minimize structural problems.

D’Ambros et al. [2] implemented evolu-
tion radar to visualize module level and
file level logical couplings. They argued
that their tool integrated with a development
environment can support restructuring, re-
documentation and change impact estimation.

Hassan and Holt [14] conducted an empirical
study on change propagations in the software
systems. They have shown that historical co-
change information can be used to help devel-
opers during the change propagation process.

Zhou et al. [32] presented a Bayesian network
based approach for predicting change coupling
behaviour between source code artifacts. On
the basis of a set of extracted features such
as: static source code dependency, frequency of
previous co-changes, change significance level,
age of change and co-change entities their ap-
proach models the uncertainty of change cou-
pling process.

We can see that, none of the existing studies
focused on how the connectivities among dif-
ferent functionalities affect co-changeability of
methods and source code modifications. Our
study investigates this issue.

3 Terminology

3.1 Task

Before the commencement of a particular
project it is generally decomposed into mul-
tiple smaller tasks which are assigned to the
programmer responsible for the task. If we con-
sider an example project ‘Library Management
System’, an example task could be ‘User Lo-
gin’ or ‘Issuing a Book’ etc. While accomplish-
ing a particular task a developer can further
decompose it into multiple methods or classes
or other language specific structures which to-
gether perform the particular task. In this pa-
per we focus on the methods that belong to a
particular task.

3.2 Co-changed Method Group

If a particular project is developed under ver-
sion controlling system such as SVN, the re-
sponsible programmer commits the relevant
source code files (possibly with other non-
source-code files if necessary) to SVN after par-
tial or full implementation of each task. So it is
very likely that the methods which are added
or modified in a particular commit operation
belong to a particular task. According to our
definition these methods which are added or
modified in a particular commit operation form
a co-changed method group.

During the evolution of a software system
multiple revisions of it are created because of
multiple commit operations. We denote the re-
visions by revision(i) where 1 < ¢ < n. Here
n is the total number of revisions of the soft-
ware system created so far. A commit opera-
tion commit(i) on revision(i) causes the next
revision revision(i+1) to be created. For most
of the cases a particular commit operation con-
sists of several changes to the source code. As
we have already mentioned, the methods that
are created or that receive some changes in a
particular commit operation generally belong
to a particular task. But, a single commit op-
eration might also affect multiple tasks. Such
commits are termed ‘atypical commits’ [21].
For excluding atypical commits Lozano and
Wermelinger [21] discarded 2.5% of the largest
commit operations while analyzing the revi-
sions of a subject system.

Detection of Co-changed Method
Groups: To determine the co-changed
method group for a particular commit op-
eration commit(i) we need to accomplish
several tasks: (i) detection of all methods
in revision(i) with corresponding beginning
and ending line numbers, (ii) determination
of changes in revision(i) with corresponding
line numbers, (iii) mapping these changes to
the detected methods of revision(i) and at
last (iv) retrieval of the changed methods.
For a sequence of n revisions of a subject
system we will get a sequence of n — 1 commit
operations. After discarding the commit op-
erations with atypical changes we will obtain
our target commit operations. If the count
of these target commit operations is ¢, we

will have t co-changed method groups. But,
it is very likely that, a particular co-changed
method group will appear multiple times in
this sequence of t groups because, changes in
multiple commit operations might be centered
around the same or similar tasks. So, we need
to determine the unique co-changed method
groups for a sequence of commit operations.
Unique co-changed group identification process
is elaborated in Algorithm 1 (Section 5).

Difference Between Our Proposed
Method and Existing Methods: Our pro-
cess of detecting co-changed method groups is
a variant of the association rules introduced by
Zimmerman et al. [33]. The original associa-
tion rule considers the co-changes of all types
of entities including variables, methods, classes
etc. In our implementation we have consid-
ered the co-changes among methods only. The
method proposed by Zimmerman et al. [33]
is not suitable for the investigation regarding
method sharing. Because, it does not show
how methods are grouped for accomplishing
different functionalities. Also, no other exist-
ing methods tried to extract possible groups
of co-changing entities. Our proposed algo-
rithm (Algorithm 1) detects possible groups of
co-changing methods. From these groups we
can easily identify shared methods (the meth-
ods that are shared by more than one group)
and can calculate CCMS and COMS.

Minimization of the probability of false
associations: Generally while developing or
making changes to a particular functionality a
programmer writes code, checks whether the
code is working properly and continues this
process until they achieve the required goal.
During this process of writing and checking
the programmer might erroneously change pro-
gram artifacts that are not related to the func-
tionality. These errors can be fixed through
a continuous checking and writing process.
When the programmer commits the changes to
SVN, they try to be sure that the changes they
make do not contain bugs because the commit-
ted code is likely used by other programmers.
So, we see that before committing the program-
mer remains more concerned about the accu-
racy of the code. So, if we associate the entities
changed in a commit operation, it is likely that
we will avoid irrelevant or false associations.

Also, discarding atypical commits increases the
probability of avoiding false associations.

3.3 Co-changeability of Methods
(COMS)

Consider that we detected m unique co-changed
method groups. Fach of these groups is denoted
by g(i) where 1 <i<m. The count of elements
in a particular group g(i) is denoted by |g(3)].
If we want to change a particular method in a
group g(i), we also need to be concerned about
the other |g(i)| — 1 members belonging to this
group. So, we calculate the COMS for group
g(i) according to the Eq. 1.

COMS(g(i)) =g(D)] < (lg()[-1) (1)

Here, COMS(g(7)) is the COMS for group
g(i). The total COMS of all groups in a soft-
ware system can be calculated using the follow-
ing equation.

Total COMS = Z COMS(g(2)) (2)
i=1

Here m is the total number of unique co-
changed method groups in the software system.
Co-changeability is influenced by group connec-
tivity and this influence is not trivial. In the
following subsections we at first define CCMS
and then mathematically show the influence of

CCMS on COMS.

3.4 Connectivity of Co-changed
Method Groups (CCMS)

If two co-changed method groups share a com-
mon subset of methods, we say that these two
groups are connected. We define the connectiv-
ity of this connection constructed by these two
co-changed method groups by the count of meth-
ods shared between these two groups. A particu-
lar co-changed method group can have multiple
connections with multiple other groups.

Suppose a group ¢(i) has n connections. The
subsets of methods corresponding to a connec-
tion is denoted by s(j) where 1 < j < n. The
connectivity of this group g¢(i) can be calcu-
lated by the summation of the connectivities of
these connections in the following way:.

n
CCMS(g(i)) = Zl (7)) (3)
3=

Here, CCMS(g(1)) is the connectivity of the
co-changed method group g(i).

We should note that, this equation (Eq. 3)
gives more emphasis on those methods that are
included in higher number of connections. Sup-
pose, a particular method group has n con-
nections with n other groups. If a particular
method in this group remains included in m of
these connections where m < n, this method

will be considered m times by this equation.

3.5 Influence of CCMS on COMS

Suppose, there are m methods which are di-
vided into two co-changed groups where each
group has r methods. Also, these groups share
a common subset of methods. If the common
subset contains ¢ methods, the connectivity of
the connection between these two groups = ¢
(CCMS = ¢). Now the total co-changeability
of the methods of these two groups can be cal-
culated in the following way.

Total COMS(TCOMS)=2xrx(r-1) (4)

But, m = 2 x r — ¢ (because each of the two
groups has r methods and ¢ methods are com-
mon for each group). So, r = (m +¢)/2. Using
this value of r in Fq. 3, we get,

m+cx(m2+c_1)

:(m+c)><ém+c 2) (5)
Examining the above equation we can state
that, greater wvalues of ¢ will cause greater
COMS. However, in real scenario, a single
group might have several connections with sev-
eral other groups which will increase the prob-
ability of method co-changes to a great extent.
So, by reducing CCMS we can reduce COMS.

TCOMS =2 x

4 COMS in Cloned and
Non-cloned Code

We derived the equation for calculating COMS
for the whole software system from its observed

unique co-changed method groups. We can
also calculate COMS separately for cloned and
non-cloned regions of a software system. We
have done this because there are many empiri-
cal studies [13,15,17-21] with controversial out-
comes about the impacts of clones in the main-
tenance phase. Some studies [17, 20, 21] im-
ply that that cloned code is more harmful than
non-cloned code while others [13,15,18,19] re-
port the opposite. We wanted to find whether
cloned code exhibits more co-changeability of
methods than non-cloned code or not.

We have already discussed the procedure for
calculating the co-changed method group for
a particular commit operation commit(i) ap-
plied on a revision revision(i). If we apply a
clone detection tool on revision(i), we can sep-
arate the cloned and non-cloned blocks belong-
ing to revision(i). By mapping these blocks
to the methods of this revision we can de-
termine which methods are cloned and which
methods are not. We also need to know which
lines of a particular method are cloned. Ac-
cording to our consideration, a cloned method
might be fully or partially cloned. A partially
cloned method has some non-cloned blocks in
it. As we know the cloned lines of each method,
we can map the changes belonging to commit
operation commit(i) to the cloned and non-
cloned portions of the methods. Thus, we can
determine the group of methods which have
changes in their cloned portions and also the
group of methods which have changes in their
non-cloned portions. We call these groups co-
changed method groups of cloned and non-
cloned code respectively. A partially cloned
method which has some changes in its non-
cloned portions but not in its cloned portions
will belong to the co-changed method group
of non-cloned code not to the group of cloned
code. By determining the unique co-changed
method groups in cloned and non-cloned re-
gions we can determine the COMS for cloned
and non-cloned regions.

5 Methodology

The calculation of unique co-changed
method groups, their connectivities and
co-changeabilities for a particular software
system requires several sequential steps.

5.1 Preprocessing

We examined all the revisions (from revision
1 to the last revision as indicated in Table 2)
of a software system for calculating metrics.
We know that a particular revision is created
because of a particular commit operation. A
commit operation might (or might not) consist
of some source code changes. We considered
only those commit operations that consist of
some source code changes. We extracted the
revisions corresponding to these commit opera-
tions. In other words, we worked only on those
revisions which were created because of some
code changes. Two pre-processing steps have
been applied to each of the target revisions of
a system: (i) deletion of lines containing only a
single brace (‘{’ or ‘}’) and appending the brace
at the end of previous line; and, (ii) removal of
comments and blank lines from source files.

5.2 Method detection and extrac-
tion

For detecting the methods from the source files
of a specific revision we used CTAGS [10]. For
each method we collected its: (i) file name, (ii)
class name (Java and C# systems), (iii) pack-
age name (Java), (iv) method name, (v) signa-
ture, (vi) starting line number and (vii) ending
line number. We also assigned a unique ID to
each method. However, the ID of a method
of one revision can be the same as that of a
method of another revision. This does not in-
troduce conflicts because a separate file is gen-
erated for each revision. Starting and ending
line numbers of methods are necessary during
the mapping of clones and changes to the meth-
ods. Method extraction can be accelerated by
reusing the results from the previous revision.
Suppose we already detected the methods of
revision revision(i). For the very next revision
revision(i+1) we do not need to extract meth-
ods from all the files. We should extract meth-
ods only from those files which have changed.
For the unchanged files, methods can be col-
lected from the results stored for the previous
revision. This mechanism can be followed for
the other subsequent revisions.

We do not store the methods at this moment.
Before storing we also need to know which parts

of a method are cloned and which parts are not
cloned and whether some cloned or non-cloned
parts have changed before being forwarded to
the next revision.

5.3 Clone detection

We have used the recently introduced hybrid
clone detection tool NiCad [26] that combines
the strengths and overcomes the limitations of
both text-based and AST based clone detection
techniques and exploits novel applications of a
source transformation system to yield highly
accurate identification of Type-1, Type-2 and
Type-3 clones in software systems [27,28].

5.4 Detection and reflection of
changes

We identified the changes between correspond-
ing files of consecutive revisions using UNIX
diff command. diff outputs three types of
changes: (i) addition, (ii) deletion, and (iii)
modification with corresponding line numbers.
We mapped these changes to methods using
line information to determine which methods
have changed in a particular commit operation.

5.5 Storage of methods

At this stage, we have all the necessary infor-
mation of all methods belonging to a particular
revision. We store these methods in an XML
file with individual entry for each method. For
each revision we generated a separate XML file
containing the methods of the corresponding
revision. A file name is constructed by append-
ing the revision number at its end so that, we
can generate it when necessary (for getting pre-
viously stored methods of the unchanged files
of a former revision).

5.6 Method genealogy detection

For mapping methods between two consecu-
tive revisions we followed the origin analy-
sis technique proposed by Lozano and Wer-
melinger [21]. This technique uses a combi-
nation of location and signature similarities
to determine which method of revision(i) cor-
responds to which method of revision(i + 1).

Some methods of revision (i) might get deleted
in revision(i + 1) and also some new methods
might be created in revision(i + 1). We stored
the mapping information for each two consec-
utive revisions in a separate file. Method map-
ping was accomplished using method IDs. The
file names contain the revision numbers in a
disciplined way so that we can generate them
when necessary.

5.7 Determination of unique co-
changed method groups

As we are inspecting the methods affected
by the commit operations sequentially, we are
storing and updating the co-changed method
groups according to the algorithm Algorithm 1.
For eliminating the effects of atypical changes
[21] that affect multiple functionalities (or
goals) at a single commit operation we dis-
carded 2.5% of the largest commit operations
for each of the subject systems from our con-
sideration as was done by Lozano and Wer-
melinger [21]. From each of the commit opera-
tions of our target set obtained by eliminating
the commit operations with atypical changes,
we extracted the co-changed method groups se-
quentially. Method genealogy extraction was
necessary to determine whether a currently de-
tected group has already appeared previously.

Suppose, we have already detected some
unique co-changed method groups by examin-
ing some commit operations. We call this list
of existing groups ezisting list. After getting
a new group from the next commit operation,
we at first check whether this group is a proper
subset of any group in the existing list. If this
is true, we ignore this new group, otherwise we
check the existing list to find any group which
is a proper subset of this new group. We dis-
card these groups from the existing list and
add the new group to it. Then, we proceed
with the next commit operation. However, at
the very beginning of this process (while ex-
amining the first commit operation), the exist-
ing list remains empty. These sequential steps
are elaborated in the Algorithm 1.

Though we have discarded 2.5% of the
largest commit operations (atypical commits),
there is little probability that a co-changing
method group will contain unrelated methods.

However, the algorithm ensures the detection
of all possible groups.

Algorithm 1 Determine unique co-changed
method groups

Require: The sequence of commit operations,
ErzistingList of groups (initially empty)
Ensure: Unique co-changed method groups.
for each commit operation commit(i) do
NewGroup < the list of changed methods
for each group ¢(j) in FzistingList do
if NewGroup c g(j) then
Ignore NewGroup
exit the loop.
else
if (i) ¢ NewGroup then
Delete g(i) from ErxistingList
end if
end if
end for
if NewGroup is not ignored then
Add NewGroup to the ExistingList.
end if
end for

5.8 Metric Calculations
5.8.1 Calculation of CCMS and COMS

After determining the unique co-changed
method groups we calculated the values of our
proposed metrics, CCMS and COMS, for all
method groups in total according to the pro-
cesses described in Section 3.3 and Section 3.4.
However, while finding correlations, we calcu-
lated the average values per co-change method
group for these metrics.

5.8.2 Calculation of CMP (code modi-
fication probability)

For finding correlations of code modifications
with connectivity, we calculated the code mod-
ification probabilities (CMP) for each of the
candidate software systems using the following
equation.

ZceCMS CML(C)
|CMS| x ZceCMS LOC(C)

OMP = (6)

In the above equation (Eq. 6), CMP is the
code modification probability. CML(c) de-
notes the count of modified (added, deleted or
changed) lines of a software system during the
commit operation c¢. CMS is the set of all com-
mits where there were some modifications to
the source code. LOC(c) is the count of to-
tal lines of code of a candidate system during
commit operation c.

We see that, Eq. 6 calculates the source
code modification probability by considering
only those commit operations where there were
some modifications to the source code. For
each of the commit operations with some mod-
ifications to the source code we calculated the
following two measurements.

(1) Total number of lines in that revision on
which the commit was applied (LOC(c)).

(2) Total number of lines modified because
of the commit operation (CML(c)).

We know that each commit operation creates
a new revision. For calculating the number of
lines modified in a particular commit opera-
tions we at first identify two revisions: (1) the
revision on which the commit operation was ap-
plied and (2) the revision that was created just
after applying the commit operation. Then,
we use UNIX diff to identify the lines that
were modified in the older revision to create
the newer one.

6 Experimental Setup

6.1 Implementation framework

We implemented our method in Java pro-
gramming language using the Actor Architec-
ture platform [1] which provides us a parallel
and distributed framework suitable for coarse
grained concurrency.

As we have already described in the previous
section, the extraction of method genealogies is
a huge task. This task can be divided into mul-
tiple smaller but similar tasks. These smaller
tasks can be executed by different processes
in parallel on different processors of the same
machine or on different machines connected
through an interconnection network. The re-
sults of these tasks can be combined to achieve
the final result. The Actor Architecture frame-
work helped us perform parallel and faster ex-

traction of method genealogies in the following
way.

We visualized our parallel framework as a
manager-worker paradigm where a single man-
ager divides and distributes tasks among dif-
ferent workers working on different machines.
At the very beginning of execution, the man-
ager divides the whole range of revisions into
a number of sub-ranges of equal length. Each
sub-range contains multiple consecutive revi-
sions and the count of subranges is equal to the
number of workers. The manager then assigns
each of the sub-ranges to a particular worker.
Each worker is responsible for the extraction
and mapping of the methods that were cre-
ated in the revisions it has been assigned to.
To get the final method mapping for the whole
range of revisions, the workers need to synchro-
nize among themselves. The synchronization
among the workers and the manager is done by
asynchronous message passing among them.

Here, we should mention that each of the
workers executes the same instruction se-
quence. For implementing the manager and
worker processes we extended the Actor class
defined in the Actor Architecture platform.

6.2 Setup for NiCad

We used the NiCad [26] clone detection tool to
detect clones in the subject systems. NiCad
can detect both exact and near-miss clones at
the function or block level of granularity. We
detected block clones with a minimum size of 5
LOC. We used the NiCad settings in Table 1 for
detecting three types of clones. The dissimilar-
ity threshold means that the clone fragments in
a particular clone class may have dissimilarities
up to that particular threshold value. We set
the dissimilarity threshold to 20% with blind
renaming of identifiers for detecting Type-3
clones. For all these settings NiCad is shown
to have high precision and recall [28]. Before
using the NiCad outputs of Type-2 and Type-3
cases, we processed them in the following way.

(1) Every Type-2 clone class that exactly
matched any Type-1 clone class was excluded
from Type-2 outputs.

(2) Every Type-3 clone class that exactly
matched any Type-1 or Type-2 class was ex-
cluded from Type-3 outputs.

Table 1: NiCad Settings for three types of
clones

Clone Identifier Re- | Dissimilarity
Types naming Threshold
Type 1 none 0%

Type 2 blindrename 0%

Type 3 blindrename 20%

6.3 Subject Systems

Table 2 lists the subject systems included in our
study along with their associated attributes.
We downloaded these from open source SVN
repositories. The subject systems are diverse,
differing in size, spanning five different applica-
tion domains, and covering three programming
languages.

7 Experimental Results

We applied our methodology to six open source
software systems and calculated the following
for each of them.

(i) The count of unique co-changed method
groups

(i) Total COMS for all co-changed method
groups

(iii) Total CCMS of all co-changed method
groups

(iv) Code modification probability (CMP).

We provide these values in Tables 3 and 4.

We determined the Pearson correlations be-
tween CCMS and the other 2 measures in the
above list (excluding the count of unique co-
changed method groups) and recorded the re-
sults in Table 5. For calculating the corre-
lations, we calculated the average values of
CCMS and COMS per method group for each
subject system. We also calculated the COMS
and CCMS separately for cloned and non-
cloned code for each of the subject systems.

Table 2: Subject Systems

Systems Domains ‘ LOC ‘ Revisions
g Carol Game 25,092 1000
,g Dnsjava DNS protocol 23,373 1635

Ctags Code Def. Generator 33,270 774
© Camellia Multimedia 85,015 207
3 GreenShot Multimedia 37,628 999
O | MonoOSC Formats and Protocols | 18,991 355

Table 3: Total CCMS and Total COMS for different subject systems

Language | Subject Systems | UGC | COMS | CCMS

Java Carol 157 1578 118
Dunsjava 329 4010 956

C Ctags 142 1532 920
Camellia 67 938 526

C+# GreenShot 241 3262 1741
MonoOSC 105 2246 1785

UGC = Unique co-changed Group Count

Table 4: Source code modification probabilities for different subject systems

Language | Subject Systems | NCMS CMP
Java Carol 383 3.23E-06
Dnsjava 1254 1.75E-06
C Ctags 447 3.63E-06
Camellia 147 5.24E-06
C# GreenShot 586 2.99E-06
MonoOSC 236 2.35E-05

CMP = Code modification probability
NCMS = Number of commits with modifications in the source code

Table 5: Correlation of CCMS with COMS and CMP

Lang. | Systems | ccMs | coMs || coMs | cmP

Java | Carol 0.7515 10.0509 0.7515 | 3.23E-06

Dnsjava 2.9057 | 12.1884 2.9057 | 1.75E-06

C Ctags 6.4788 10.7887 6.4788 | 3.63E-06

Camellia 7.8507 14 7.8507 | 5.24E-06

C# GreenShot 7.22 13.5352 7.22 2.99E-06

MonoOSC 17 21.3904 17 2.35E-05
Correlation Co-efficient 0.941557804 0.901590668

CCMS = Connectivity of Co-changing method groups

COMS = Co-changeability of methods
CMP = Code modification probability

7.1 Analysis of Experimental Re-
sults

We determined the strengths of correlations
[29] between CCMS and two other measures:
COMS and CMP. The correlations recorded in
Table 5 are explained below.

7.1.1 Correlation between CCMS and
COMS

From Table 5 we see that, there is a
strong correlation between connectivity and
co-changeability. The Pearson correlation co-
efficient between these two is 0.9415. Such a
strong correlation is expected. Also, we have
mathematically shown that, connectivity has
direct influence on the co-changeability. Thus
we can say that, co-changeability can be mini-
mized by minimizing connectivity.

7.1.2 Correlation of CCMS with CMP

To determine whether higher connectivity is an
indicator of higher modification of source code,
we calculated the correlation between CMP
(code modification probability) and CCMS. We
observed that CMP is strongly correlated with
connectivity with a correlation co-efficient of
0.9015. So, higher changeability (modification
probability) in source code is an indicator of
higher connectivity among co-changed method

groups. As CCMS measures the intensity of
method sharing among co-changing method
groups, we can say that higher method sharing
might be a possible cause to higher changeabil-
ity in source code.

7.2 Clone related analysis

We calculated the COMS for non-cloned code
and three types (Type 1, Type 2 and Type 3)
of cloned code of a subject system separately to
compare the COMS in cloned and non-cloned
code. The average COMS of different types
of cloned code and corresponding non-cloned
code have been plotted in the graph in Fig. 1.
In general we see that the COMS of each type
of cloned code (except Type 1 clones of Dns-
java) is much smaller than non-cloned code.
Also, we have observed that the numbers of co-
changed method groups that we found for dif-
ferent types of cloned code are negligible com-
pared to the group counts of non-cloned code.
From this we decide that the COMS in cloned
code is much lower than the COMS in non-
cloned code. Clones are generally created for
serving different tasks or functionalities inde-
pendently, which indicates that cloned meth-
ods should have no coupling. This is obviously
a good characteristic of clones, which can be
carefully used to minimize the COMS in non-
cloned code.

OAverage COMS in non-cloned code

W Average COMS in cloned code

25
20
15
10 =

L

0

T1 T1 | T2 TL | T2 | T3 | T1 | T2
Carol Dnsjava Ctags Camellia GreenShot Monoosc

Figure 1: Comparison of COMS in non-cloned code and three types of cloned code.

8 Minimization of COMS

From our mathematical derivation in Section
3 we see that a higher CCMS (Connectiv-
ity of Co-changed Method Groups) causes a
higher COMS (co-changeability of methods).
Intuitively, higher co-changeability of meth-
ods should cause increased modifications to the
source code. Also, in the analysis part we have
seen that higher changeability in source code
is an indicator of higher CCMS. COMS can
be minimized by minimizing CCMS. There are
two ways of minimizing CCMS. These are ex-
plained below.

8.1 Cloning

Minimization of CCMS is tricky. Cloning is a
possible way of minimizing CCMS. If a partic-
ular method takes part in implementing sev-
eral tasks, we can make a separate copy of this
method for each of these tasks or functionali-
ties. This is a way of minimizing CCMS with-
out increasing group size. In this way, separate
copies of this method will evolve independently
with the evolutions of separate tasks. But for
this to be a fruitful approach we need to be
sure of the following.

(1) The method that is being replicated does
not contain a bug. Identification of a bug in
any of these copies will require the propagation

of bug correction activities to all copies, which
will likely increase change efforts.

(2) Cloning can be applied to minimize
CCMS only for those situations where the
tasks or functionalities that share the common
method (or common set of methods) are likely
to evolve independently. Otherwise, the syn-
chronization of modifications among the cloned
methods will increase the changeability of the
source code as well as the maintenance effort.

In Table 6 we provide a simple example
of two connected functionalities in QmailAd-
min written in C. Each goal consists of meth-
ods from multiple files. The method ‘int
show_autorespond _line(char®, char*, time_t,
char*)’ of file ‘autorespond.c’ connects these
two functionalities. This is a very simple con-
nection, but when tasks (or functionalities) be-
come in this way connected we can eliminate
connectivity by cloning (assuming the shared
method needs to evolve independently for each
goal). Just for explanation we can say that, a
separate copy of this method can be created so
that two copies can serve two purposes (which
might not be necessary for this case because
of the simple connection between the two func-
tionalities).

Table 6: Example of connected functionalities

Revision 140. Goal: Addition of new administrator

File path

Method signature

gmailadmin/auth.c

set_admin_type()

gmailadmin/autorespond.c | int show_autorespond_line (char* char* time_t,char*)

gmailadmin/user.c

int addusernow()

Revision 144. Goal: Mail forwarding

File path

Method signature

gmailadmin/alias.c

show_dotqmail lines (char* char* time_t,char*)

gmailadmin/autorespond.c | int show_autorespond_line (char* char* time_t,char*)

gmailadmin/command.c
gmailadmin/forward.c

gmailadmin/qmailadmin.c

gmailadmin /util.c

process_commands()
int show_forwards (char* ,char* time_t,char*)
main(arge,argv)

int count_stuff(void)

8.2 Method breakdown

If a single method contains multiple sections
for multiple functionalities (which is a common
case for the C# systems according to our obser-
vation), we can split this method into several
relevant methods containing the sections corre-
sponding to those functionalities. In this way,
we minimize method couplings as well as en-
sure securities for different functionalities such
that, while changing the portion of a partic-
ular functionality other portions of the other
functionalities will not be affected mistakenly.

9 Threats to Validity

The sample size of our study is not sufficient
enough to draw a general conclusion. Fur-
thermore, the level of expertise of the involved
programmers and the nature of applications
might also have some effects on the experimen-
tal results. However, our selection of six differ-
ent subject systems of three different program-
ming languages considering the diverse variety
of sizes, application domains and hundreds of
revisions should minimize these drawbacks con-
siderably.

According to our definition and calculation
procedure of co-changed method groups there
is very little probability that a co-changed

method group will contain unrelated meth-
ods and that co-changeability will be over-
estimated. Since we are identifying and up-
dating the co-changed method groups from the
very beginning of the development phase, we
can retrieve all the existing connectivities as
well as method sharing among different func-
tionalities. Thus, we believe that, we could de-
termine the actual effect of connectivities on
co-changeabilities.

10 Conclusion

In this paper, we described an in-depth in-
vestigation on how the sharing of methods
among different functionalities affects method
co-changeability and modification of source
code. For this purpose we proposed and em-
pirically evaluated two metrics: (i) COMS
(Co-changeability of Methods) and (ii) CCMS
(Connectivity of Co-changed Method groups).
The first metric measures the extent to which a
particular method co-changes with other meth-
ods while the other one quantifies the sharing of
methods among functionalities. We analyzed
the influence of CCMS on both COMS and
modifications of source code. According to our
analysis, CCMS causes higher COMS as well
as increased modifications in the source code.
We observed that, COMS in cloned code is

negligible compared to that of non-cloned code
and also, cloning can be a solution to mini-
mizing method group connectivity as well as
couplings (or dependencies) among methods.
Although our study is not exhaustive it con-
tributes in two ways: (1) it identifies a possible
cause of higher source code modifications and
(2) it suggests a possible way of minimizing
method couplings and code modifications. Our
suggested solution has the potential to increase
the stability of software systems in the mainte-
nance phase. As future work we are planning to
integrate our proposed methodology with the
Eclipse IDE as a plugin so that we will be able
to visualize the functionalities and their con-
nectivities to find the target functionalities to
minimize their connectivities.

About the Authors

Manishankar Mondal: Manishankar Mon-
dal is an M.Sc student in the Department
of Computer Science of the University of
Saskatchewan. He is a lecturer (on leave) at
Khulna University. His research interests are
software maintenance and evolution.
Chanchal K. Roy: Chanchal Roy is
an assistant professor of Software Engineer-
ing/Computer Science at the University of
Saskatchewan. His research interests are in
the area of software engineering. In particular,
he is interested in software maintenance and
evolution, including clone detection and analy-
sis, reverse engineering, empirical software en-
gineering and mining software repositories.
Kevin A. Schneider: Kevin Schneider is
a Professor of Computer Science, Special Ad-
visor ICT Research and Director of the Soft-
ware Engineering Lab at the University of
Saskatchewan. Dr. Schneider has previously
been Department Head (Computer Science),
Vice-Dean (Science) and Acting Chief Informa-
tion Officer and Associate Vice-President Infor-
mation and Communications Technology.
Before joining the University of
Saskatchewan, Dr. Schneider was CEO
and President of Legasys Corp., a software
research and development company specializ-
ing in design recovery and automated software
engineering. His research investigates models,

notations and techniques that are designed
to assist software project teams develop and
evolve large, interactive and usable systems.
He is particularly interested in approaches that
encourage team creativity and collaboration.

References

[1] Actor Architecture platform. http:
//www.docstoc.com/docs/5693312/
Actor-Architecture

[2] M. D’Ambros, M. Lanza, M. Lungu, ”Vi-
sualizing co-change information with the
evolution radar,” TSE, 2009, vol. 35, no.
5, pp. 720-735.

[3] D. Beyer. “Co-change visualization”,
Proc. ICSM, 2005, Industrial and Tool
volume, pp. 89-92

[4] D. Beyer, A. E. Hassan, “Animated visu-
alization of software history using evolu-
tion storyboards,” Proc. WCRE, 2006, pp.
199-210.

[5] S. Bouktif, Y.-G. Gueheneuc, G. An-
toniol, “Extracting changepatterns from
cvs repositories,” Proc. WCRE, 2006, pp.
221-230.

[6] G. Canfora, M. Ceccarelli, L. Cerulo, M.
Di Penta, “Using multivariate time se-
ries and association rules to detect logi-
cal change coupling: An empirical study,”
Proc. ICSM, pp. 1-10.

[7] G. Canfora and L. Cerulo, “Impact anal-
ysis by mining software and change re-
quest repositories,” Proc. 11th IEEE In-
ternational Software Metrics Symposium,
2005, p. 29.

[8] M. Ceccarelli, L. Cerulo, G. Canfora,
and M. Di Penta, “An eclectic approach
for change impact analysis,” Proc. ICSE,
2010, pp. 163-166.

[9] J. Cordy, The txl source transformation
language, Sci. of Com. Prog., 61(3):190-
210, 2006.

[10] Exuberant CTAGS:
sourceforge.net/

[11] H. Gall, K. Hajek, and M. Jazayeri, “De-
tection of logical coupling based on prod-
uct release history,” Proc. ICSM, 1998, pp.
190-199.

http://ctags.

[12]

[17]

[18]

[23]

D. M. German, “An empirical study of
fine-grained software modifications,” Em-
pirical Softw. FEngg. Kluwer Academic
Publishers, September 2006, vol. 11.

N. Gode, J. Harder, “Clone Stability”,
Proc. CSMR, 2011, pp. 65-74.

A. E. Hassan and R. C. Holt, “Predicting
change propagation in software systems,”
Proc. ICSM, 2004, pp. 284-293.

K. Hotta, Y. Sano, Y. Higo, S. Kusumoto,
“Is Duplicate Code More Frequently Mod-
ified than Non-duplicate Code in Software
Evolution?: An Empirical Study on Open
Source Software,” Proc. EVOL/IWPSE,
2010, pp. 73-82.

F. Jaafar, Y. Gueheneuc, S. Hamel,
G. Antoniol, “An Exploratory Study of
Macro Co-changes”, Proc. WCRE, 2011,
pp- 32-334.

E. Juergens, F. Deissenboeck, B. Hummel,
S. Wagner, “Do Code Clones Matter?,”
Proc. ICSE, 2009, pp. 485— 495.

C. Kapser and M. W. Godfrey, ““Cloning
considered harmful” considered harmful:

patterns of cloning in software,” Emp.
Soft. Eng. 13(6), 2008, pp. 645-692.

J. Krinke, “Is Cloned Code older than
Non-Cloned Code?,” Proc. IWSC, 2011,
pp-28-33

A. Lozano and M. Wermelinger, “Tracking
clones imprint,” Proc. IWSC, 2010, pp.
65-72.

A. Lozano, M. Wermelinger, “Assess-
ing the effect of clones on changeability,”
Proc. ICSM, 2008, pp. 227-236.

M. Mondal, C. K. Roy, M. S. Rahman,
R. K. Saha, J. Krinke, K. A. Schnei-
der, “Comparative Stability of Cloned and
Non-cloned Code: An Empirical Study”,
Proc. SAC, 2012, pp. 1227-1234.

A. J. Offutt, M. J. Harrold, P. Kolte, “A
software metric system for module cou-

pling”, Proc. Journal of Systems and Soft-
ware, 1993, pp. 295-308

[24]

[25]

[26]

[27]

M. Page-Jones, “The practical guide to
structured systems design”, YOURDON
Press, New York, NY, 1980.

B. Pugsley, “Econ 210: Linear Regres-
sion Review”, May 25, 2008. Avail-
able at: http://home.uchicago.edu/
~bpugsley/notes/regression_study_
guide.pdf

C.K. Roy and J.R. Cordy, “NICAD: Ac-
curate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and
Code Normalization,” Proc. ICPC, 2008,
pp. 172-181.

C.K. Roy and J.R. Cordy, “Near-miss
Function Clones in Open Source Software:
An Empirical Study,” Journal of Soft.
Maintenance and FEvolution: Research and
Practice, 22:3, pp. 165-189.

C. K. Roy and J. R. Cordy, “A mu-
tation / injection-based automatic frame-
work for evaluating code clone detection
tools,” Proc. Mutation, 2009, pp. 157-166.

Significance of the Correlation Coeflicient.
http://janda.org/c10/Lectures/
topic06/L24-significanceR.htm

Software Maintenance Costs. http://
users. jyu.fi/~koskinen/smcosts.htm

A. T. T. Ying, G. C. Murphy, R. Ng, M.
C. Chu-Carroll, “Predicting source code
changes by mining change history,” TSE,
2004, vol. 30, no. 9, pp. 574-586.

Y. Zhou, M. Wursch, E. Giger, H. C. Gall,
and J. Lu, “A bayesian network based
approach for change coupling prediction,”
Proc. WCRE, 2008, pp. 27-36.

T. Zimmermann, P. Weisgerber, S. Diehl,
A. Zeller, “Mining version histories to
guide software changes,” Proc. ICSE,
2004, pp. 563-572.

