Improving the Detection Accuracy of
Evolutionary Coupling

Manishankar Mondal

Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Canada
{mshankar.mondal, chanchal.roy, kevin.schneider} @usask.ca

Abstract—If two or more program entities (e.g., files, classes,
methods) co-change frequently during software evolution, these
entities are said to have evolutionary coupling. The entities
that frequently co-change (i.e., exhibit evolutionary coupling)
are likely to have logical coupling (or dependencies) among
them. Association rules and two related measurements, Support
and Confidence, have been used to predict whether two or
more co-changing entities are logically coupled. In this paper,
we propose and investigate a new measurement, Significance,
that has the potential to improve the detection accuracy of
association rule mining techniques. Our preliminary investigation
on four open-source subject systems implies that our proposed
measurement is capable of extracting coupling relationships
even from infrequently co-changed entity sets that might seem
insignificant while considering only Support and Confidence. Our
proposed measurement, Significance (in association with Support
and Confidence), has the potential to predict logical coupling with
higher precision and recall.

Index Terms—Association Rules, Confidence and Support of
Rules, Rule Significance.

I. INTRODUCTION

Awareness of logical dependencies, that is logical coupling,
among program entities is important from the perspective of
software maintenance. A particular entity might have logical
dependencies with many other entities. If we are not aware of
all these dependencies, changes to that particular entity might
introduce inconsistencies to the other related entities.

A widely studied approach of discovering the logical cou-
pling among program entities is to analyze how they have co-
changed during system evolution. Co-changeability of program
entities is also termed as ‘evolutionary coupling’ [3]. The
underlying idea is that if two or more entities co-change
frequently, then it is very likely that there exists a logical
coupling among them. Association rule mining technique [1]
has been widely used to identify frequently co-changed entities
that are likely to be logically coupled. In the existing studies,
two measurements, Support and Confidence, have been used to
rank the rules according to the quality of the rules. Obviously,
higher values of these measurements can retrieve better quality
rules and indicate higher likeliness of logical coupling. How-
ever, from our manual investigation we found that there are
many rules that might appear as less promising or ignorable
(because they have lower ranks) while considering these two
measurements (Support, and Confidence), but, these rules can
discover important coupling relationship among program arti-
facts. Thus, if we consider only Support and Confidence, there
is a possibility of ignoring significant coupling information.

978-1-4673-3092-3/13 © 2013 IEEE

223

In order to minimize this drawback of the existing mea-
surements, we propose a new measurement, Significance, and
conduct preliminary investigation on it with promising early
evidence. Significance quantifies the importance of the co-
change of a set of co-changing entities by determining how
much focused they were in those commits where they co-
changed. Our idea of introducing Significance is new in the
sense that it has the potential to retrieve coupling relationship
from the infrequently co-changed entity sets. There is no
previous study on how we can retrieve coupling relationship
from infrequently co-changed entity sets. The research work
conducted by Zimmermann et al. [7] is mostly related to
our work. They used association rules with Support and
Confidence to represent the co-change relationships among
different program artifacts such as files, classes, methods,
and variables. We have a related study [6] that investigates
the effect of higher connectivity among co-changed method
groups during software evolution.

According to our preliminary investigation, our proposed
measurement has the potential to improve the precision and
recall of association rule mining techniques. We observe that
there are some rules that do not seem to be promising (that is,
these rules are assigned lower ranks) considering the existing
measurements (Support, and Confidence). However, these rules
are true positives and our proposed measurement assigns
higher ranks to these rules. While Significance can no way be a
replacement of the existing measurements, it can complement
them to retrieve better results.

The rest of the paper is organized as follows. Section II
defines association rule and the related measurements, Support
and Confidence. Section III describes our motivation behind
introducing the new measurement, Significance. Section IV
defines and describes Significance. Section V demonstrates the
experimental steps and Section VI discusses our preliminary
experimental results. Section VII presents the related work and
Section VIII concludes the paper describing our future work.

II. ASSOCIATION RULE

Definition of Association Rule: An association rule is an
expression of the form X =>Y where X is the antecedent and
Y is the consequent. Each of X and Y is a set of one or more
program entities. As we consider method level granularity, the
sets X and Y consist of methods. Such a rule means that if
X gets changed in a particular commit operation, Y also has

ICPC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

the tendency of getting changed in that commit. Support, and
Confidence of a rule can be calculated in the following way.
Support: Support is the count of commits in which a
method or a group of methods (together) appeared (got
modified) during system evolution. Suppose, X is a set of
methods that appeared together in C'x number of commit
operations during evolution, then the support of this method
set, support(X) = Cx. The support of an association rule,
X =>Y, is determined by the support of the union of the
method sets, X and Y. We denote this according to the
following equation.
support(X =>Y) = support(XY) = Cxy)
Here C'xy is the number of commits in which both X and
Y (that means, the union of X and Y') appeared (got modified).
Confidence: Confidence of the association rule, X => Y,
determines the probability that Y will appear in a commit
operation provided that X appears in that commit operation.
We calculate the confidence of X =>Y by Eq. 2.

support(X =>Y) Cxy
= O

confidence(X =>Y) =)

support(X)
ITII. MOTIVATION BEHIND NEW MEASUREMENT

In general, if a group of program entities have higher
support (i.e., the entities co-changed frequently), there is a
higher likeliness of the existence of logical coupling among
the entities. From this intuition, the existing association rule
mining techniques emphasize on retrieving rules with higher
support values. However, during manual investigation of the
method co-change history of our candidate software systems
we experienced that infrequently co-changed methods (i.e.,
the methods that co-changed with lower support value such
as 1 or 2) sometimes exhibit logical coupling among them.
From this we realize that if we only emphasize on the
frequently co-changed entity sets excluding the infrequently
co-changed entity sets from consideration, we might lose
important coupling relationships that could be retrieved from
the infrequently co-changed entity sets. We further investigated
to identify those situations when a set of infrequently co-
changed entities can exhibit logical coupling among them. We
investigated considering method level granularity.

According to our observation, if too many methods (e.g., 20
or more) co-change in one commit operation, we rarely find
a logical coupling among these methods. However, we found
many examples where only two or three methods co-changed
in only one commit operation during the observed range of
evolution but these methods are logically coupled. The fact is
that if a single commit operation affects too many entities, such
a commit is likely to involve major structural changes and thus,
is likely to affect methods from unrelated functionalities. Such
commits are termed as atypical commits [5] in the literature.
In the following two paragraphs we describe our observations
with relevant examples from our candidate system, Ctags.

Observation regarding the commits that affect fewer
methods: By manually investigating the method co-changes
in Ctags, we found that the methods, reportType and isGeneric,
in file eiffel.c co-changed in only one commit operation

(support = 1), the commit on revision 428, during the
whole period of evolution consisting of 774 commits. No
other method in the system was changed in this particular
commit operation (i.e., on revision 428). In this commit,
a call to method stringListHasInsensitive was replaced by
another method-call to stringListHas in both of these methods
(reportType, and isGeneric). The changes occurred to these
methods imply that they are logically coupled. We found
many other examples where two methods co-changed in only
one or two commit operations during the evolution but they
are logically coupled. The interesting matter is that the total
number of methods co-changed in each of these commits (e.g.,
commit on revision 428, 130, 138, 337, 746, 730) is very low
(two for most the cases). We term each of these commits as
a Commit Affecting Fewer Methods (CAFM). We understand
that as the number of methods co-changed in a CAFM is
very low, these methods are more likely to take part in a
common purpose and these are more likely to be logically
coupled compared to the methods co-changed in a commit
which affects many methods.

Observation regarding the atypical commits: We observe
that the commit on revision 442 (of Ctags) affects 34 methods
in total. We consider this commit operation as an atypical
commit. We investigated the changes in these methods and
found that many of these changes only affect the indentation of
the statements and it is difficult to infer a logical dependency
among the co-changed methods. For example, we mention two
methods, makeDefineTag (in file get.c) and newToken (in file
fortran.c), of these 34 methods that co-changed in this commit
operation. The changes do not imply a logical relationship
among these methods at all. We investigated several other
atypical commits (e.g., the commit operation on revision 88,
242, 535) and experienced that a logical coupling among the
co-changed methods can be rarely inferred.

From the above scenario we understand that the higher the
number of co-changed methods in a commit operation is, the
lower the likeliness of the existence of logical coupling among
the co-changed methods is. We thus note the followings.

« Infrequent co-changes (e.g., support = 1) might indicate

logical coupling if the co-changes take place in CAFMs.

« If two methods co-changed several times (support > 1)

but only in atypical commits, these methods might not

be logically coupled.
Focusing on these findings, a possible way of improving
the accuracy of predicting co-changeable candidates (logically
coupled candidates) could be to exclude the atypical commits
from consideration. However, this is very difficult to detect the
atypical commits. There is no empirically established threshold
on the number of entities that should be changed in a particular
commit to consider that commit as an atypical commit.

In this research work, we propose and investigate a new
measurement, Significance, that has the potential to improve
the predictability of co-changeable (logically coupled) can-
didates (methods in our study). We calculate significance
(Section IV) in such a way that it has the tendency of excluding
atypical commits by giving more emphasis on the CAFMs.

224

IV. OUR PROPOSED MEASUREMENT

Suppose N. (IN. > 2) methods changed together (or co-
changed) in a particular commit operation c. These methods
are, mp,, Ma,, M3,, my,. For any pair of these methods we
calculate the significance according to the following equation.

1
Se = N1 3

Here, S, is the significance of the co-change of any method
pair (m;,, m;) considering the commit c. Fig. 1 shows
the change history of five methods: mi, mo, ms, my, and
ms during six commits, cl to ¢6. The significances for the
commits: c2, c3, c4, and c6 are Seo, Sc3, Scs, and Sgg
respectively. In each of the other commits only one method
changed. We cannot calculate significance for these commits.

Suppose, N methods were changed (appeared in different
commit operations) in total during the evolution of a software
system. For every possible pair of these methods we calculate
the significance considering the entire range of evolution.

A Method Pair: If two methods, m; and m; changed
together (with or without being associated by other methods)
in at least one commit operation during software evolution, we
call them a method pair (m;, m;). Fig. 1 shows four possible
method pairs: (mq, ms), (M3, ms), (M1, m3), and (M2, m3).

Suppose, the set of commit operations where a method pair,
m; and mj; (1 <i <N, 1<j<N), co-changed is Cpy ;-
Then, the significance of co-change of this method pair during
system evolution is the summation of the significance values
of this method pair considering the commits in C’m”nj. We
calculate this in the following way.

S(mi,mg) = 3, Se “)
ceC, imj
Here, S(m;,m;) is the significance of the co-change of
the method pair, m; and m;, considering the entire range
of evolution. Fig. 1 shows the calculation of the significance
of the method pair, (my mg), that co-changed in commits
c4 and c6. For every possible method pair (m;, m;) we can
assume two rules, m; => m; and m; =>m,. The significance,
S(m; => m;), of a rule, m; => m,, is determined by the
significance of the method pair (m;, m;).

S(m7 => mj):S(m,;,mj))
We can easily understand that the rules, m; => m; and
m; => my, have the same support and the same significance

values. Confidences of these two rules might be different.
Justification and implications of Significance: Higher
significance implies higher likeliness of the existence of a
logical coupling among the co-changed methods. According
to Eq. 3, the significance (S.) regarding a particular commit

Significances of Commits
Su=1/1=1, Si=1/1=1,
Sea=1/2=05,5,=1/1=1
Method Pairs= (m; m,),
(m3mg), (my m3), (M, m3)

cl c2 c3 c4 c5 c6
" @ -@-0 -0 00
WO RedOhnd RadOhed)
n QO+ 0+ 00
m O—~0+ 0+~ 0—0+0
n 01O @00 +0

. Method changed OMethod not changed

Significance of (m,, my)
S(my, M3) =Scs +Sgs = 1.5

Fig. 1. An example of calculating significance

TABLE I
SUBJECT SYSTEMS

Systems Language| Domains [LOC [Revisions
Carol Java Game 25,092 1699
Ctags C Code Def. Generator 33,270 774
Camellia C Multimedia 85,015 207
GreenShot | C# Multimedia 37,628 999

(c) is inversely proportional to the total number of methods
(IN.) affected in that commit. .S, gets the highest value (‘1°),
if only two methods (N. = 2) co-change in c. Thus, if
only two methods co-change in a commit operation, Eq 3
assumes the highest likeliness of the existence of a coupling
relationship among the co-changed methods (considering that
commit operation). Also, S. becomes negligible for an atypical
commit. Thus, we believe that Eq. 3 reasonably considers our
findings described in Section III.

Although the highest possible value of the significance (S.)
regarding a particular commit (c) is one, the significance of the
co-change of a method pair for the whole period of evolution
can be greater than one, because the method pair can co-
change in more than one commit operation. For a particular
method pair, the highest possible significance value equals the
support value of the method pair.

V. EXPERIMENTAL STEPS

For the purpose of our investigation we downloaded the
candidate software systems listed in Table I from the open
source SVN repository. We sequentially performed the follow-
ing experimental steps for each of the software systems: (1)
preprocessing of the source code of all the revisions, (2) de-
termination and storage of methods from each of the revisions
using CTAGS [2], and (3) detection of method genealogies.
For the details of these steps we refer the interested readers to
[6]. In the previous section we described how we determine
method pairs (m;, m;), calculate the significance for a method
pair (using Eq. 4) considering the whole range of evolution and
assume association rules from each method pair.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Our discussions in the previous sections indicate that rules
with smaller supports such as 1, or 2 might also discover im-
portant coupling information if they have higher significance
values. In the following subsections we provide and discuss
our preliminary experimental results that support our findings
and show the effectiveness of our proposed measurement in
discovering significant association rules as well as coupling
relationships even for the lowest support value.

We determined all possible method pairs, their supports, and
significances for each of our candidate systems. We should
note that a method pair (m;, m;) is a representative of the
rules, m; => m; and m; => m;. We sorted these method
pairs in two ways, according to the non-increasing order of the
support values and significance values. We observed that many
method pairs, that are generally considered as insignificant (or
ignorable) because of their lower support values (e.g., support
= 1 or 2), appear as significant ones because of their higher
significance values.

225

TABLE 1T
PERCENTAGE OF TRUE POSITIVES FOR SUPPORT = 1 AND 2 (FOR CTAGS)
Support = 1 Support = 2
SV /SR CMP PTP SV /SR CMP PTP
S=1 26 80.76 | S=2 1 100
S=05 29 62.06 | 1.5>=S>=1 17 83.33
04>S>=03 42 25 0.75 >=S >=0.5 5 80
S =0.25 60 20 045 >=S >=03 27 88.88
S=02 52 10 03>S>=02 50 70
S<02 1828 5 S<02 92 40

S = Significance SV / SR = Significance Value / Significance Range
CMP = Count of Method Pairs PTP = Percentage of True Positives
* No method pair was found with the missing SV / SR

We performed a rigorous manual investigation on our can-
didate system, Ctags, to determine whether infrequently co-
changed (e.g., support = 1 or 2) method pairs with higher sig-
nificance values exhibit logical coupling among the constituent
methods. For two support values, 1 (the smallest one) and
2, we separated the method pairs obtained from this subject
system in difference ranges of significance values. For each
range of significance we determined the percentages of true
positives. A method pair is considered as true positive if the
two constituent methods are logically coupled. In order to
determine whether a method pair is true positive, we analyzed
the changes occurred to the two methods in those commit
operations where they co-changed.

Table II contains the number of method pairs (CMP) and
percentages of true positives (PTP) for different significance
values / ranges (SV/SR) for support = 1 and 2. We did not
find any method pair for the missing SV/SR. We should note
that the highest possible value of the significance of a method
pair is equal to its support value. For this reason, the highest
significance values are 1 and 2 in case of support values of
1 and 2 respectively. In case of Support = 1 we manually
investigated all the method pairs for the first two significance
values (S = 1, S = 0.5) to determine how many of the method
pairs are true positives. For each of the other four values /
ranges we manually investigated the first 20 method pairs and
determined the percentage of true positives (PTP) considering
these 20 pairs. We followed the same approach (evaluation of
the first 20 method pairs) for each of the two ranges, 0.3 > S >
0.2 and 0.2 > S, in case of Support = 2. For the remaining four
values / ranges we manually investigated all method pairs.

Table II indicates that we get higher percentage of true pos-
itives (PTP) for higher significance values and PTP gradually
decreases with the decrease of significance value (with only
one exception for the significance range 0.45 >= S >= 0.3 in
case of Support = 2). From this we can say that higher signifi-
cance generally indicates higher likeliness of the existence of a
logical coupling between the co-changed methods. Moreover,
considering significance we can retrieve important association
rules as well as coupling relationships from infrequently co-
changed method sets which might be ignored (or regarded
as insignificant) by the existing association rule mining tech-
niques because of smaller support values (e.g., support = 1
or 2). Thus, Significance has the potential to improve the

detection accuracy of association rule mining techniques.

VII. RELATED WORK

Association rules, introduced by Agarwal et al. [1] have
been frequently used to find associated or co-changing pro-
gram artifacts (also known as frequent itemsets). Gall et al.
[3] introduced an approach for discovering logical depen-
dencies analyzing the evolutionary coupling (or co-changing)
of different program modules. Zimmermann et al. [7] used
association rules with support, and confidence to represent
the co-change relationships among different program artifacts.
Jafar et al. [4] performed a comprehensive study on macro co-
changes considering file level granularity and introduced the
patterns, MCC (macro co-changes) and DMCC (diphase macro
co-changes), that can help in retrieving file level coupling.

The existing studies related to association rules emphasized
on identifying frequently co-changed entity sets. Also, most
of these studies investigated only file level co-changes. Our
study is different in the sense that we investigate on how
to extract important association rules as well as coupling
relationships from infrequently co-changed entity sets, because
if we ignore infrequently co-changed entity sets we might lose
significant coupling information. Moreover, we conduct our
study considering a finer granularity, in the method level.

VIII. CONCLUSION

In this research work, we propose and investigate a new
measurement, Significance, that has the potential to improve
the precision and recall of the association rule mining tech-
niques. According to our preliminary investigation, using this
measurement we can discover logical coupling from infre-
quently co-changing candidates. Infrequently co-changed (e.g.,
support = 1) candidates are less emphasized by the existing
association rule mining techniques because of their smaller
support values. However, our investigation result suggests
that consideration of Significance in association with Support
and Confidence can improve the recall of these techniques.
The proposed measurement has also the potential to improve
the precision of such techniques by reasonably disregarding
those candidates that have mainly co-changed in the atypical
commits (that affect too many entities). As a future work, we
plan to investigate different existing association rule mining
techniques to see whether our proposed new measurement can
improve their accuracy in terms of precision and recall.

REFERENCES

[1] R. Agrawal, T. Imieliski, A. Swami, “Mining association rules between
sets of items in large databases”. Proc. ACM SIGMOD, 1993, Vol. 22,
Issue 2, pp. 207-216.

[2] Exuberant Ctags: http://ctags.sourceforge.net/

[3] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” Proc. ICSM, 1998, pp. 190-199.

[4] F. Jaafar, Y. Gueheneuc, S. Hamel, G. Antoniol, “An Exploratory Study
of Macro Co-changes”, Proc. WCRE, 2011, pp. 32-334.

[5] A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability,” Proc. ICSM, 2008, pp. 227-236.

[6] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed
Method Groups: A Case Study on Open Source Systems”, Proc. CAS-
CON, 2012, pp. 205 - 219.

[71 T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining version
histories to guide software changes,” Proc. ICSE, 2004, pp. 563-572.

226

