
Near-miss Software Clones in Open Source Games:
An Empirical Study

Yaowen Chen Iman Keivanloo+ Chanchal K. Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

 yac508@mail.usask.ca, croy@cs.usask.ca

 +Department of Electrical and Computer Engineering
 Queen’s University
 Kingston, Canada
 iman.keivanloo@queensu.ca

Abstract—Developers tend to reuse source code by copy/paste.
This form of reuse introduces code clones to software systems.
Cloning in games can happen in different levels of granularity.
The extreme case is known as Game Clone where the complete
project is being cloned, e.g., by making a new independent
branch which the original game’s source code constitutes the seed
for the new branch. Although it has been more than two decades
since research on code clones started, various characteristics of
cloning in open source games has not been studied. Therefore,
there is no specific evidence on status of cloning e.g., dominant
clone type in games. In this paper, we present an empirical study
on code cloning in open source games by applying a state of the
art clone detector, NiCad, and a clone visualization and analysis
tool, VisCad. We identify both exact and near-miss clones from
more than twenty open source C, Java and Python-based games,
such as Jake2, Duo, Hexen2, jChess and OpenRPG from five
different categories. Furthermore, we analyze a set of metrics for
code clones in several different dimensions, including language,
category, clone density and clone location to answer six essential
research questions about the current status of cloning in open
source games. Our research illustrates that cloning happens not
only at inter-project level but also intra-project, specifically in
First Person Shooter games developed using C (Type-1 50%
clones). Such observation concretely shows the necessity of
adopting clone management systems for game development.

I. INTRODUCTION
In software development, code cloning or duplicate code

refers to fragments of source code that occur more than once
either within or across different systems [1, 2]. Studies show
that considerable amount of code of a software system is
cloned code [1]. Whether code cloning is harmful or not is an
open question [3]. Nevertheless, it is considered as a potential
threat in software maintenance and development [4]. For
example, a study from Juergens et al. [4] shows that
inconsistent updates on the duplicated code often causes
incorrect program behavior.

In response, a large number of code clone detection tools
have been proposed [1]. These tools are built to fulfill the
demand of different users and stakeholders. Earlier studies
focus on the clone detection techniques or tools, and validation
or comparison of those techniques [5]. Recently, it is shown
that empirical studies on code clones can reveal interesting
facts about software development behaviors [2].

In this paper, we provide an in-depth empirical study of
both exact and near-miss code clones in open source games.
Our motivation is to observe whether game developers tend to
make reuse code by cloning. We analyze twenty four open
source games written in C, Java and Python-based from five
different categories by applying a hybrid code clone detecting
tool (NiCad [6]). We manually verify the detected clones and
apply VisCad [7] to visualize the results. In particular, we
answer six specific research questions as follows:
• RQ1 - What is the status of code clone in open source

games for different languages?
• RQ2 - Is there any difference in code clones between the

different categories such as First Person Shooters games
and Role-Playing games?

• RQ3 – Whether cloning affects the majority of game
systems?

• RQ4 - What are the profiles of cloning density?
• RQ5 - Whether intra or inter-game code cloning occurs?
• RQ6 - Is there any duplicated code that could be reusable

for future game development, such as extracting
duplicated code to build libraries?

The rest of the paper is organized as follows. In Section 2,
we present the experimental setup including the selected
metrics. Section 3 provides the experimental study, analysis
and results. Furthermore, we discuss related work and the
threats to validity, following the conclusion in Sections 4, 5,
and 6 respectively.

II. STUDY SETUP
In this study, we used NiCad clone detector to find code

clones from the subject open source games and game engines.
Furthermore, we applied VisCad to calculate the clone related
code metrics using the output of NiCad.

Since definition of similarity for code clone is application
dependent, we defined the similarity of source code by
computing the size-sensitive Unique Percentage of Items (UPI)
[2] using Equation 1. We use configuration which is
recommended by the tool maintainer for Type-1, 2 (blind
renaming), and 3 (blind renaming plus 0.3 UPI threshold which
allows up to 30% dissimilarity) and minimum of 5 lines.

ܫܷܲ = (ே௨ ௨ ூ௧௦)(்௧ ே௨ ூ௧௦) (1)

A. Subject Systems
In this study, we analyze twenty four open source games

from five different categories, including four open source Java-
based 3D Game Engines, four Java-based Chess Games, four
Java-based Role-Playing Games, five Python-based Card
Games and seven C-based First Person Shooting Games. The
size of subject systems varies from 1K LOC to 844K LOC.
Table 1 lists the subject systems with some basic profiles.

TABLE I. THE SUBJECT SYSTEMS

Language Category Game LOC Total File
(TF)

C First Person
Shooter

Chocolate Doom [8] 70000 105

Doom64 EX [9] 84831 120

Hexen2 [10] 239531 296

Open Arena [11] 359981 461

Smokin' Guns [12] 322403 341

Unvanguished [13] 844586 1192

World of Padman [14] 327135 409

Java

Chess

jChecs [15] 23653 102

jChess [16] 8932 34

Jose [17] 145548 475

Mediocre Chess [18] 4084 21

3D Engine

Ardor3d [19] 79492 413

Env3d [20] 13054 75

Jake2 [21] 126026 252

JMonkeyEngine [22] 244962 1139

Role Playing
Game

Hale [23] 97083 437

jClassicRPG [24] 102870 685

OpenRPG [25] 12214 107

TowerOfZaldagor [26] 74011 197

Python Card Game

Duo [27] 7075 24

PySolFC [28] 1366 213

Sabacc [29] 4807 26

ScoPy [30] 3740 19

Wizards Magic [31] 6994 48

B. Selected metrics
For this study, we have selected and reused a series of

metrics for code clones from earlier studies [2, 7, 32].
Total Cloned Lines of Code (TCLOC). We define the

TCLOC as the total number of cloned lines of code in the game
for a specific clone type. Additionally, the PTCLOC (Equation
2) refers to the percentage of the total number of cloned lines of
code over the total lines of code (TLOC),

ܥܱܮܥܶܲ = ்ை்ை × 100 (2)
PTCLOC provides a realistic view about the cloned code

specifically in case of format unification (a.k.a., pretty-printing)
during detection. Therefore, in this study, we consider
PTCLOC.

File Associated with Clones (FAWC). While TCLOC and
the related metrics provide an overall cloning statistics for the
subject games, we are interested in metrics to analyze the
location of the clone code. FAWC, which is the total number of
files that contain one or more cloned fragments for a given
clone type, could be used to determine whether clones are local
to some specific files or are scattered all over the files of the
subject system. It provides a general idea about the location of
the clones at the file level. Similar to PTCLOC, we define
PFAWC (Equation 3) as the percentage of the file associated
with clones over the total number of files in the subject game.

ܥܹܣܨܲ = ிௐ்௧ ௨ ௦ × 100 (3)
A game with high PFAWC means most files in the game

are containing code clones. For example, if PFAWC of a game
system is 80%, it means 80% of the files containing at least
one code clone. In this case, management and reduction of
clones are challenging since the clones are distributed in
reasonably large number of files.

Cloned Ratio of File for Lines (CRFL). In order to
examine the property of code clones in a specific file, we
introduce the CRFL into our analysis. Unlike the above
metrics, CRFL discovers the files with majority of code clones.
In particular, the CRFL (Equation 4) for a specific file f,
CRFL(f), means the ratio of the total number of cloned lines
over the total number of lines of code in f.

(݂)ܮܨܴܥ = ்௧ ௨ ௗ ்௧ ை × 100 (4)
Using CRFL, we can determine whether a file is highly

affected by cloning behavior. Eventually, it helps to predict the
difficulty of the software maintenance activities. For example,
let us say there are two game systems, x and y with similar
TCLOC, but in game x, clones are more concentrated in some
files with higher CRFL than y. It indicates since clones in game
x are in fewer files than y, the game x becomes more
manageable from clone maintenance perspective.

Clone-cohesion (CCH). For determining the relationships
among files or directories from the cloning point of view, the
CCH is defined. CCH (Equation 5) measures to what extent
the code fragments in a file or directory have cloning
relationship with other code fragments within the same file or
directory. A file or directory could be defined as highly clone-
cohesive, when most of the members of the associated clone
class are located inside the concerned file or directory. ܪܥܥ = ∑ ೌ ೠ್ೝ ೌ ್ೝೞ ೌೞೞ ೌ ೠ್ೝ ್ೝೞ ೌೞೞ సభ # ௦௦௦ (5)

 In CCH, n denotes the number of clone classes associated
with the target file or directory in the game system, and “local
member” means those members of the associated clone class
located in the same file or directory. In software maintenance
and development, a high CCH is desirable for a system,

because it possibly means the code clones are created for
reusing an implementation of similar functionality.

Clone-coupling (CCP). CCP (Equation 6) measures to
what extent the code fragments in a file or a directory have
clone relationship with other code fragments in different files
or directories. In CCP, ݊ denotes the number of the clone
classes associated with the target file or directory in the games,
and the “foreign members” refer to those members of the
associated clone classes that are in different file or directory.
For example, a high CCP means that the members of the
associated clone classes have clone-pair relationships with
many distinct clone classes scattered in the same file or
directory. Unlike to CCH, a lower CCP of a game is desirable
in our study as such characteristic minimizes the effort to
understand subsystem functionality in dealing with the local
clones.

ܲܥܥ = ∑ ೌ ೠ್ೝ ೝ ್ೝೞ ೌೞೞ ೌ ೠ್ೝ ್ೝೞ ೌೞೞ సభ ்௧ ௨ ௦௦௦ (6)

III. RESULTS
In this section, we provide the results of our empirical study

to answer the identified six research questions using the clone
metrics discussed earlier (Section 2-B).

A. RQ1 – Whether cloning happens in games?
In this subsection, we represent the overall level of code

clones for different languages, in terms of PTCLOC. Figure 1
summarizes the results of the PTCLOC for different languages:
C, Java and Python.

Fig. 1. PTCLOC by languages

First, we observe that there is considerably more cloned
code in the C-based open source games, followed by Python-
based open source games and Java-based open source games.
Specifically, the C-based games contain (Figure 1) a
considerable amount exact code clones (Type-1 clone) with
24.89% lines of code duplicated exactly. Exact duplication
(Type-1 clone) is much less in the other languages, e.g., 4.59%
and 10.37% in Java and Python-based games respectively.
Additionally, the results show lack of Type-2 Clones in those
games since PTCLOC for all games increases only up to 2%
when Type-2 is being considered. Note, Type-2 clones are
related to similar code fragment with only different token
names such as different variable names. Interestingly, the
growing of PTCLOC for all games is much faster for Type-3.
PTCLOC of Python-based games increases from 10% (Type-1)
to 32.64% (Type-3). Also, PTCLOC of C-based games
increases to the highest, 39.55% (Type-3). Although the Java
games have the lowest PTCLOC, it still increases up to 16.49%
for Type-3 clones. Specifically, Figures 2, 3, 4, 5 and 6 refine
Figure 1 to show detailed view of the PTCLOC for the
individual open source C-based, Java-based and Python-based
games respectively.

Fig. 2. PTCLOC for C-based games (First Person Shooting Games)

Fig. 3. TCLOC for Java-based games (Role-Playing Games)

Fig. 4. PTCLOC for Java-based games (Chess Games)

Fig. 5. PTCLOC for Java-based games (3D Game Engines)

Fig. 6. PTCLC for Python-base games (Card Games)

Figure 2 illustrates a remarkable observation, since unlike
Java-based and Python-based games, the PTCLOC of the C-
based games vary considerably. Three of the C games,
including Open Arena, Smkin’ Guns and World of Padman, are
holding a surprisingly high level of exact clone (Type-1) with
~50% PTCLOC, whereas the value of others C-based games
are under 15%, especially for Doom64 EX, where PTCLOC is
only 2.93% for Type-1 clones. Also, for those Java-based
games, most of them are remarkably consistent from the
PTCLOC metric point of view. Almost all of them have a low
level of Type-1 clone (under 5%) and Type-2 (around 5%), and
relatively acceptable level of Type-3 (8.6% to 22.6%).
Although Jake2 has a higher PTCLOC comparing to the other
Java games, its value is still relatively lower than C-based

0.00

50.00

Type-1 Type-2 Type-3

C

Python

Java

0
10
20
30
40
50
60
70

Type-1 Type-2 Type-3

Chocolate Doom

Doom64 EX

Hexen 2

Open Arena

Smokin' Guns

Unvanguished

World of Padman

0

10

20

30

Type-1 Type-2 Type-3

Hale

jClassicRPG

OpenRPG

Tower Of
Zaldagor

0
5

10
15
20

Type-1 Type-2 Type-3

jChecs

jChess

jose

Mediocre Chess

0

20

Type-1 Type-2 Type-3

Ardor3d

Env3d

Jake2

JMonkeyEngine

0

20

40

Type-1 Type-2 Type-3

Duo

PySolFC

Sabacc

Scopy

Wizards Magic

games. Additionally, in the Figure 6, we notice that the
PTCLOC of the Python-based games vary, the Sabacc even has
no exact clone (Type-1 Clone), while PySolFC has more than
12% exact clone, which is even larger than some C-based
games, such as Chocolate Doom and Doom64 EX. The last
observation made in this study is that interestingly, PTCLOC
grows considerably fast (~9 times) for Type-3 than Type-2
Clones.

Therefore, for the RQ1, we may conclude that: cloning
happens in open source games. Moreover, cloning frequency
depends on programming languages. Specifically C-based
games have the highest level of cloning, following by Python-
based games and Java-based games. Our study concretely
shows the necessity of adopting clone management systems for
game development if clones are considered as bad smells.

B. RQ2 - Is there any difference in code clones between the
different categories of games such as First Person
Shooters Games and Role-Playing Games?
After studying the effect of programming languages on

code clones for games, we analyze how categories impact code
clones. We study five specific categories (Table 1) in this paper
which are First Person Shooter Game, Card Game, 3D Game
Engine, Role-Playing Game and Chess. Figure 7 summarizes
the PTCLOC for chosen genres of games.

As Figure 7 illustrates, basically, the PTCLOC of different
categories are consistent to their languages. First Person
Shooter Games – C-based games – still are the higher in all
three types of clones, which have the highest PTCLOC.
Moreover, among the Java-based games, Chess games keep the
lowest level of code clones, from 0.91% of Type-1 Clones to
11.10% of Type-3 Clones, whereas 3D Game Engines and
Role-Playing Games achieve slightly higher value (still very
low) where the Card games are placed in the middle.

As a result of this investigation, we answer RQ2 as follows:
basically, the characteristics of code clones in different
categories are consistent with the corresponding
programming languages. First Person Shooter Games have
the highest PTCLOC, following by Card Games, 3D Game
Engine, Role-Playing Games and Chess Games.

C. RQ3 – Are clones scattered over the game systems?
In this subsection, we analyze the proportion of the files in

games in association with at least one cloned fragment by using
the FAWC and PFAWC metrics. Figure 8 represents the values
of PFAWC by languages with different types of clones. First,
we notice Python-based and C-based games both hold a high
PFAWC (except Java-based games). 50.31% of the files in the
C-based games and 42.42% of files in the Python-based games
contain at least one exact clone (Type-1), whereas only 12.29%
of files in the Java-based games are associated with Type-1
Clone. Additionally, although the C-based games still have
most files containing the Type-2 Clone (56.98%), for Type-3
clone, we observe the PFAWC of Python-based games
growing fast to be the highest, which is 74.23%, whereas the
PFAWC is 69.56% and 54.18% in C-based games and Java-
based games. Another notable fact about Type-3 Clones is that

there are 54.18% files in Java-based games having cloned code.
However, the PFAWC is only 27.31% for Type-2 Clones. It
means the Java PFAWC increases about 27%, which is the fast
growing ratio for Type-3 clones.

Figures 9, 10, 11, 12, and 13 provide more detailed views
of PFAWC for the selected games. First, PFAWC of Open
Arena, Smokin’ Guns and World of Padman are considerably
high (Figure 9) and stable for all types of clones (around 80%).
By manually checking the source code, we find that most of
those files containing cloned fragments are part of some open
source libraries. Those libraries are widely used in games
development. Second, PFAWC grows rapidly (Figure 10, 11,
12) in Java-based games as the clone type reaches to Type-3.
An example is Hale, which is a Role-Playing Game. There are
only 7.3% of files having exact clone (Type-1), but the number
increases to 34.3% and 70.5% for Type-2 and 3. Third, Figure
13 illustrates an interesting observation regarding instability of
PFAWC for Python games. The extreme cases are Sabacc and
PySolFC games. The former has no Type-1 Clone and a few
Type-2 Clones in few files, but with more than 55% files
having clones. On the other hand, PySolFC begins with a high
PFAWC for Type-1 and increases relatively slowly, although it
ends with more than 80% PFAWC.

Therefore, for the RQ3, we conclude as: clones tend to be
scattered over C-based games and Python-based games;
especially for Type-3 Clones, Python-based games has the
highest PFAWC (73%). Moreover, although Java-based games
have relatively low PFAWC, the growth of the PFAWC of
Java-based games is quite fast as clone type approaches to
Type-3.

Fig. 7. PTCLOC by categories

Fig. 8. PFAWC by languages

Fig. 9. PFAWC for C-based Games (First Person Shooting Games)

0

20

40

Type-1 Type-2 Type-3

First Person
Shooter Game
Card Game

3D Game Engine

Role-Playing
Game

0

50

100

Type-1 Type-2 Type-3

C

Python

Java

20

30

40

50

60

70

80

90

Type-1 Type-2 Type-3

Chocolate Doom

Doom64 EX

Hexen 2

Open Arena

Smokin' Guns

Unvanguished

World of Padman

Fig. 10. PFAWC for Java-based games (Role-Playing Games)

Fig. 11. PFAWC for Java-based games (Chess Games)

Fig. 12. PFAWC for Java-based games (3D Games Engines)

Fig. 13. PFAWC for Python-based Games (Card Games)

D. RQ4 - What are the profiles of cloning density?
Although PFAWC (RQ3) provides an overall view of the

location of code clones in the game systems, still more specific
information about each file is required to be determined such as
which file contains the majority of clones. The CRFL metric
family could help us to study the cloning density. Table 2
provides these metrics for the C, Java, and Python-based
games.

The average CRFL of the Java-based games is low with
10% for Type-1 Clone (excepting the Jake2, which is 22%),
15% and 2% for Type-2 and Type-3 respectively. In fact, we
observed that the CRFL values of most files are low, which
means there are only few lines of code being cloned within
each file. Considering the PFAWC fast growth of Java-based
games (Figure 8), we may conclude that most of the files in the
Java-based games contain few cloned lines of code. On the
other hand, in the C-based games, Chocolate Doom and

Doom64 EX have a low CRFL (versus Java-based games with
high value), especially comparing to Smokin’ Guns which has
an average 59% of CRFL for Type-1 Clones and and 66% for
Type-3 Clones. Smokin’ Guns achieves highest values for all
the categories. Meanwhile, the average CRFL of the Python-
based games are remaining in an acceptable level, i.e., under
40% for Type-3. The last noticeable observation is that the
max. CRFL of Open Arena, Smokin’ Guns, Unvanguished and
World of Padman is 100% for Type-1 Clones. That means
there are some files which are completely duplicated.
Therefore, for software maintenance and refactoring purposes,
we can increase the priority of those files if refactoring is going
to happen.

To answer RQ4, we may conclude: the average CRFL
values for most of the games are low, except C-based games
due to Type-1 cloning at file-level granularity. Also, the
average CRFL of all games increases consistently for Gapped
Clones (Type-3) which shows developers tend to customize the
duplicated code fragments in most cases.

E. RQ5 – Whether inter-game cloning happens?
In this section, we provide the result for CCH and CCP

metrics related to the location of clones. As Kapser and
Godfrey presented [3], the code clones could be classified into
different categories based on the location information. We
classify the code clones into intra-game code clones which
means the code fragment forming a clone pair with another
fragment within the same game, and inter-games code clones,
which means the code fragment forming a clone pair with
another fragment with different games. A higher CCH value
denotes more intra-game code cloning occurrence in the games.
Otherwise, code clones are to be considered as inter-game.

Table 2 summarizes (right most columns) the CCH and
CCP values of all games for different types of clones. For
Type-1, we notice almost all of Java and Python-based games
are highly clone-cohesive, where CCH is close to 100%. That
means the clones are almost intra-game clones. On the other
hand, for the C-based games, the results are totally different.
Except Hexen2, other C-based games are highly coupled, e.g.,
as high as 69% CCP for Unvanguished and World of Padman.
Therefore, inter-game cloning is a common practice in open
source C games development. Interestingly, although the C-
based games are highly coupled in case of exact clones (Typr-
1), the CCP remains stable (or decreases) comparing to Type-2
and 3. However, approaching to Type-3, most of Java and
Python-based games become coupled, especially for Mediocre
Chess (51% CCP for Type-3) and Sabacc (51% CCP for Type-
3). In this case, CCP for most of such games increase up to
~20%.

To answer RQ5, we may conclude: for C-based games, the
CCP remains stable (relatively high) for all clone types.
Therefore, there are lots of inter-games clones in the C games.
For Java and Python-based games, there are more intra-game
clones for Type-1 and 2, but there is low clone-cohesiveness
when Type-3 is considered.

0
20
40
60
80

Type-1 Type-2 Type-3

Hale

jClassicRPG

OpenRPG

Tower Of
Zaldagor

0

20
40
60
80

Type-1 Type-2 Type-3

jChecs

jChess

jose

Mediocre Chess

0
10
20
30
40
50
60

Type-1 Type-2 Type-3

Ardor3d

Env3d

Jake2

JMonkeyEngine

0

20

40

60

80

Type-1 Type-2 Type-3

Duo

PySolFC

Sabacc

Scopy

Wizards Magic

TABLE II. CRFL, CCH, AND CCP METRICS (%) FOR OSS GAMES

Lang. Genre Game
Max CRFL Min CRFL Avg. CRFL CCH CCP

Research Question 4 Research Question 5

Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3 Type-1 Type-2 Type-3

C First
Person

Shooter

Chocolate Doom 0.54 0.75 0.89 0.01 0.01 0.01 0.14 0.16 0.26 0.51 0.53 0.53 0.49 0.47 0.47
Doom64 EX 0.56 0.75 0.80 0.01 0.01 0.01 0.17 0.16 0.25 0.51 0.57 0.56 0.49 0.44 0.44
Hexen2 0.69 0.75 0.97 0.01 0.00 0.01 0.24 0.22 0.38 1.00 0.98 0.92 0.00 0.02 0.08
Open Arena 1.00 1.00 1.00 0.01 0.01 0.02 0.53 0.52 0.63 0.38 0.38 0.35 0.62 0.62 0.65
Smokin' Guns 1.00 1.00 1.00 0.01 0.01 0.03 0.59 0.59 0.66 0.32 0.31 0.29 0.68 0.69 0.71
Unvanguished 1.00 1.00 1.00 0.00 0.00 0.00 0.34 0.29 0.37 0.31 0.37 0.42 0.69 0.63 0.58
World of Padman 1.00 1.00 1.00 0.01 0.01 0.01 0.50 0.51 0.60 0.31 0.32 0.30 0.69 0.68 0.70

Java

Chess

jChecs 0.24 0.30 0.69 0.00 0.02 0.02 0.08 0.08 0.20 1.00 1.00 0.78 0.00 0.00 0.22
jChess 0.13 0.24 0.72 0.02 0.01 0.01 0.05 0.09 0.16 1.00 0.91 0.69 0.00 0.09 0.31
jose 0.58 0.58 0.68 0.00 0.00 0.01 0.10 0.11 0.15 1.00 0.98 0.85 0.00 0.02 0.15
Mediocre Chess 0.00 0.63 0.68 0.00 0.04 0.06 0.00 0.25 0.24 0.00 0.90 0.49 0.00 0.10 0.51

3D

Engine

Ardor3d 0.42 0.54 0.91 0.01 0.01 0.01 0.11 0.14 0.25 0.97 0.96 0.77 0.03 0.04 0.23
Env3d 0.09 0.01 0.59 0.00 0.22 0.03 0.05 0.11 0.21 1.00 0.98 0.65 0.00 0.02 0.35
Jake2 0.79 0.79 0.83 0.00 0.01 0.00 0.22 0.20 0.30 1.00 1.00 0.93 0.00 0.00 0.07
JMonkeyEngine 0.82 0.84 0.84 0.00 0.00 0.01 0.13 0.12 0.21 0.99 0.96 0.83 0.01 0.04 0.17

Role
Playing
G

am
e

Hale 0.41 0.41 0.62 0.01 0.01 0.01 0.08 0.07 0.17 1.00 0.93 0.78 0.00 0.07 0.22
jClassicRPG 0.46 0.59 0.78 0.00 0.00 0.01 0.12 0.15 0.24 0.97 0.92 0.78 0.03 0.08 0.22
OpenRPG 0.12 0.18 0.41 0.03 0.01 0.01 0.09 0.11 0.16 1.00 0.97 0.60 0.00 0.03 0.40
Tower Zaldagor 0.40 0.40 0.98 0.01 0.01 0.01 0.09 0.13 0.24 1.00 0.99 0.79 0.00 0.01 0.21

Python

Card G
am

e

Duo 0.39 0.41 0.69 0.01 0.01 0.13 0.19 0.13 0.34 1.00 0.90 0.61 0.00 0.10 0.39
PySolFC 0.83 0.83 0.99 0.00 0.01 0.01 0.19 0.22 0.38 1.00 0.90 0.64 0.00 0.10 0.36
Sabacc 0.00 0.04 0.55 0.00 0.04 0.02 0.00 0.04 0.20 0.00 1.00 0.49 0.00 0.00 0.51
ScoPy 0.16 0.20 0.89 0.10 0.01 0.03 0.11 0.12 0.39 1.00 1.00 0.96 0.00 0.00 0.04
Wizards Magic 0.33 0.33 0.77 0.03 0.01 0.01 0.23 0.13 0.26 1.00 0.98 0.67 0.00 0.02 0.33

F. RQ6 -Is there any duplicated code that could be reusable
for future game development, such as extracting duplicated
code to build new libraries for game developments?
In this subsection, we discuss how the cloned code,

especially for inter-game clones, may be useful to the game
development. In order to find the usable clone fragments
required for this study, we manually classify 100 random Type-
3 clones into two major categories: functionality similarity and
framework usage.

First, functional similarities are those fragments from
different games sharing similar functionalities. This kind of
clones can be used as the source of creation of libraries, so they
are the expected clones in the analysis. Second, some clones
are caused by usage of the same framework or the existing
open source libraries. We consider them as framework usage
clones. The usage of framework is common reason for
experiencing inter-program cloning.

By manual evaluation of the 100 Type-3 cloned functions,
we identify 39 cloned functions belonging to the similar
functionality category. Such detected clones can be used as the
source to form new libraries for the future development of
similar games. This observation supports the idea that the
detected clones can be used in a positive way, since the
presence of clones reduces game maintainability and increases
development cost.

In summary, we answer RQ6 as follows: the inter-game
clones are made due to applying the same open source code or
framework repeatedly. It is shown that automatic clone

detection and management can be exploited successfully with
high confidence to infer the foundations of new libraries.

IV. THREATS TO VALIDITY
There are several threats to the validity in this study. First,

there is no standard definition to similarity. However, in order
to mitigate this threat we used one the state of the art clone
detection tools, NiCad which detects Type-1, 2, and 3 clones
with high precision and recall [2][38][39][40]. Second, the
input data may also be a threat to the validity of this study.
Therefore, we selected more than twenty games from different
genres and languages to have a fair representative of OSS
games. Third, the existence of false positive in the results may
affect the accuracy of the analysis. In case of Type-3, we found
a few false positives by manual inspection. The false positives
are excluded from this study.

V. RELATED WORK
Several empirical studies related to cloning in open source

systems are available in the literature. For example, Kapser and
Godfrey [3] have provided a study with Apache httpd, the
Linux file system and several other OSS to categorize the code
cloning taxonomy. Similar studies have been done by Uchida
et al. [33] and Rajapakse and Jarzabek [34], and Roy and
Cordy [2]. Recently, Ishihara et al. [35] and Krinke et al. [36]
reported comprehensive status on cloning in Java OSS and
GENOME projects by highlighting potentials for clone
detection and management in the domains of discourse.

While all of these studies (including this research) share
similar approach, they report status of cloning in diverse
domains and languages. Our study significantly differs from
them since (1) we focus on game systems, (2) we exploit three
different types of clones including both the exact (Type-1) and
near-miss (Type-2 and Type-3) clones, and reported their status
independently, and (3) we consider a variety of metrics.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have provided an in-depth study of the

property of both exact and near-miss code clones in more than
twenty open source C, Java and Python games from five
categories, including First Person Shooter Games, 3D Game
Engines, Chess Games, Role-Playing Games, and Card games.
Using a selection of metrics from several different dimensions,
we analyze the status of different types of code clones and
duplication in those games. Specifically our study shows that
(1) the characteristics of code clones in different categories are
consistent to the building languages; (2) the average CRFL for
most of the games is low, except some C-based games (exact
clones), and (3) there are considerable number of inter-games
clones in the C games and intra-game clones in Java-based and
Python-based games. Our manual evaluation showed that they
can be used as the seed to create new libraries related to game
development. The result of our study is available online [37]
for others to reuse the study. In summary, our research
illustrates that cloning happens in intra-game cases as well as
inter-games excessively. For example, there exists a large
number of Type-1 clones in First Person Shooter games
developed using C. This observation concretely shows the
necessity of adapting clone management systems for game
development. For future work, we plan to analyze code clones
in distributed games.

REFERENCES
[1] C.K. Roy, J.R. Cordy and R. Koschke. Comparison and

Evaluation of Clone Detection Techniques and Tools: A
Qualitative Approach. Science of Computer Programming, 74
(2009) 470-495, 2009.

[2] C. K. Roy and J. R. Cordy. Near-miss Function Clones in Open
Source Software: An Empirical Study. Journal of Software
Maintenance and Evolution: Research and Practice, 2(3): 165 –
189, 2010.

[3] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful”
Considered Harmful: Patterns of Cloning in Software. Empirical
Software Engineering, Vol. 13(6):645-692, 2008.

[4] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do
Code Clones Matter?. ICSE, 2009, 11 pp.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 33(9):577-591, 2007.

[6] J.R. Cordy and C.K. Roy, 2011. The NiCad Clone Detector.
Tool Demo Track, ICPC, 2011, pp. 219-220.

[7] M. Asaduzzaman. Visualization and Analysis of Software
Clones. Master. Thesis, University of Saskatchewan, 109 pp.,
2012.

[8] Chocolate Doom: http://www.chocolate-doom.org/ (Jun. 2012)
[9] Doom64 EX: http://doom64ex.wordpress.com/ (Nov. 2012)
[10] Hexen2: http://uhexen2.sourceforge.net/ (Oct. 2012)
[11] Open Arena: http://www.openarena.ws/ (Feb. 2012)
[12] Smokin’ Guns: http://www.smokin-guns.org/ (Nov. 2012)
[13] Unvanquished: http://www.unvanquished.net/ (Nov. 2012)
[14] World of Padman: http://worldofpadman.net/ (Nov. 2012)
[15] jChecs: http://jchecs.free.fr/ (Oct. 2007)
[16] jChess: sourceforge.net/projects/jchesslibraryss/ (Jun. 2012)
[17] jose: http://jose-chess.sourceforge.net/ (Feb. 2011)
[18] Mediocre Chess: mediocrechess.sourceforge.net/ (Dec. 2009)
[19] Ardor3d: http://ardor3d.com/ (Nov. 2012)
[20] env3d: http://env3d.org/ (Nov. 2012)
[21] Jake2: http://www.bytonic.de/html/jake2.html (Jul. 2011)
[22] jMonkeyEngine: http://jmonkeyengine.com/ (Nov. 2012)
[23] Hale: http://sourceforge.net/p/hale/wiki/Home/ (Nov. 2012)
[24] jClassicRPG: http://javacrpg.sourceforge.net/ (May 2011)
[25] OpenRPG: www.rpgobjects.com/index.php?c=orpg (May 2010)
[26] Tower of Zaldagor: sourceforge.net/projects/toz (Oct. 2012)
[27] Duo: http://duo.berlios.de/ (Nov. 2012)
[28] PySolFC: http://pysolfc.sourceforge.net/ (Jun. 2011)
[29] Sabacc: http://sabacc.sourceforge.net/ (Oct. 2011)
[30] ScoPy: http://scopy.sourceforge.net/ (Jul. 2012)
[31] Wizards Magic: wizards-magic.sourceforge.net/ (Jul. 2011)
[32] R. Al-Ekram, C. Kapser and M. Godfrey, Cloning by Accident:

An Empirical Study of Source Code Cloning Across Software
Systems. ISESE, pp. 376-385, 2005.

[33] S. Uchida, A. Monden, N. Ohsugi and T. Kamiya. Software
Analysis by Code Clones in Open Source Software. Journal of
Computer Information Systems, XLV(3):1-11, 2005.

[34] D. C. Rajapakse and S. Jarzabek. An Investigation of Cloning in
Web Applications. In WWW, pp. 924-925, 2005.

[35] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-
project functional clone detection toward building libraries - An
empirical study on 13,000 projects. WCRE, 2012, pp. 387-391.

[36] J. Krinke, N. Gold, Y. Jia, D. Binkley. Cloning and copying
between GNOME projects. MSR, 2010, pp. 98-101.

[37] Game Clones, http://www.cs.usask.ca/~croy/ GameClones.zip.
[38] J. Svajlenko, C.K. Roy, and J. Cordy. A Mutation Analysis

Based Benchmarking Framework for Clone Detectors.
International Workshop on Software Clones (IWSC), 2013.

[39] C.K. Roy and J.R. Cordy. A Mutation / Injection-based
Automatic Framework for Evaluating Code Clone Detection
Tools. International Workshop on Mutation (ICST), 2009.

[40] C.K. Roy and J.R. Cordy. NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization. International Conference on Program
Comprehension (ICPC), 2008.

