
SurfClipse: Context-Aware Meta Search in the IDE
Mohammad Masudur Rahman Chanchal K. Roy

Department of Computer Science, University of Saskatchewan, Canada
{masud.rahman, chanchal.roy}@usask.ca

Abstract—Despite various debugging supports of the existing
IDEs for programming errors and exceptions, software devel-
opers often look at web for working solutions or any up-to-
date information. Traditional web search does not consider the
context of the problems that they search solutions for, and thus
it often does not help much in problem solving. In this paper,
we propose a context-aware meta search tool, SurfClipse, that
analyzes an encountered exception and its context in the IDE, and
recommends not only suitable search queries but also relevant
web pages for the exception (and its context). The tool collects
results from three popular search engines and a programming Q
& A site against the exception in the IDE, refines the results
for relevance against the context of the exception, and then
ranks them before recommendation. It provides two working
modes–interactive and proactive to meet the versatile needs of
the developers, and one can browse the result pages using a
customized embedded browser provided by the tool.

Tool page: www.usask.ca/∼masud.rahman/surfclipse
Index Terms—Context-aware web search; meta search;

context-relevance; errors and exceptions

I. INTRODUCTION

Although existing IDEs (e.g., Eclipse, Net Beans, Visual
Studio) are equipped with various debugging supports for pro-
gramming errrors and exceptions, software developers often
look into the web for working solutions and for any up-to-
date information. According to the study of Brandt et al. [2],
developers spend about 19% of their development time in web
surfing. Traditional web search does not consider the context
(i.e., surroundings, circumferences) of the programming prob-
lems, and involves the developers in trial and error based
query selection and search, which are time-consuming and
counter-productive. However, tool support through relevant
query suggestion and context-aware ranking of search results
can greatly benefit them in this regard, and this paper focuses
on these two research problems.

There exist several studies [3, 5] that attempt to address
similar research problems. Cordeiro et al. [3] propose an
IDE-based recommendation system that recommends relevant
StackOverflow posts for programming errors and exceptions.
They extract a number of question and answer posts from
StackOverflow data dump, and suggest those question posts
that contain stack traces similar to that of an encountered
exception in the IDE. Ponzanelli et al. [5] propose Seahawk,
an Eclipse plugin, that analyzes the context code (i.e., code
under development) of the current programming task and rec-
ommends relevant StackOverflow posts in the IDE. Although
these approaches have their inherent strengths, they also suffer
from several limitations. First, they consider only one source–
StackOverflow Q & A site, for information, and thus the search
scope is limited. Second, the developed corpus is static in

nature and also subjected to the availability of the data dump.
Third, they only consider either stack trace or source code
under development as the context of a programming problem,
which is partial (i.e., incomplete) and often does not help
much. For example, the approach by Cordeiro et al. does
not consider the code segment that triggers an exception and
thus recommends solutions which might be non-applicable or
even irrelevant to the code of interest given that the same
exception could be triggered from different code context.
Similarly, Seahawk [5] cannot recommend properly for the
programming tasks associated with errors and exceptions as it
does not analyze the stack traces reported by the IDE.

In this paper, we propose a context-aware meta search
tool, SurfClipse, for the encountered programming errors and
exceptions in the IDE that not only provides a complete web
search solution but also addresses the concerns identified with
the existing approaches [3, 5]. We package the solution as
an Eclipse plugin [1], which collects search results from a
remotely hosted web service [1] and displays them within
the IDE. Technically, the tool works both as a search query
recommender and a meta search engine. Once a developer
encounters an exception in the IDE, the tool captures and
analyzes the technical details (i.e., stack trace and context
code) of the exception, and recommends a list of relevant
search queries. The developer selects a query from the list,
and the tool collects results from three reliable search engines–
Google, Bing and Yahoo and a popular programming Q & A
site, StackOverflow, against the query. It then analyzes, refines
and ranks the results against not only the exception but also
its context in the IDE before recommendation. To summarize,
our tool provides the following features to support developers
in problem solving:
(a) the proposed tool captures technical details of an encoun-

tered exception, and recommends a ranked list of suitable
search queries that can be used both with SurfClipse and
traditional web search,

(b) ranks the result pages adopting a context-aware approach
so that the pages are relevant not only to the encountered
exception but also to its context in the IDE,

(c) provides two working modes– interactive and proactive,
to meet the versatile needs of different developers and
different task scenarios.

(d) to ensure a broader search space, exploits the search and
ranking algorithms of three popular search engines and a
programming Q & A site through their API endpoints,

(e) exploits a dynamic source (e.g., API endpoints) compared
to static source (e.g., data dump) by existing approaches
[3, 5] for StackOverflow data, which makes the most

Fig. 1. SurfClipse User Interface

recent and relevant StackOverflow posts available for
recommendation.

While this paper focuses on the tool aspect of our approach,
we refer the readers to the original paper [6] for further details.

II. SURFCLIPSE

Fig. 1 shows the user interface of SurfClipse, where we
contribute in (c) search panel, (d) result panel and (e) browser
panel of the interface. This section discusses different technical
features provided by our tool.

(1) Working Modes: SurfClipse works in two modes–
interactive and proactive. In case of interactive mode, a user
(e.g., a developer) generally initiates the search by selecting
an exception from Console View in the IDE or a search
query (representing the exception and its context) from the
recommendation list, whereas the tool itself initiates the search
process in case of proactive mode. Once the tool is properly
installed, it provides several main menu and context-menu
based command options, which can be used to initiate the
tool environment or to change the working modes.

(2) Automated Supports with Search Queries: Both the
context code (e.g., Fig. 1-(a)) that triggers an exception,
and the stack trace (e.g., Fig. 1-(b)) reported by the IDE
contain overwhelming information, and developers often face
difficulties in choosing a suitable search query from such
information. SurfClipse provides automated supports in this
regard, and helps them choosing queries from two options–
recommendation list and stack trace graph.

Query Recommendation: In this case, the tool analyzes
both stack trace and context code of the exception, and
recommends a ranked list of five suitable search queries for
the exception (Fig. 2).

Fig. 2. Search Query Recommendation (Interactive Mode)

Stack Trace Token Graph: In this case, the tool extracts
important tokens (e.g., class name, method name) from the
stack trace (e.g., Fig. 1-(b)), and develops a token graph (e.g.,
Fig. 3). In the graph, tokens are represented as nodes, and the
implied relationships (e.g., class to method static relations,
method call sequences) among the tokens are represented
as connecting edges. Thus the graph visualizes the relative
importance of different tokens in terms of their connectivity,
and the developers can get important hints about the useful
query tokens in the trace information.

(3) Context-Aware Web Search: SurfClipse provides three
options to conduct web search within the IDE–proactive
search, context-menu based search (i.e., interactive mode) and
keyword search (i.e., interactive mode).

Proactive Search: When SurfClipse is set to proactive
mode, it automatically detects an encountered exception in
the IDE. In this mode, the tool constantly monitors the
Console View for a stack trace using regular expressions. Upon
detection, it collects other details– an auto-generated query and
the context code of the exception, and initiates the search.

Fig. 3. Stack Trace Token Graph

Fig. 4. Context-menu Based Search (Interactive Mode)

Context-Menu Based Search: The tool provides a context-
menu based search option, and a developer can literally select
any phrase in the IDE (from Editor View and Console View),
and perform web search. More importantly, she can select the
exception in the Console View, and conduct the search (e.g.,
Fig. 4). Once initiated, the tool captures necessary details from
the IDE, performs the search, and collects the results.

Keyword Search: Given that a user might be interested
in refining the auto-generated search query or in a more
traditional way of search, the tool provides a keyword-based
search feature (e.g., Fig. 1-(c)). The search is complemented
with search query suggestion through auto-completion. The
user can also configure whether the search should be a keyword
matching only (i.e., does not refine the results against the
exception context) or a context-aware one through Associate
context option (e.g., Fig. 1-(c)).

(4) Search Results & Browsing: Once a search request
is made for an exception, the tool collects results in a non-
intrusive way (i.e., without freezing the IDE), and displays
them within the IDE (e.g., Fig. 1-(d)). It also shows the
metric details–content relevance, context relevance and search
engine confidence of each result page through visualization,
which helps one to choose the right (most relevant) page for
browsing. One can select a page from the result panel, and
browse it easily using a customized browser widget (e.g., Fig.
1-(e)) provided by the tool.

III. A USE CASE SCENARIO

By means of a use case scenario, we attempt to explain how
SurfClipse can help a software developer in solving problems
related to programming errors and exceptions within the IDE.

Suppose a developer, Alice, is performing unit testing on
a piece of code which searches for a specific item in the list
and deletes the item when found (Listing 1). During testing,

20 List<String> myList = new ArrayList<String>();
21 String[] items={"apple","orange","banana",
22 "mango","grape"};
23 for(String item:items){
24 myList.add(item); }
25 //deleting a particular item from the list
26 Iterator<String> it = myList.iterator();
27 while(it.hasNext()){
28 String value = it.next();
29 if(value.equals("banana"))
30 myList.remove(value); }

Listing 1. Working Code Example

1 Exception in thread "main" java.util.
ConcurrentModificationException

2 at java.util.ArrayList$Itr.checkForComodification(
Unknown Source)

3 at java.util.ArrayList$Itr.next(Unknown Source)
4 at core.MyListManager.main(MyListManager.java:28)

Listing 2. Stack trace of ConcurrentModificationException

she encounters a ConcurrentModification exception, and gets
a stack trace (Listing 2) reported by the IDE. She is not
pretty familiar with that exception; however, from the stack
trace, she identifies the source line (i.e., Line 28, highlighted)
triggering the exception, and she also assumes that the problem
is something related to ArrayList.

She attempts to solve the issue, and at some point, she
decides to perform web search for a solution or more helpful
information. Now she faces several challenges–(1) How to
develop an effective and appropriate search query for the
current exception? (2) How to analyze and include the context
of the encountered exception during search? and finally (3)
How to choose a working solution for the current exception
from the search results? The traditional web search does not
help her to overcome those challenges; or if it does somehow,
those are often not sufficient enough for problem solving.

Now let us assume that Alice has installed SurfClipse
in her IDE, and she encounters the same exception during
testing. Our tool provides her with several options such as
proactive search, context-menu based search and keyword
search. Suppose, she is interested in the third option– keyword
search. During this search, she can easily choose a search
query from the recommended list, and the tool returns the
top 30 result pages with the rationale (i.e., metric details)
behind their selection in the ranked list. Thus, in order to
overcome the challenges that Alice faces with traditional
search, our tool (1) helps her to develop a search query
by either automatic suggestion (e.g., Fig. 2) or stack trace
graph visualization (e.g., Fig. 3), (2) automatically captures the
exception and its context (i.e., stack trace and context code)
from the IDE, and associates them with the search, (3) returns
results which are relevant not only to the exception but also
to its context, and explains the rationale behind the selection
of each result through metric details visualization (e.g., Fig.
1-(d)). Furthermore, the results are collected from four reliable
and popular sources.

IV. WORKING METHODOLOGY

Fig. 5 shows the schematic diagram of the proposed tool.
This section discusses the internal structures and working

Fig. 5. Schematic Diagram of SurfClipse

methodologies of the tool in brief, while we refer the readers
elsewhere [6] for details.

Search Query Formulation: Once an exception occurs, we
analyze both stack trace and context code of the exception
in order to extract suitable query tokens. We develop a token
graph (e.g., Fig. 3) from the stack trace, where the connectivity
of a token is based on its implied relationships (e.g., class to
method static relations) with other tokens. We consider the
connectivity as a measure of token’s importance, and exploit
a graph-based term weighting algorithm (i.e., a variation of
PageRank algorithm) in order to determine the weight of each
token. We estimate the degree of interest [3] of each token, and
also calculate the frequency of the token in the context code.
We then normalize each of the three metrics, and calculate
the final score (i.e., importance) of each token in the graph.
Finally, we choose the top scored five tokens, and combine
each three of them to formulate a list of search queries. Each
of the queries essentially gets a score based on its token scores,
and then the queries are also ranked for recommendation.

Data Collection & Context-Aware Ranking: The pro-
posed tool follows a client-server architecture and it has two
major entities– Eclipse plugin (client) (Fig. 5-(a, c, d)) and web
service provider (server) (Fig. 5-(b)). Once a developer selects
an encountered exception from Console View in the IDE,
the client plugin collects associated context– stack trace and
context code, and generates a web search request to the service
provider [1] (e.g., Fig. 5-(b)). The provider module collects
results from three search engines– Google, Bing and Yahoo
and StackOverflow Q & A site against the client provided
search query, and develops a dynamic corpus containing 100-
120 result pages. It then analyzes the content of the pages,
and checks if they discuss the exception of interest and the
discussed exception belongs to a programming context similar
to the one in the IDE and so on. We use title and textual
content of the page to determine its content level relevance,

whereas we exploit the content of <code>,<pre> and <block-
quote> tags in the page to determine its context relevance.
Those tags generally contain the context (i.e., stack traces and
code segments) associated with the discussed exception in the
page. Finally, each of the result pages is ranked based on its
content relevance, context relevance, search engine confidence
and popularity (metric details can be found elsewhere [6]). The
service provider module then returns the top 30 results, and
the client plugin displays them in the IDE with corresponding
metric details (Fig. 5-(c)).

V. PERFORMANCE

In order to evaluate the recommended queries by SurfClipse,
we conducted a user study with five participants (graduate
students) using five problem solving scenarios. Each of the
participants solves the five exceptions, and we collect the
queries they use for web search for each of the exceptions. We
then compare the recommended queries by our tool with those
queries for the same exception using pyramid score [4]. The
metric determines if an auto-generated query resembles with
a set of manually prepared search queries for the same excep-
tion, and we got an average pyramid score of 0.88. The finding
indicates that the recommended queries are promising and
comparable to the queries of expert users. We also conducted
experiments using 75 programming errors and exceptions,
and compared our results against existing approaches [3, 5],
and three traditional web search engines (e.g., Google, Bing,
Yahoo) and StackOverflow [6]. The proposed tool outperforms
the existing approaches both in precision and recall. Among
the search engines, Google performs the best. While our tool
provides slightly less precise results than Google, it performs
significantly better than Google in terms of recall. Detailed
results can be found elsewhere [1, 6].

VI. CONCLUSION & FUTURE WORKS

To summarize, we propose a context-aware meta search
solution, SurfClipse, to the programming errors and exceptions
encountered by software developers. The tool works both as
a search query recommender and a meta search engine, and
helps the developers in solving their programming problems
especially associated with programming errors and exceptions.
In future, we plan to conduct a more exhausted user study with
prospective participants. We also plan for the recommendation
of more sophisticated items such as relevant sections from a
selected web page so that developers can easily locate the
solutions and can solve the problems with reduced efforts.

REFERENCES
[1] SurfClipse Web Portal. URL http://www.usask.ca/~mor543/surfclipse.
[2] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R. Klemmer. Two Studies

of Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing
Code. In Proc. SIGCHI, pages 1589–1598, 2009.

[3] J. Cordeiro, B. Antunes, and P. Gomes. Context-Based Recommendation to Support
Problem Solving in Software Development. In Proc. RSSE, pages 85 –89, 2012.

[4] S. Haiduc, J. Aponte, and A. Marcus. Supporting Program Comprehension with
Source Code Summarization. In Proc. ICSE, pages 223–226, 2010.

[5] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack Overflow in the IDE.
In Proc. ICSE, pages 1295–1298, 2013.

[6] M. M. Rahman, S. Yeasmin, and C. Roy. Towards a Context-Aware Meta Search
Engine for IDE-Based Recommendation about Programming Errors and Exceptions.
In Proc. CSMR-WCRE, pages 194–203, 2014.

