Evaluating the Conventional Wisdom in Clone Removal:
A Genealogy-based Empirical Study

Minhaz F. Zibran® Ripon K. Saha?

Chanchal K. Roy?

Kevin A. Schneider*

minhaz.zibran@usask.ca!, ripon@utexas.edu?, croy@cs.usask.ca?, kas@cs.usask.ca*

University of Saskatchewan, Canada'?*

ABSTRACT

Clone management has drawn immense interest from the
research community in recent years. It is recognized that
a deep understanding of how code clones change and are
refactored is necessary for devising effective clone manage-
ment tools and techniques. This paper presents an empirical
study based on the clone genealogies from a significant num-
ber of releases of six software systems, to characterize the
patterns of clone change and removal in evolving software
systems. With a blend of qualitative analysis, quantitative
analysis and statistical tests of significance, we address a
number of research questions. Our findings reveal insights
into the removal of individual clone fragments and provide
empirical evidence in support of conventional clone evolu-
tion wisdom. The results can be used to devise informed
clone management tools and techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, and reverse engineering

General Terms
Experementation, Management, Measurement

Keywords

clone removal, clone evolution, refactoring, reengineering

1. INTRODUCTION

Duplicate or similar code fragments are known as code
clones. Previous studies report that software systems typi-
cally contain 9%-17% [30] of code clones, and the proportion
may be as high as 50% [20]. Code snippets that have iden-
tical source text except for comments and layout are called
Type-1 (exact) clones. Syntactically similar code snippets,
where there may be variations in the names of the identi-
fiers/variables are known as Type-2 clones. Code fragments
that exhibit Type-2 clone similarity but also have other dif-
ferences such as added, deleted or modified statements are
Type-3 clones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

University of Texas at Austin, USA?

Code cloning is a popular code reuse mechanism that is
used to speedup the development process and facilitate in-
dependent evolution of similar program features. However,
the use of code clones may be detrimental at times. For
example, copy-pasting a code fragment already containing
an unknown bug may cause fault propagation. Moreover,
during the maintenance phase, a change in a clone fragment
may necessitate consistent changes in all of its cloned frag-
ments, and any inconsistencies may introduce vulnerabili-
ties [31]. Thus, code clones may have a significant impact
on the development and maintenance of software systems.

Despite ongoing research on the positive [11, 27] and neg-
ative [19] effects of code clones, researchers and practitioners
have come to an accord for the need of active and informed
clone management [32, 33] including documentation and re-
moval of clones through refactoring. However, code clones
can often be desirable, and aggressive removal of clones
through refactoring may not be a good idea [11, 31], given
the risks and efforts needed for such activities. In this re-
gard, a number of classification schemes [2, 9, 12, 25], metric
based selection approaches [1, 4, 8], and an effort model [31]
have been proposed to identify potential clones for refactor-
ing. Still, for many systems, clone management and removal
is yet to be a part of the daily maintenance activities [6]. De-
spite more than a decade of software clone research, clone
management remains far from industrial adoption, and this
area has gained more focus from the community in recent
years [34].

A deep understanding of how individual clones change
during their evolution, and which criteria cause their re-
moval from the system, can help in devising effective strate-
gies and tool support for clone management. Previous stud-
ies on clone evolution and programmers’ psychology lead to
some common beliefs and at times even contradictions about
the traits of clone evolution. For example, the study of Kim
et al. [11] suggests that many clones are wvolatile (i.e., dis-
appear shortly after they are created), while the study of
Lozano and Wermelinger [14] suggests otherwise.

This paper focuses on the patterns of changes and removal
of code clones during the evolution of software systems. In
particular, we formulate the following seven research ques-
tions to capture different characteristics of clone change and
removal. Some of the research questions correspond to com-
mon beliefs (or, contradictions) in the community; but we
want to develop empirical evidence based on a systematic
genealogy-based study on clone change and removal in evolv-
ing software systems.

RQ1: Do the sizes of the groups of clones make any dif-
ference in clone removal in practice? — Kim et al. [10]
suspected that frequently copied code fragments (i.e., larger
clone-groups) can be good candidates for clone refactoring.

RQ2: Do the sizes of the individual clone fragments in terms
of the number of lines impact clone remowval in practice?
— Larger clone fragments can be attractive candidates for
refactoring, as conjectured by Kim et al. [10].

RQ3: For a group of clones, does the distribution of the
clones in the file system hierarchy impact their removal in
practice? — Goéde [6] reported that the developers were
more interested in refactoring closely located clones.

RQ4: Is there any relationship between any particular type
of changes in the clones and their removal? — This is still
an open question, as far as we are concerned. If there ex-
ists any relationship between a particular type of changes
and clone removal, the clone management tools can focus
on supporting that category of changes.

RQ5: During the evolution of the software systems, when
does clone remowval take place? — This question addresses
the aforementioned contradiction about the volatility of clones.

RQ6: How frequently do the clones experience changes be-
fore they are removed from the system? — There is an on-
going debate on the stability of code clones [7, 13, 16].

RQT: Does the granularity (entire function bodies or syn-
tactic blocks) of clones make any difference in their removal
in practice? — A recent study of Gode [6] reported many
instances of removal of block clones by extract method refac-
toring.

To address the research questions, we carry out a sys-
tematic study based on code clone genealogy [11, 24], which
maps the individual clone fragments across their evolution
over subsequent releases. We investigate the changes and
removal of individual clones in 228 releases of six diverse
open-source software systems written in Java and C. Then
we analyze them against a wide range of metrics and char-
acterization criteria. In the light of a combination of quali-
tative analysis, quantitative analysis and statistical tests of
significance, we derive the answers to the research questions.

We believe, such an empirical study on the characteristics
of changes and removal of individual near-miss clone frag-
ments is timely and addresses a gap in the literature. Our
study is based on genealogies of near-miss clones including
not only Type-1 and Type-2 clones, but also Type-3 clones.
To the best of our knowledge, such a genealogy based study
including Type-8 clones has not yet been performed.

The rest of this paper is organized as follows. In Section 2,
we introduce the terminology and metrics used in our study
and the rest of the paper. In Section 3, we describe the setup
and procedure of our empirical study. Section 4 presents
the findings our study. In Section 5, we discuss the possible
threats to the validity of our study. Section 6 accommodates
related work, and Section 7 concludes the paper.

2. TERMINOLOGY AND METRICS

In this section, we introduce the terminology and metrics
used in this paper to characterize the changes and removal
of code clones. Some of the metrics and and criteria are
adopted from earlier studies found in the literature [3, 5, 6,
11].

Risa
(Last Release)

l

i+2

l
i

D 6 G

No Change

©@E
No Change

No Change

Q@
No Change

) @D Gos

@:QIQ
Inconsistent Change l

N/

‘ Consistent Change l‘ Consistent Change l‘

o
=)
=
<
<
O
k=
2
2
7]
c
g
o
£

Figure 1: Different Types of Clone Genealogies

Clone Genealogy: A set of clone fragments that are
clones of each other form a clone-group. A clone genealogy
refers to a set of one or more lineage(s) originating from the
same clone-group, whereas, a clone lineage is a sequence of
clone-groups evolving over a series of releases of the software
system. Figure 1 shows several examples.

Consistent and Inconsistent Change: If all clones in
the clone-group experience the same set of changes during
the transition between releases, then such changes are char-
acterized as being a consistent change, otherwise the changes
are regarded as being inconsistent.

Consistently Changed Clone-Group: If the geneal-
ogy of a clone-group has any consistent change pattern(s)
but does not have any inconsistent change patterns during
evolution, it is classified as a consistently changed clone-
group. The clone-group associated with the second geneal-
ogy in Figure 1 is an example of a consistently changed clone-
group as there is a consistent change between releases R;+1
and Ri+2 .

Inconsistently Changed Clone-Group: If the geneal-
ogy of a clone-group has any inconsistent change pattern(s)
throughout the entire evolution period, it is characterized
as an inconsistently changed clone-group. The clone-group
associated with the third genealogy in Figure 1 is an in-
consistently changed clone-group as there is an inconsistent
change between releases R;+2 and R;43.

Static, Alive, Dead Clone-Group: Static clone-groups
are those which propagate through subsequent releases hav-
ing no textual change in the clones. A clone-group is called
dead if it disappears before reaching the final release under
consideration, otherwise the clone-group is considered alive.
The clone-groups associated with the first, second and third
genealogies in Figure 1 represents static, dead, and alive
clone-groups respectively.

Entropy of Dispersion: We used an entropy measure
to characterize the physical distribution of clones at the file
level by using Equation 1, where p; denotes the probability
of clones being located in ﬁleni.

entropy = Y _ —p; log(p:) (1)
i=1

For example, if all the clone fragments reside in the same
file, the dispersion entropy will be 0.0. If the entropy is low,
clones are densed in only a few files. If the entropy is high,
clones are scattered across different files.

Table 1: Software Systems Subject to Our Study

Prog. | System Number of Releases Dates (mm/dd/yy) | Duration LOC

Lang. | Name Releases | Start End Start End (months) (range)
dnsjava 50 0.9.2 2.1.1 04/19/99 02/10/11 131 6,290 — 15,018

Java JabRef 27 1.5 242 08/15/04 11/01/08 50 22,041 - 69,170
ArgoUML 48 0.27.1 0.32.BETA2 | 10/04/08 01/24/11 26 176,618 — 202,555
ZABBIX 31 1.0 1.8.4 03/23/04 06/01/11 86 9,252 — 62,845

C Conky 28 1. 1.8.1 06/20/05 10/05/10 62 6,555 — 39,810
Claws Mail 44 2.0.0 3.7.9 06/30/06 04/09/11 63 1,33,642 — 1,89,786

Table 2: NiCad Setting for Clone Detection

Setting [Value
Granularity of Clones Block
Minimum Clone Size 5 LOC
Filtering of Statements None
Renaming of Identifiers Blind
UPI (dissimilarity) Threshold 30%

3. STUDY SETUP

To investigate the research questions outlined in Section 1,
we study the clone genealogies across releases of six di-
verse open-source software systems (Table 1) written in Java
and C.

3.1 Extraction of Genealogies

Using the NiCad-2.6.3 [22] clone detector, we separately
detected clones from every release of each of the subject
systems. The parameter setting of NiCad that we used for
clone detection, is presented in Table 2. With this setting,
NiCad detects both exact (Type-1) and near-miss (Type-2
and Type-3) clones.

From the clone detection results obtained from NiCad, for
each of the subject systems, we separately constructed the
clone genealogies using gCad [24]. The tool gCad is a clone
genealogy extractor we developed, which can construct and
classify genealogies of all three types (Type-1, Type-2, and
Type-3) of clones that we are interested in. As per the need
of this study, we significantly extended and customized the
tool with a set of appropriate features to compute the nec-
essary metrics.

3.2 Investigation

We examined all the dead genealogies to see how the
clones were removed. We also examined how the individ-
ual clone fragments changed during their evolution over a
series of releases. Since, the inconsistent changes to clones
are believed to be a common phenomena that produce vul-
nerabilities in a system [30, 31], we characterized the clone
changes as consistent versus inconsistent. In addition, we
captured how frequently a clone-group changes during the
evolution before its removal. For quantitative analysis, we
computed the necessary metrics according to the categoriza-
tion described in Section 2.

4. FINDINGS

The findings of our study are derived from qualitative and
quantitative analyses of the changes and removal of individ-
ual clone fragments. We also apply the statistical Mann-
Whitney- Wilcozon (MWW) test [15] with o = 0.05, to de-
termine the statistical significance of the findings.

Table 4: Average Sizes of Removed and Alive Clone-

Groups
System Removed Clones Alive Clones
dnsjava 2.25 2.75
JabRef 2.31 4.17
ArgoUML 2.12 9.12
ZABBIX 2.31 4.53
Conky 2.37 9.31
Claws Mail 2.88 2.95

4.1 Size of the Clone-Groups

To capture the relationship between the number of frag-
ments in a clone-group and clone removal, we computed the
average number of fragments in the removed clone-groups
and that of the alive clone-groups for each of the subject
systems (Table 4). As seen in Table 4, for all the subject
systems, the average size of the alive clone-groups is higher
than those of the removed clone-groups. During our man-
ual investigation, we found that the developers refactored
clone-groups that had only two or three clone fragments.
Similarly, we found that in JabRef, there were 74 clone-
groups having more than three fragments, and only four of
them were refactored. This gives the impression that de-
velopers are more inclined to remove smaller clone-groups.
To statistically verify this, we address the second research
question RQ1, and formulate our null hypothesis as follows.

H}: The size of a clone group does NOT make a difference
in clone removal in practice.

A MWW test (P = 0.008) rejects (as, P < «) the null
hypothesis, which implies that the difference is statistically
significant. Hence, we answer the research question RQ1 as
follows.

Ans. to RQ1: The size of the clone-groups (in terms of
the number of member clone fragments) does make a statisti-
cally significant difference in clone removal, and the smaller
clone-groups are found to be attractive for removal in prac-
tice.

4.2 Size of the Clone Fragments

The size of the clone fragments can be expected to have a
relationship with the refactoring effort, especially when the
candidate clone-group includes near-miss (Type-2 and Type-
3) clones beyond Type-1. To examine the relationship be-
tween clone removal and the LOC per clone fragment in the
clone-groups, we separately computed the average number
of pretty-printed LOC per fragment for the removed clones
as well as for the alive clones. We also calculated the stan-
dard deviations for each of the measurements to capture the
degree of variations. The results are presented in Table 5.

Addressing the research question RQ2, we now formulate
our null hypothesis as follows.

Table 3: Actual and Normalized Textual Similarity of Removed and Alive Clone-Groups

Subject Actual Text Similarity Normalized Text Similarity 5
System Removed Clones | Alive Clones | Removed Clones | Alive Clones 3

Average SD Average SD | Average SD Average SD ¢
dnsjava 0.60 0.20 0.67 0.I8 1 0.80 0.12 0.81 0.10 2
JabRef 0.76 0.18 0.68 0.18 | 0.85 0.13 0.82 011 %
ArgoUML | 0.76 0.20 0.66 0.17 | 0.85 0.14 0.80 0.14 3
ZABBIX 0.72 0.19 0.73 0.17 | 0.83 0.16 0.83 0.11 =
Conky 0.76 0.16 0.69 0.15 | 0.88 0.09 0.84 0.09 g
Claws Mail | 0.73 0.20 0.65 0.22 | 0.87 0.12 0.82 0.15 =

Table 5: Average Sizes (LOC) of Clone Fragments

Subject Removed Alive B
System Average SD | Average SD =
dnsjava 10 3 11 5 %
JabRef 17 15 13 9 -
ArgoUML 16 13 15 19 =
ZABBIX 26 25 21 21 &
Conky 20 23 15 7 @
ClawsMail 15 9 16 18 1

HZ: The size of the individual clones in terms of number of
lines does NOT impact clone removal in practice.

A MWW test (P = 0.419) over the series of sizes for the
removed and alive clones fails to reject (as, P > «) the null
hypothesis.

As can be observed from Table 5, there are subtle dif-
ferences in the sizes of the clone fragments of both the re-
moved and alive clone-groups. For four of the subject sys-
tems (ZabRef, ArgoUML, ZABBIX, and Conky), the average
sizes of clone fragments of removed clone-groups is higher
than those of the alive clone-groups, which is just the oppo-
site for the other two systems (dnsjava and Claws Mail).
Hence, from the high level view the anticipation of Kim et
al. [10] saying — developers are more interested in getting
rid of larger clones — appears to be true. However, the high
standard deviation in the average sizes of the removed clones
indicates that developers remove varying sizes of clone frag-
ments. Our manual investigation also confirms this finding.
We found many instances where the developers removed
clones consisting of less than seven LOC as well as clones
with more than even 100 LOC. This makes it difficult to
derive any relationship between clone removal and the sizes
of the clone fragments. From the analysis described above,
we answer research question RQ2 as follows.

Ans. to RQ2: The size of the individual clones in terms
of number of lines does not have a statistically significant
impact on clone removal in practice, and the developers re-
move clone fragments of diverse sizes.

4.3 Entropy of Dispersion

In Table 6, we present the entropy of dispersion of both
the removed and alive clones for all the subject systems.
From the developer’s perspective, refactoring/removal of co-
located clones may required less effort than that needed for
refactoring clones scattered over the code base. This can be
expected to hold true due to several reasons. In the refactor-
ing of scattered clones the developers might need to spend
much time and effort to navigate to, understand the con-
texts, and make careful modifications at different locations
of the code base.

In Table 6, we see that for each of the subject systems, the
average entropy of dispersion for the removed clones is much
lower than that for the alive clones. This indicates those

Table 6: Comparison of Entropy of Dispersion

System Removed Clones Alive Clones
dnsjava 0.71 0.90
JabRef 0.53 0.98
ArgoUML 0.82 1.30
ZABBIX 0.35 0.53
Conky 0.18 0.24
Claws Mail 0.30 0.70

clone-groups whose member clone fragments are closely lo-
cated in the code base are relatively more attractive for
refactoring/removal. To determine whether the initial ob-
servation significantly supports the expectation, we again
conducted a MWW test with the null hypothesis as follows.

HE: For a group of clones, the distribution of indwidual
clones in the file system hierarchy does NOT impact
their removal in practice.

The hypothesis addresses the research question RQ@3. A
MWW test (P = 0.199) between the entropy values for both
the removed and alive clones (over all the systems) fails to
reject (as, P > «) the null hypothesis. This implies that
there exists no relationship between the entropy of disper-
sion and clone removal in practice. Therefore, we derive the
answer to research question RQ3 as follows.

Ans. to RQ3: For a group of clones, the distribution of
individual clones in the file system hierarchy does not have a
statistically significant impact on their remowval in practice.

As we delved deeper through manual investigation, we
found a strange phenomenon in the relationship between en-
tropy and the number of clone fragments that were removed.
Most of the removed clone-groups had two fragments, if their
entropy was greater than zero, i.e., they were not really lo-
cated in the same file. For example, in JabRef and ZABBIX,
developers refactored 37 and 43 clone-groups respectively, all
of which had entropy higher than zero. Among them only
two clone-groups in JabRef and 10 clone-groups in ZABBIX
had three clone fragments, while the rest had only two frag-
ments.

4.4 Change Patterns

Despite the realized advantages of code cloning, it is also
true that code clones may have a significant impact on soft-
ware development and maintenance in several ways. First,
the reuse by copy-pasting of any code segment that already
contains unknown faults, results in propagation of those
faults to all the copies. Second, when a change is made
in a code fragment, consistent changes are often expected
in all its clone fragments, while any inconsistencies may in-
troduce new faults. Third, if a bug is found in a certain
code fragment, there remains a possibility that similar bugs
can be found in the clones of the fragment, and thus may

Table 7: Removal of Clone-Groups Classified by Change Patterns

Subject Static Clone-Groups Consistently Changed CG Inconsistently Changed CG
System Total Removed [%] | Total Removed [%] | Total Removed [%]
dnsjava 60 27 45.00 8 3 37.50 49 27 55.10
JabRef 217 52 23.96 53 3 5.66 132 15 11.36
ArgoUML 1435 109 7.60 39 4 10.26 440 19 4.31
ZABBIX 166 88 53.01 61 18 29.51 109 35 32.11
Conky 121 44 36.36 19 7 36.84 37 16 43.24
ClawsMail 445 58 13.03 172 7 4.07 304 7 2.30

Table 8: MWW Tests Over Removal of Categories
of Clones

Consistently | Inconsistently

Static Changed Changed
Static - P =0.378 P =0.575
Consistently _ _
Changed P =0.378 - P =0.810
Inconsistently _ _
Changed P=0575| P =0.810 -

necessitate consistent propagation of that bug-fix to all the
clones.

Thus, whether the clones changed consistently, inconsis-
tently, or remained static during the evolution of a software
system, may have implications in clone management in fu-
ture releases. Therefore, we categorized the clones based on
whether they remained unchanged, or changed consistently
or inconsistently, and what percentage of such clones were
actually removed during the evolution of the system. For
each of the systems, the total number of clones of each of
these three categories and the percentage of them that were
removed, are presented in Table 7.

From Table 7, we see that for three of the systems (JabRef,
ZABBIX, and ClawsMail), the majority of the removed clones

are static clone-groups. The removal of inconsistently changed

clone-groups were found to occur most often in two of the
systems (dnsjava and Conky), whereas, the removal of con-
sistently changed clones dominated in ArgoUML. The results
in the table do not give a clear indication whether a certain
category of clone-group is removed more often. To obtain
more confidence, we carried out MWW tests between each
pair of the three categories of clone removal over all the
systems. The results of the MWW tests, as presented in
Table 8, also suggest that there is no significant difference
in the removal of static, consistently changed and inconsis-
tently changed clone-groups (as, P > « in all cases). This
leads to the answer to the research question R@4 as follows.

Ans. to RQ4: There is no statistically significant rela-
tionship between any particular type of changes in the clones,
and their removal from a later release.

4.5 Age

The information about the age (in terms the number of re-
leases the clone-groups remain alive before removal) of clone
genealogies can indicate how quickly the developers act to
remove clones. In order to examine this phenomenon, for
each of the systems, we computed the age of each clone-
group that was removed in any subsequent release.

In Figure 2, we present the proportion of clone-groups
found to have been removed in a subsequent release. As
the figures (Figure 2(a) and Figure 2(b)) show, majority of

the dead clones in four of the subject systems (ArgoUML,
JabRef, ZABBIX, and Conky) were removed within the ini-
tial five to ten releases. This is consistent with that reported
by Kim et al. [11], suggesting that many of the clones are
possibly wolatile.

However, in all the systems, a good number clones re-
mained alive over a long sequence of releases before their
removal. For example, 17% of the refactored clone-groups in
ArgoUML remained alive in 43 subsequent releases, while 35%
of the clone-groups in Claws Mail propagated over 27 sub-
sequent releases, before their removal. Similar trends were
found in other systems as well. From the above discussion,
we answer the research question RQ5 as follows.

Ans. to RQ5: During the evolution of the software sys-
tems, a few early releases experience significant clone re-
moval. Nevertheless, some clones propagated over a rela-
tively long sequence of releases before they were finally re-
moved.

357
30 fArgouML
i Systems written in Java
|
2511 jabRef
< |
&
k]
:
¢ 1
v n
c i
2 i
s} n
"
n
! l|
0l
[
[
[
[
[
o
1 1
» 1
/\ Lewoad’)
25 30 35 40 45 50
Age
(a)
3571
g
E
=3
o
<
2
o
1

(b)

Figure 2: Clone removal categorized by age

Table 9: Frequency of Changes before Removal

Subject Change Frequency

System I 2 >2 Average
dnsjava 16 9 5 1.80
JabRef 11 4 3 1.72
ArgoUML 17 4 2 1.48
ZABBIX 30 16 7 1.74
Conky 10 8 5 1.95
ClawsMail 9 2 5 1.57

4.6 Frequency of Changes

The frequency of changes to the clone-groups is an impor-
tant criterion in clone management, since changing source
code can be expensive, while making consistent changes to
clones may involve significant effort and risks. Indeed, the
modifications of a clone fragment needing effort, and the
required effort can be multiplied by the size of the cor-
responding clone-group, to make consistent changes to all
clone fragments in the clone-group. This is one of the areas
where clone management tool support may contribute by fa-
cilitating clone merging, or consistent change propagation.

Thus, we examined how frequently the clone-groups un-
derwent changes before their removal. In Table 9, we present
the number of clone-groups that, before removal, underwent
changes only once, twice, and more than twice. As seen in
the table, most of the removed clones were changed only
once. For the clone-groups that changed at least once, their
average change frequency is less than two, over all the sub-
ject systems. From our manual verification, we found that
very few clone-groups underwent changes more than twice
before their removal. On the other hand, we also found many
clone-groups remained alive although they experienced mi-
nor or significant changes. However, we confined our focus
to the changes of the removed clone-groups to get a complete
picture over the entire life-time of the clone-groups. Now, we
derive the answer to the research question RQ6 as follows.

Ans. to RQ6: Most clones do not undergo frequent
changes before their removal.

This finding is also in keeping with the answer to the
research question RQ5, which indicates that many of the
clones are removed from the systems within a few early re-
leases. We suspect that once a developer comes to know of
a clone during its first change, this awareness might drive
the removal of the clone at a later release. This indicates an
area where informed clone management can play a signifi-
cant role.

4.7 Level of Granularity

The extract method refactoring pattern is perhaps the
most highlighted technique for removing clones at the gran-
ularity of syntactic blocks. Thus, we may expect evidence
of many instances of block clone removal. Alternatively,
functions typically contain a somewhat complete implemen-
tation of certain features or program logic and so it may be
easier to remove/refactor clones at the granularity of entire
function bodies, rather than at the granularity of smaller
syntactic blocks.

To determine whether there exist any relationships be-
tween clone removal and clone granularity, we examined
both levels of granularities — function/method and syntactic
block. Note that the body of a function also constitutes a
block. Therefore, we distinguish ¢rue functions clones from
the true block clones. A true function clone fragment spans

Table 10: Removal of Function and Block Clone
Groups

Subject Function Clone Block Clone
System Total Rem. [%] | Total Rem. [%]
dnsjava 69 37 53.62 25 15 60.00
JabRef 204 41 20.09 110 21 19.09
ArgoUML 1183 97 8.19 305 20 6.55
ZABBIX 201 78 38.80 134 62 46.26
Conky 115 35 30.43 59 30 50.84
Claws Mail 510 40 7.84 337 29 8.60

the entire body of a function, whereas a true block clone
must not constitute the entire body of a function.

Extended gCad is capable of differentiating true function
clones from the true block clones. Any clone-group that is
composed of only true function clones is categorized as a
group of function clones, whereas, clone-groups consisting
of only true block clones are categorized as groups of block
clones. Separate genealogies are constructed for the clones
at these two levels of granularity.

Over all releases of each of the subject systems, the to-
tal number and percentages of both the groups of function
clones versus the block clones are presented in Table 10.
The clone detection results for each of the systems identi-
fied clone-groups that contained both true function clones
and true block clones. Therefore, it is not possible to cate-
gorize such a group as a group of only true function clones
or only true block clones. This is why the total number
of clone-groups reported in Table 10 is lower than that of
Table 7. Addressing the research question RQ7, we now
formulate our null hypothesis as follows.

H{: The granularity (entire function bodies or syntactic blocks)
of clones does NOT make any difference in their re-
mowal in practice.

A MWW test (P = 0.81) over the proportions of the removal
of both true function and block clones fails to reject (as,
P > «) the null hypothesis.

Table 10 shows that developers remove both function and
block clones as per their needs, as we do not see significant
differences between the proportions of removal of function
clones and block clones. For ZABBIX and Conky, the pro-
portion of block clones removal is slightly higher. It seems
that the clone removal rates for the two larger systems, Ar-
goUML and Claws Mail are far lower than the smaller sys-
tems. On the other hand, it appears that the developers
of the relatively small systems dnsjava, ZABBIX, and Conky
were more aware of the clones and were active in removing
them through refactoring. Based on the above discussion,
we now derive the answer to the research question RQ7 as
follows.

Ans. to RQT7: In practice, the granularity (entire func-
tion bodies or syntactic blocks) of clones does not make any
statistically significant difference in their removal.

S. THREATS TO VALIDITY

In this section, we discuss possible threats to the validity
of our study and how we mitigated their effects.

Construct Validity: Perhaps the best way to investigate
change and evolution of clones is to study of the individual
clone fragments in terms of genealogies across versions of the
system. As versions one might choose programmers’ commit

transactions or weekly /monthly snapshots of the code base,
or the stable releases of the system. Programmers often
create clones for experimental purposes, which they remove
shortly after creation [11]. Thus, daily, weekly or monthly
snapshots can be too frequent to capture stable changes in
the code base. Indeed, commit transactions are more sus-
ceptible to this issue, in addition to their sensitivity to the
developers’ commit styles [30]. However, when a version of
a software is officially released, the source code is expected
to be in a stable form. Therefore, for our study we selected
stable releases of the systems instead of commit transactions
or snapshots at certain time intervals.

Internal Validity: The internal validity of our study is
subject to the accuracy in clone detection and genealogy
extraction. The NiCad clone detector used in our study, is
reported to be effective in detecting both exact (Type-1)
and near-miss (Type-2 and Type-3) clones with high preci-
sion and recall [21, 22]. Moreover, our manual verification of
random samples from the detected clones found no false pos-
itives. The genealogy extractor gCad, used in our study, is
also reported to be accurate in the computation of near-miss
clone genealogies [24]. Nevertheless, we carried out manual
investigation to verify the correctness of the genealogies and
to fix any inconsistencies. Indeed, the manual assessment
can be subject to human errors. However, all the human
participants of this study are faculty and graduate students
carrying out research in the area of software clones, and
thus we believe that they have affluent expertise to keep the
probable human errors to the minimum.

External Validity: Our study is based on six medium
to fairly large open-source software systems, and thus one
may question the generalizability of the findings. However,
for each of the subject systems, we studied a significant
number of releases, and we expect this to help minimize
the threat to some extent. To further mitigate the threat,
we carefully chose the subject systems from different appli-
cation domains, and written in two different programming
languages.

Reliability: The methodology of this study including the
procedure for data collection are documented in this paper.
The subject systems are open-source, while the NiCad clone
detector as well as the current extended version of gCad
genealogy extractor are also available online'. Therefore, it
should be possible to replicate the study.

6. RELATED WORK

There has been considerable research in characterizing
clone evolution and distinguishing clones of interest for refac-
toring.

From a manual analysis of 800 function/method level clones
over six different open-source Java systems, Balazinska et
al. [2] proposed a taxonomy of function clones based on the
differences and similarities in the program elements. Based
on the location of clones in the inheritance hierarchy, Koni-
N’Sapu [12] proposed another clone taxonomy and a set of
object-oriented refactoring patterns for refactoring each cat-
egory of code clones. Later, Kapser and Godfrey [9] pro-
posed a clone taxonomy based on the locations of clones
in the file-system hierarchy and (dis)similarities in the code
functionalities.

Schulze et al. [25] proposed a code clone classification
scheme to support the decision of whether to use Object-

"http://www.cs.usask.ca/faculty/croy/

Oriented Refactoring (OOR) or Aspect Oriented Refactor-
ing (AOR) for clone removal. Other techniques, such as
design patterns [1] and traits [17] were also attempted to
identify and refactor clones of interest. Torres [28] applied
a concept-lattice based data mining approach to derive four
categories of concepts containing duplicated code and sug-
gested refactoring patterns suitable for refactoring clones in
each of the categories.

Higo et al. [8] proposed a software-metrics-based approach
to identify potential clones that can be easier to refactor us-
ing the extract method and pull-up method refactoring pat-
terns. Variations of such metrics-based approaches are re-
alized in tools namely Gemini [29] and ARIES [8]. Choi et
al. [4] carried out a developer-centric study to determine the
effectiveness of different combinations of metrics in distin-
guishing clones of interest for refactoring. None of the afore-
mentioned work was based on code clone genealogies as ours,
where we examined the evolution of individual clone frag-
ments to characterize the patterns of change and removal of
clones. Based on the experience from an ethnographic study
on copy and paste programming practices, Kim et al. [10] re-
ported that “larger or frequently copied code fragments are
good candidates for refactoring.” However, from our geneal-
ogy based study, we did not find evidence to support this
conjecture.

Based on a case study on two open source Java systems,
Tairas and Gray [26] reported that in some cases clone refac-
torings were partially performed on only parts of the clones
(i.e., sub-clones). However, their focus was only on the oc-
currences of refactorings composed of the extract method
refactoring pattern. The objective of our work was to in-
vestigate and characterize removal and refactoring of clones
not only through the extract method refactoring patterns,
but also by all other possible means.

Gode [6] conducted a case study over four systems, and
investigated the extent clones were removed from the sys-
tems. He found many instances of deliberate clone removal,
and the majority of those removals were performed by the
extract method refactoring pattern. He further reported that
the developers refactored mostly the closely located clones,
which is also consistent with our findings. Our study signifi-
cantly differs from that of Gode. Based on clone genealogies
over 228 releases of six software systems and using a wide
range of characterization criteria, we captured a broader pic-
ture of clone removal and changes in open-source software
systems.

7. CONCLUSION

This paper presents a genealogy-based empirical study on
the evolution of individual clone fragments to characterize
the changes and removal of exact (Type-1) and near-miss
(Type-2 and Type3) code clones. We examined a total of
228 releases of six open-source software systems written in
C and Java. To the best of our knowledge, this is the first
study in this regard that includes Type-3 clone genealogies.

In the study, we addressed seven research questions, and
derived answers to those with a combination of qualitative
and quantitative analyses as well as statistical tests of signif-
icance. The findings of our study shed light on the conven-
tional wisdom about clone evolution, in particular, on the
patterns of changes and removals of code clones in practice.

From the study, we found that the sizes of the individual
clone fragments or the clone-groups, or the granularity (i.e.,

functions or blocks) of clones or their dispersion in the file-
system hierarchy do not have any significant effect on clone
removal in practice. In terms of change patterns, we did
not find any relationships between clone removal and any
particular type of changes (i.e., consistent or inconsistent).
However, a few early releases of the software systems experi-
enced significantly more changes and removal of clones than
the later releases. We also found that the majority of clones
that were removed, did not experience frequent changes be-
fore removal, and surprisingly, most of those clones under-
went changes only once, before they were removed from their
respective systems.

During manual investigation, we discovered many instances
of clones, which could be attractive for refactoring, but those
were left alone, perhaps due to the lack of proper tool sup-
port. We believe that the practical findings from this study
make significant contributions to the existing wisdom about
clone evolution, refactoring, and removal, which in turn, will
be useful for devising effective tools and techniques for in-
formed clone management.

8. REFERENCES

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and
K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In WCRE, pp.
98-107, 2000.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In METRICS, pp. 292-303, 1999.

[3] D. Cai and M. Kim. An empirical study of long-lived
code clones. In FASE/ETAPS, pp. 432-446, 2011.

[4] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano.
Extracting Code Clones for Refactoring Using
Combinations of Clone Metrics. In IWSC, pp. 7-13,
2011.

[5] N. Géde and R. Koschke. Frequency and Risks of
Changes to Clones. In ICSE, pp. 311-320, 2011.

[6] N. Gode. Clone Removal: Fact or Fiction? In IWSC,
pp- 33-40, 2010.

[7] N. Gode and J. Harder. Clone stability. In CSMR, pp.
65-74, 2011.

[8] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Aries: Refactoring support environment based on code
clone analysis. In JASTED-SEA, pp. 222-229, 2004.

[9] C. Kapser and M. Godfrey. Aiding comprehension of
cloning through categorization. In IWPSE, pp. 85-94,
2004.

[10] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE, pp. 83-92, 2004.

[11] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In
ESEC-FSE, pp. 187-196, 2005.

[12] G. Koni-N’Sapu. A scenario based approach for
refactoring duplicated code in OO systems. Diploma
thesis, University of Bern, 116 pp., 2001.

[13] J. Krinke. Is cloned code more stable than non-cloned
code? In SCAM, pp. 57-66, 2008.

[14] A. Lozano, and M. Wermelinger. Tracking clones’
imprint. In IWSC, pp. 65-72, 2010.

[15] D. Anderson, D. Sweeney, and T. Williams. Statistics
for Business and Economics. Thomson Higher
Education,10th Edition, 2009.

[16] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke,
and K. Schneider. Comparative stability of cloned and
non-cloned code: An empirical study. In ACM-SAC
(SE Track), pp., 1227-1234, 2012.

[17] E. Murphy-Hill, P. Quitslund, and A. Black.
Removing duplication from java.io: a case study using
traits. In OOPSLA, pp. 282-291, 2005.

[18] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T.
Nguyen. Clone management for evolving software.
IEEE Trans. on Softw. Engg., 1(1):14AS19, 2011.

[19] F. Rahman, C. Bird, P. Devanbu. Clones: What is
that smell? In MSR, pp. 72-81, 2010.

[20] M. Rieger, S. Ducasse, and M. Lanza. Insights into
System-wide Code Duplication. In WCRE, pp.
100-109, 2004.

[21] C. Roy and J. Cordy. A mutation/injection-based
automatic framework for evaluating code clone
detection tools. In Mutation, pp. 157-166, 2009.

[22] C. Roy and J. Cordy. NiCad: Accurate Detection of
Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization. In ICPC;
pp. 172-181, 2008.

[23] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and
K. Schneider. Evaluating code clone genealogies at
release level: An empirical study. In SCAM, pp.
87-96, 2010.

[24] R. Saha, C. Roy, and K. Schneider. An automatic
framework for extracting and classifying near-miss
clone genealogies. In ICSM, pp. 293-302, 2011.

[25] S. Schulze, M. Kuhlemann, and M. Rosenmiiller.
Towards a refactoring guideline using code clone
classification. In WRT, pp. 6:1-6:4, 2008.

[26] R. Tairas and J. Gray. Sub-clones: Considering the
Part Rather than the Whole. In SERP, pp. 284-290,
2010.

[27] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. D. Penta. An empirical study on the maintenance
of source code clones. J. of Empirical Softw. Engg.,
15(1):1-34, 2009.

[28] R. Torres. Source code mining for code duplication
refactorings with formal concept analysis. M.Sc.
thesis, Vrije Universiteit Brussel, 53 pp., 2004.

[29] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In METRICS, pp. 67-76, 2002.

[30] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy.
Analyzing and Forecasting Near-miss Clones in
Evolving Software: An Empirical Study. In ICECCS,
pp. 295-304, 2011.

[31] M. Zibran and C. Roy. A Constraint Programming
Approach to Conflict-aware Optimal Scheduling of
Prioritized Code Clone Refactoring. In SCAM, pp.
105-114, 2011.

[32] M. Zibran and C. Roy. Towards flexible code clone
detection, management, and refactoring in IDE. In
IWSC, pp. 75-76, 2011.

[33] M. Zibran and C. Roy. IDE-based real-time focused
search for near-miss clones. In ACM-SAC (SE Track),
pp. 1235-1242, 2012.

[34] M. Zibran and C. Roy. The Road to Software Clone
Management: A Survey. Tech. Report 2012-03,
Department of Computer Science, University of
Saskatchewan, Canada, pp. 1-62, 2012.

