
Context-Sensitive Code Completion Tool for Better
API Usability

Muhammad Asaduzzaman Chanchal K. Roy Kevin A. Schneider Daqing Hou†
Department of Computer Science, University of Saskatchewan, Canada

†Electrical and Computer Engineering Department, Clarkson University, USA
{md.asad, chanchal.roy, kevin.schneider}@usask.ca, dhou@clarkson.edu

Abstract—Developers depend on APIs of frameworks and

libraries to support the development process. Due to the large

number of existing APIs, it is difficult to learn, remember, and

use them during the development of a software. To mitigate the

problem, modern integrated development environments provide

code completion facilities that free developers from remembering

every detail. In this paper, we introduce CSCC, a simple, efficient

context-sensitive code completion tool that leverages previous

code examples to support method completion. Compared to

other existing code completion tools, CSCC uses new sources

of contextual information together with lightweight source code

analysis to better recommend API method calls.

Keywords-API methods, Code Completion, Eclipse plugin

I. INTRODUCTION

Developers extensively use Application Programming Inter-
faces (APIs) during the development of a software. However,
this does not come without a price. Developers need to learn
and remember these APIs to use them effectively. The problem
is that APIs have grown considerably these days. For example,
the Java Development Kit started with only 212 classes, but
reaches to over 3000 classes by the release of version 5.0 1.
Thus, it is difficult to learn and remember them completely.
Furthermore, insufficient or inadequate examples, incomplete
documentation, and unspecified issues in the documentation
are only a few of the factors that make APIs difficult to
learn [1], [2]. To help developers learn and use APIs, modern
integrated development environments (IDEs) introduce code
completion facilities. As a developer types code, the code
completion engine tries to complete the remaining part by
filling in various kinds of details.

A number of techniques have been developed to support
Code Completion in IDEs. For example, Eclipse 2, a popu-
lar Java development environment, supports static type-based
code completion that can sort the completion proposals either
alphabetically, or by relevance, a positive value computed by
considering various factors (expected type of the expression,
return types, cast types, variable types etc.). However, it has
been found that code completion techniques based on static
type-based systems often fail to provide correct completion
proposals in the top position, mostly because there are a large
number of choices that match with the expected type. This
requires developers to browse through the completion popups,

1http://www.headfirstlabs.com/books/hfjava/
2http://www.eclipse.org/

thus reducing one of the important benefits of code completion
for speeding up the coding process. BCC [3], [4] addresses
limitations of the Eclipse JDT code completion technique and
tries to improve it by using user defined context-sensitive
filters together with frequency of method calls. Despite the
improvements, BCC also has limitations in predicting correct
method calls. In general, example-based code completion
techniques, such as BMN [5] or Code Recommenders 3, have
been found more effective than static type-based systems.
However, their performance can be improved by considering
additional sources of information [6].

In this paper, we present a simple, efficient, context-
sensitive example-based tool, CSCC, to support the method
call completion. The tool only requires the type information
of the receiver object and uses tokenization, instead of deep
parsing, to collect method call usage patterns. Upon request
from a user (one way is typing a dot after a receiver object
name), the tool collects the context of the current method
call request and looks for a match from its code examples.
CSCC employs the simhash technique [7] to quickly look for
the possible matching candidates and then further refine the
results by employing a more expensive but accurate textual
distance measures. Matching method calls from the example-
code base are presented to the developers in descending order
of similarity values. Full details, including a comprehensive
evaluation of the tool, can be found elsewhere [6].

The remainder of the paper is organized as follows. Sec-
tions II and III describe the design of CSCC. Section IV
presents the performance of CSCC as well as the benefit of
using simhash. We discuss several key issues we observe from
a user study in Section V. Section VI summarizes related work.
Lastly, Section VII concludes the paper.

II. CSCC: AUTO-COMPLETE OF METHOD CALLS

The CSCC tool is available as an Eclipse plugin and lever-
ages the Eclipse Java Development Tools (JDT) to contribute
to method completion proposals of the Eclipse Java editor. The
integration is non-interfering, meaning it does not interrupt
other forms of code completions supported by JDT, such
as subwords completion. The code completion engine can
be enabled or disabled by accessing the advanced content
assistant preference page of the Eclipse. CSCC uses method

3http://www.eclipse.org/recommenders/

1

Fig. 1: Configuration options for CSCC (Figure on the left hand side). The plugin can be enabled or disabled by selecting or
deselecting the checkbox associated with the CSCC label (Figure on the right hand side)

call usage context collected from code examples of various
open source software projects to recommend method calls.
The tool comes with a model database that contains the
code examples and users can add or delete additional model
databases later. The tool offers two other options that can be
configured by users of the plugin (see Figure 1). By default,
CSCC inserts three completion proposals on top of the original
list of method calls presented by the JDT. Users can change
this number to a different value (ranging from one to ten) by
accessing the first combo-box. Using the second combo-box
users can change the confidence value used by the CSCC to
recommend completion proposals. A high confidence value
means CSCC will recommend completion proposals only if it
finds they are very likely to call in the given context of the
method call request. After careful experimentation we set the
default confidence value to 30%.

The CSCC tool operates in three different phases. We briefly
summarize the three phases as follows (further details of the
technique can be found elsewhere [6]):

A. Step 1: Formulating Method Call Context

The first step involves with collecting usage context of
method calls from source code of open source software
projects. CSCC collects two different forms of usage contexts.
For the first context, known as the overall context, CSCC
collects any method names, Java keywords except access
specifiers, and any class or interface names that appear within
top four lines prior to a method call. While collecting overall
context, CSCC ignores any blank lines, comment lines and
curly braces. For the second form of context, known as the
line context, CSCC collects the same information of the overall
context including the assignment operators that appear on the
same line but prior to the target method call. The objective
of collecting line context separately is to give more weight
on the close matches when the other lines differ considerably.
The name of the method, type name of the receiver object,

and the two different forms of context constitute an entry in
the model database. This step does not require any input from
the users since the plugin comes with a model.

B. Step 2: Matching with Existing Calls Based on Context

The plugin activates when a developer types a dot after an
expression or an object name to complete the method call. It
loads the content of the model database in a two level inverted
index structure. Consider that a developer is typing code to
read a file from Java and she has already created two objects
of the FileReader and the BufferedReader classes. Consider
also that she is now in the condition block of a while loop and
invokes the method completion request on the BufferedReader
object to read the content of the file. The plugin collects both
the overall and line contexts for the current editing position.
Now, CSCC first uses the type name of the receiver object to
the inverted index structure to collect all those method calls
in the code examples that have the same type of the receiver
object. It then uses the tokens of the overall context as keys
to find method calls whose context can be matched with the
target context. We call this set of method calls as the base
candidate list.

We can use string edit distance to determine similarity
between the contexts of the base candidate list and the target
context. However, such operations are computationally very
expensive. Code completions need to be done at real-time and
thus we introduce an intermediate step. To make the search
process faster, CSCC leverages the simhash technique [7].
The technique uses cryptographic hash function to generate
a binary simhash value for each method call context. Strings
that are similar to each other have small Hamming Distance
difference between their simhash values. CSCC sorts the
base candidate list in ascending order of Hamming distance
between the simhash values of their context and that of the
target context. Next, it selects the top 200 method calls from
the base candidate list, also known as the refined candidate list.

Fig. 2: An example method call recommendation by CSCC

Method call
Usage Context

database

Incomplete code

Query
Generator

Contexts and
receiver object

type

Query
Processor

Model Generaor

Code base

Model Manager

Code
Completion

Ranked method
calls

Recommended
method calls

Fig. 3: An overview of CSCC’s architecture

The tool now uses normalized Longest Common Subsequence
distance between the token sequences of the overall contexts to
sort the refined candidate list. CSCC sorts the refined candidate
list in descending order of the overall context similarity. In
case of a tie, it uses Levenshtein distance of the line context to
break the tie. Any matching candidates whose similarity value
drops below the value specified in the Level of Confidence

parameter are ignored by the CSCC.

C. Step 3: Recommending Top Candidates

Since there are many code examples associated with the
same method calls, the sorted and filtered refined list may
contain many duplicates. After removing duplicates, the tool
recommends the top three method names to complete the
method call request. The number of recommendations can be
changed by changing the Number of Suggestions parameter in
the preference page of the plugin. Figure 2 shows an example
method call recommendation by CSCC.

III. CSCC ARCHITECTURE

Figure 3 shows the architectural overview of CSCC. The
tool consists of five major components. The model generator
component receives source code from open source software
projects and generates a collection of method call usage

contexts, also known as model. The model manager compo-
nent is responsible for the management of models. It is also
responsible for loading the method call usage contexts into the
inverted index structure.

The query generator is responsible for capturing the code
completion request from a user. It analyzes source file under
editing and generate context for a method call request. It then
passes the target context to the query processor component.

The query processor component is responsible for finding
those method calls in a model whose context matches with the
context of the query using a combination of simhash technique
and textual distance measures. It then sorts them the method
calls in descending order of similarity value between their
context and the query context. Finally, passes the result to
the code completion component.

The code completion component accepts the sorted list of
completion proposals and puts them on top of JDT completion
proposals. This number can be configured by a user.

IV. EVALUATION

This section briefly summarizes the accuracy and runtime
performance of CSCC. Details of the evaluation procedure and
results can be found in a separate paper [6]. We also highlight
the benefits of simhash.

A. Accuracy and Runtime Performance

We compared CSCC with other state-of-the-art code com-
pletion techniques using source code examples that are col-
lected from real-world applications. Our evaluation results
reveal that CSCC outperforms other techniques. For example,
the tool achieves an F-measure value of 88% for recommend-
ing correct method calls in the top three positions for the
SWT library and the Eclipse system. The closest score to
CSCC is 69% by BMN. In terms of execution time, CSCC is
comparable with other state-of-the-art techniques. On average,
the tool required 1.94 ms to recommend completion proposals
when we tested the tool with 4,500 queries and the model
contains 40,863 method call usage contexts.

B. Benefits of Simhash Technique

The tool leverages simhash technique as a rough measure to
quickly look for method calls whose context matches with that
of the query context. The calculated similarity score provides
a rough estimation of the relevance of a method call to the
current context and CSCC refines the search result with textual
distance measures. However, we cannot use textual distance
measures in the first place because they are computationally
expensive. To identify the benefit of using simhashing, we run
the tool two different times where both the test and training
method calls are collected from the Eclipse system and for
the SWT library methods. In the first case we run the tool
by enabling both simhashing and textual distance measures,
but the matching in the later case is done using only textual
distance measures. While on average the tool takes 50 ms to
complete method call without using the simhash technique, it
takes on average only 1.94 ms to complete method calls using
the technique.

V. USER STUDY

We conducted a preliminary user study to understand the
usefulness of the CSCC tool and to identify any usability
issues. We used a simple observation process where each
participant worked on three tasks that require developing
graphical user interfaces using Swing and AWT libraries.
We then conducted a semi-structured interview to gain more
insights about the design of the tool. The six volunteers
that participated on this study were all graduate students and
had previous experience working with Eclipse IDE and Java
Swing/AWT libraries. However, the level of experience differs
across the participant pool. We provided written description of
the tasks and allowed 45 minutes to complete the tasks. We
observed user actions and interviewed each participant at the
end of the study. In general, the participants agreed that the
tool was easy to use, recommendations were useful and the
tool made recommendations reasonably fast.

However, we learned a few important lessons from the
study. First, participants reported a few cases where CSCC
either failed to recommend completion proposals or failed to
rank the correct one within top three positions. When we inves-
tigated further, we found that these were the cases where many
language constructs become part of the overall context that are
not relevant to the current method call and the line context is
also empty. As a result, this affects the overall similarity score
and the tool fails to rank the completion proposal correctly.
Second, a developer asked to provide support for instantiating
an object. This is because objects of some classes are created
other than using constructors and it is difficult to remember
them by a developer. For example, developers need to call
ToolKit.getDefaultToolkit().getImage() method that creates a
reference to an Image object. Third, during our observation,
we found that none of the participants except one changed the
confidence value. This indicates that most users possibly do
not care, or don’t know how to change default parameters.

VI. RELATED WORK

Bruch et al. [5] propose an example-based code completion
technique, called BMN. The technique uses k-nearest neighbor
algorithm to recommend method calls for a variable. While
BMN uses methods that are previously called on the variable
and the enclosing method name to make recommendations,
CSCC uses any method names, Java keywords, and class or
interface names that appear within top four lines of a method
call to recommend method calls. Hou and Pletcher [4], [3]
leverages sorting, filtering and grouping of API methods to
improve the performance of Eclipse code completion system.
The technique has been implemented in a research prototype,
called BCC. The tool differs from CSCC in that it does not
use previous code examples. BCC also allows expert users
to manually specify filtering rules to remove uninteresting
method calls. CSCC, on the contrary, does not require input
from expert users. Robbes and Lanza [8] propose a set of
approaches that use source code change history to recom-
mend method calls. Their technique requires a change-based

software repository to work, but CSCC can work with any
software repository.

GrePacc [9] is a code completion tool that mines API usage
patterns from code examples. The tool leverages graph-based
algorithm together with context sensitive features extracted
from code under editing to rank the API usage patterns.
The tool then completes the remaining code. CSCC and
GrePacc have different objectives. While CSCC focuses on
method completion, GrePacc focuses on API usage pattern
completion. Hill and Rideout [10] propose a technique for
automatic completion of method body using code clones.
However, the objective is again different than CSCC. Keyword
programming [11] is also related to our study. The technique
accepts a set of keywords from users and expand them into
valid expressions. However, it uses different approach for
interacting with users than CSCC.

VII. CONCLUSION

We describe CSCC, an example-based code completion
tool, that leverages contextual information to provide better
method call completion. CSCC can be downloaded as an
Eclipse plugin from http://asaduzzamanparvez.wordpress.

com/cscc/. The demonstration will show how CSCC can be
used to complete method calls, real world examples where
other techniques fail but CSCC succeeds or performs better.
Currently, we are working to eliminate the limitations of
CSCC that are discussed in the previous section. We also
plan to support other forms of code completion, such as
method parameter completion [12] and the completion of
object instantiations.

REFERENCES

[1] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers”, IEEE Softw., vol. 26, pp. 27-34, Nov. 2009.

[2] D. Hou and L. Li, “Obstacles in Using Frameworks and APIs: An
Exploratory Study of Programmers’ Newsgroup Discussions”, in ICPC
2011, pp. 91-100.

[3] D. M. Pletcher and D. Hou, “BCC: Enhancing code completion for better
API usability”, in ICSM 2009, pp. 393-394.

[4] D. Hou and D. M. Pletcher, “An evaluation of the strategies of sorting,
filtering, and grouping API methods for Code Completion”, in ICSM
2011, pp. 233-242.

[5] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems”, in FSE 2009, pp. 213-222.

[6] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “CSCC:
Simple, Efficient, Context Sensitive Code Completion ”, accepted to be
published in ICSME 2014, 10 pp.

[7] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms”, in STOC 2002, pp. 380-388.

[8] R. Robbes and M. Lanza, “How Program History Can Improve Code
Completion”, in ASE 2008, pp. 317-326.

[9] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,
J. Al-Kofahi, and T. N. Nguyen, “Graph-based pattern-oriented, context-
sensitive source code completion”, in ICSE 2012, pp. 69-79.

[10] R. Hill and J. Rideout, “Automatic method completion”, in ASE 2004,
pp. 228-235.

[11] G. Little, Greg and R. C. Miller, “Keyword Programming in Java”, in
ASE 2007, pp. 84-93.

[12] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou,
“Automatic parameter recommendation for practical API usage”, in ICSE
2012, pp. 826-836.

