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Abstract

In this paper, we present an in-depth empirical study of a new metric, change
dispersion, that measures the extent changes are scattered throughout the
code of a software system. Intuitively, highly dispersed changes, the changes
that are scattered throughout many software entities (such as files, classes,
methods, and variables), should require more maintenance effort than the
changes that only affect a few entities. In our research we investigate change
dispersion on the code-base of a number of subject systems as a whole, and
separately on each system’s cloned and non-cloned code. Our central objec-
tive is to determine whether cloned code negatively affects software evolution
and maintenance. The granularity of our focus is at the method level.

Our experimental results on 16 open-source subject systems written in
four different programming languages (Java, C, C#, and Python) involving
two clone detection tools (CCFinderX and NiCad) and considering three
major types of clones (Type 1: exact, Type 2: dissimilar naming, and Type
3: some dissimilar code) suggests that change dispersion has a positive and
statistically significant correlation with the change-proneness (or instability)
of source code. Cloned code, especially in Java and C systems, often exhibits
a higher change dispersion than non-cloned code. Also, changes to Type 3
clones are more dispersed compared to changes to Type 1 and Type 2 clones.
According to our analysis, a primary cause of high change dispersion in cloned
code is that clones from the same clone class often require corresponding
changes to ensure they remain consistent.

Keywords: Dispersion, Instability, Clones, Software Maintenance, Code
Change
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1. Introduction

Code cloning is a common yet controversial practice that studies have
shown to have both positive [1, 5, 9, 11, 14, 15, 7] and negative [10, 16, 17, 18]
implications during software development and maintenance. Reuse of code
fragments with or without modifications by copying and pasting from one
location to another is very common in software development. This results
in the existence of the same or similar code blocks in different components
of a software system. Code fragments that are exactly the same or are very
similar to each other are known as clones. Three types of clones are com-
monly studied: Type-1 (exact clones), Type-2 (clones with dissimilar nam-
ing), and Type-3 (clones with dissimilar naming and/or with some dissimilar
code). The impact of clones on software maintenance is of great interest.
Researchers have investigated the stability of cloned and non-cloned code
[5, 13, 14, 15, 16, 17, 22, 19, 21, 6] using a number of approaches in order
to quantify clone impact. The idea is that if cloned code is less stable (e.g.,
numerous changes) than non-cloned code during maintenance, it is an in-
dication that clones require more maintenance effort than non-cloned code
[5]. If this is the case, clones may be considered harmful in the maintenance
phase. However, existing approaches for measuring stability are insufficient.

Most of the stability measurement methods [5, 9, 14, 17] calculate stability
in terms of code change, however one method [15] calculates stability in terms
of code age. The following three main approaches have been used to measure
stability: (i) calculate the ratio of the total number of lines added, deleted and
modified in a code region to the total number of lines in the code region; (ii)
determine the modification frequency of a code region where the modification
frequency considers the number of occurrences of consecutive lines added,
deleted or modified [9]; and (iii) calculate the average last change dates of
cloned and non-cloned code regions using SVN’s blame command [15].

1.1. Motivation

The existing stability measurement approaches fail to investigate the fol-
lowing important aspect regarding change.

When comparing the stability of two code regions, it is also
important to investigate how many different entities in these two
code regions have been affected (i.e., changed).

Explanation: We consider two code regions, Region 1 and Region 2,
in a software system and each of these two regions has the same number
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of program entities (suppose 100 entities). If during a particular period
of evolution of a software system, the changes that occurred in Region 1
affected 10 entities while the changes in Region 2 affected 50 entities, this
phenomenon has the following implications.

� Implication 1 (Regarding change-proneness): The program en-
tities in Region 2 are more change-prone than the program entities in
Region 1 for the particular period of evolution regardless of the number
of changes that occurred in each of these regions.

� Implication 2 (Regarding change effort): The amount of uncer-
tainty in the change process [8] in Region 2 is higher compared to the
uncertainty in the change process in Region 1 because, on the basis
of the change-proneness of entities during this particular period, while
each of the 50 entities in Region 2 has a probability of getting changed
in near future (possibly, in the next commit operation), only 10 entities
in Region 1 have probabilities of getting changed. It is also likely that
the requirement specifications corresponding to higher number of enti-
ties in Region 2 are more unstable compared to Region 1. Thus, the
entities in Region 2 are likely to require more change effort compared
to the entities in Region 1.

This is also possible that the entities in Region 2 are more coupled
than the entities in Region 1. In other words, changes in one entity in
Region 2 possibly require corresponding changes to a higher number
of other entities compared to Region 1. Higher coupling among pro-
gram entities might cause ripple changes to the entities and thus, can
introduce higher change complexity as well as effort1.

Thus, if it is observed that during the evolution of a software system,
higher proportion of entities in the cloned region were changed com-
pared to the proportion of entities changed in non-cloned region, then
it is likely that cloned region required higher change effort than non-
cloned region for that subject system.

Considering the above two implications regarding stability we introduce a
new measurement metric: change dispersion. We calculate change dispersion

1Coupling among Entities: http://www.avionyx.com/publications/e-newsletter/issue-
3/126-demystifyingsoftware-coupling-in-embedded-systems.html
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Table 1: Research Questions

Serial Research Question (RQ)

Research Questions Regarding Change Dispersion in Cloned and Non-
cloned Code

RQ 1. Is the change dispersion in cloned code higher than the change dispersion in
non-cloned code?

RQ 2. Do different types of clones exhibit different change dispersion? If so, which
type(s) of clones shows higher change dispersion compared to the others?

RQ 3. Do cloned and non-cloned code in the subject systems of different programming
languages show different comparative scenarios of change dispersion?

Research Questions Regarding Change Dispersion and its Relation with
Source Code Change-proneness (or Instability)

RQ 4. Is higher dispersion of changes an indicator of higher instability (or change-
proneness) in the source code?

RQ 5. If cloned code has higher change dispersion than non-cloned code, then does
it also indicate that cloned code is more change-prone (or unstable) than non-
cloned code?

RQ 6. How does change dispersion in clones affect the stability of cloned code?

using method level granularity. The definition of change dispersion with
related terminology will be presented in the next section.

1.2. Objective

We perform an in-depth investigation of change dispersion with the cen-
tral objective of gaining insight into the relative change-proneness (i.e., in-
stability) of cloned and non-cloned code during software maintenance, and
investigating ways to minimize the change-proneness of clones. Intuitively,
high change-proneness may indicate high maintenance effort and cost. Also,
frequent changes to a program entity has the potential to introduce incon-
sistency in related entities. As such, change-proneness may have impor-
tant implications for software maintenance. Existing studies regarding clone
impact have resulted in controversial outcomes using a variety of different
metrics. Our proposed metric, change dispersion, measures an important
characteristic of change that has not been investigated before. We perform a
fine-grained analysis of clone impact using change dispersion and answer six
research questions presented in Table 1.
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1.3. Findings

On the basis of our experimental results on 16 subject systems covering
four different programming languages (Java, C, C#, and Python) considering
three major types of clones (Type-1, Type-2, and Type-3) involving two clone
detection tools (CCFinderX2 and NiCad [24]) we answer the six research
questions. The answers (elaborated in Table 9) can be summarized as follows.

Change dispersion has a positive, and statistically significant correlation
with source code instability (i.e., change-proneness). Higher change disper-
sion in the code-base can also be an indicator of higher coupling among
program entities. Cloned code, especially in the subject systems written in
Java and C, often exhibits higher change dispersion and is possibly more
change-prone compared to non-cloned code. Moreover, Type 3 clones have
the tendency of getting more dispersed changes compared to the other two
clone types (Type 1 and 2). According to our analysis, a primary reason
behind higher change dispersion in cloned code is that clone fragments from
the same clone class often require corresponding changes in order to ensure
they remain consistent.

Clone refactoring might be helpful to reduce change dispersion as well
as change-proneness in cloned code and can potentially help decrease clone
maintenance. However, some clones may implement cross cutting concerns
[2] and refactoring these clones might not be beneficial [4]. The challenge
of clone maintenance suggests it would be beneficial to have an automated
system to facilitate clone management.

1.4. Paper Organization

The rest of the paper is organized as follows. Section II describes related
terminology. Section III elaborates on change dispersion, and Section IV
describes the steps in calculating change dispersion. Section V contains the
experimental setup and the experimental results are presented in Section VI.
Section VII describes possible threats to validity. Section VIII outlines the
relevant research, and Section IX contains concluding remarks and future
work. This paper is an extended version of our earlier work [20].

2CCFinderX: http://www.ccfinder.net/ccfinderxos.html
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2. Terminology

This section defines key terminology used in the paper to describe method-
level software change. In subsequent sections we introduce a number of met-
rics, and in those sections we will define specific terms relevant to the metric
definitions.

2.1. Change

We use the same definition of change as that defined by Hotta et al. [9].
According to their definition, a single change can affect multiple consecutive
lines. Suppose n lines of a method have been changed through additions,
deletions or modifications. If the n lines lines are consecutive, then the
number of changes is one. If the n lines are not consecutive, then the number
of changes is equal to the number of unchanged portions within the n lines
plus one.

2.2. Dispersion of Changes

Dispersion of changes in a code region (cloned, non-cloned or the entire
code-base) refers to the percentage of methods affected by changes in that
region during a period of evolution. For each system we studied, the evolution
period ranged from the first to the last revision we collected for that system.
Table 2 indicates the number of revisions we considered for the software
systems we studied. All of the commit operations during the evolution period
that involved some modifications to the source code are taken into account.

Change dispersion is related to change entropy, introduced by Hassan [8]
(based on Shannon Entropy [30]) to quantify the uncertainty of changing
program artifacts. Change entropy of a system for a particular period of
time depends on the distribution of changes over the entities in the system
for that time period. However, change dispersion during a particular period
is different in the sense that it depends only on the number of entities changed
in that period. The following two points will clarify this.

Point 1. For different distribution of changes to the same number of en-
tities in two different periods, the change entropies will be different. However,
the change dispersions for these periods will be the same.

Explanation. Let us assume that a system has 4 entities: e1, e2, e3,
and e4. During a particular period of time only 2 entities,e1 and e4, changed.
Then, change dispersion of this system for this time period = 2*100 / 4 =
50 (i.e., 50% of the entities were changed) regardless of which entity changed
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how many times. However, change entropy of this system for this time period
depends on the distribution of changes to e1 and e4. Suppose, e1 changed 5
times and e4 changed 10 times during this period. Then, change probability
of e1 = 5/(5 + 10) = 0.33 and change probability of e4 = 10/15 = 0.66. Thus,
change entropy = −(0.33∗ log2(0.33)+ 0.66∗ log2(0.66)) = 0.92 according to
the equation [8] for calculating change entropy. If e1 changed 6 times and
e4 changed 11 times, then the change probabilities of e1 and e4 are 6/17
(= 0.35) and 11/17 (= 0.65) respectively. At this time, change entropy =
−(0.35 ∗ log2(0.35) + 0.65 ∗ log2(0.65)) = 0.93, however, change dispersion
= 50 as only two entities (i.e., 50% of the entities) changed. In this way,
for different distribution of the number of changes to e1 and e4, the change
entropy will be different.

Point 2. This is mathematically possible that for two different number
of changed entities during two different periods, the change entropies will be
the same because of the distribution of changes to the entities. However, the
change dispersions for these periods will be different.

Explanation. We consider the above example of four entities. Let us
assume two periods, Period 1 and Period 2. In Period 1, two entities, e1
and e2, were changed. Each of e1 and e2 changed 5 times (10 times in
total). Then, the change entropy for Period 1 is 1 (according to the equation
[8]). Suppose, in Period 2, three entities e1, e2, and e3 were changed. e1
changed 400 times, e2 changed 596 times and, e3 changed 4 times. The
change entropy for this distribution (in Period 2 ) is also 1. Thus, different
number of entities might change in two different periods, but their entropies
can be the same. However, for the above two periods (Period 1 and Period
2 ), the change dispersions are, 50 (2*100/4 = 50% of the entities changed
in Period 1 ) and 75 (3*100/4 = 75% of the entities changed in Period 2 )
respectively.

From the above two points we see that while change entropy solely de-
pends on the distribution of changes to the entities, change dispersion only
depends on the number of changed entities. As our main focus is on the
number of entities changed in the system during a particular time period
and not on the distribution of the changes to the entities during that period,
we consider change dispersion to be the appropriate measure for our purpose.

2.3. Method Genealogy

During the evolution of a software system a particular method might be
created in a particular revision and can remain alive in multiple consecutive
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Figure 1: Examples of Method Genealogies

revisions. Each of these revisions has a separate instance of this method.
Method genealogy considers that all of these method instances belong to the
same method. By inspecting the genealogy of a particular method we can
determine whether the method was changed during maintenance. It is possi-
ble that, a particular method will remain unchanged during the maintenance
phase. In that case, all the instances of this method (in different revisions)
will be the same.

In Fig. 1 we show five examples of method genealogies. We see that
there are four revisions in total. A commit operation for a particular revision
creates the immediately next revision. An example method genealogy (the
top most one) in this figure consists of the method instances: m11, m21,
m31, and m41. These are four instances of the same method. A commit
operation applied to a revision might not change all the method instances in
that revision. If the commit operation on ‘Revision 1’ makes changes to the
method instance m11, m21 will be different than m11. Otherwise, m11 and
m21 will be the same.
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Detecting Method Genealogies: Lozano and Wermelinger [18] pro-
posed an approach for detecting method genealogies. We followed their ap-
proach in our study. There are basically two steps in detecting method
genealogies from a given set of revisions for a system. These are:

� Method Detection: Detecting methods for each of the given revi-
sions; and,

� Method Mapping: Making a one-to-one correspondence between the
methods in every two consecutive revisions.

For detecting methods we used Ctags3. Methods are detected along
with their signatures and location information. The location information
consists of the file, package (in case of Java), and class (in case of Java
and C#) in which the method exists. After detecting the methods in all
revisions we perform method mapping. Method mapping is performed in the
following way. Suppose, mi is a method in revision Ri. In order to find the
corresponding instance of this method in revision Ri+1 we consider two cases.

Case 1: If a method mi+1 in Ri+1 has the same signature and location
information as mi, mi+1 is an instance of mi. The content of these two
methods might be the same or different. If the commit operation applied to
Ri makes some changes to the method instance mi, the contents of mi and
mi+1 will be different.

Case 2: For mi in Ri we might not locate a method in Ri+1 with the
same signature and location information. In that case, we detect two sets
of methods in Ri+1. The first set Ss−l contains those methods that have the
same signature but different location, and the second set Sl−s contains those
methods that have the same location but different signatures. The methods
in these two sets are called candidate methods. We then compute the simi-
larity between mi and each of the candidate methods in the first set using the
Strike A Match algorithm4 (an algorithm for determining text similarity) and
record the best similarity value and the corresponding candidate method. If
this value is above 70% we consider the associated candidate method as the
instance of mi in Ri+1. If no candidate method in the first set has a similarity

3Ctags: http://sourceforge.net/projects/ctags/develop?source=navbar
4Strike A Match algorithm: http://www.catalysoft.com/articles/StrikeAMatch.

html.
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value greater than 70%, we go through the same process with the second set.
If no method in the second set has a similarity value greater than 70% then,
mi is considered to have been deleted in revision Ri+1.

After performing the mapping operation between every two consecutive
revisions we obtain the method genealogies (Fig. 1).

2.4. Instability

We use the term instability to refer to the source code change-proneness
of a subject system. Change-proneness is based on how often the source code
of a software system changes, typically in terms of changes to a program en-
tity, such as a method. A number of aspects can be taken into consideration
when determining change-proneness (i.e., instability), including the size of
the entity and change over time. In Section 6.5 we define metrics for mea-
suring the instability of methods, and a detailed description of the metrics is
described there.

2.5. Consistency Ensuring Changes to Clones

A clone class is the set of all code fragments that are clones of one another.
If two or more clone fragments from the same clone class change together,
because changes in one clone fragment required corresponding changes to
other clone fragments, then these changes are considered to be consistency
ensuring changes to clones. In our study we use two clone detection tools,
NiCad and CCFinderX. NiCad provides us with clone detection results that
separates clones into different clone classes, and so we can use NiCad results
directly to determine consistency ensuring changes to clones. CCFinderX,
however, provides us only with clone pairs and so we must first process
CCFinderX results to obtain clone classes.

3. Calculation of Change Dispersion

We calculate change dispersion on the basis of the changes to methods.
A method is defined as a cloned method when it contains some cloned lines.
Based on this definition, there are two types of cloned methods: (i) fully
cloned methods (all of the lines contained in these methods are cloned lines)
and (ii) partially cloned methods (these methods contain some non-cloned
portions). For calculating the dispersion of changes in cloned code, we con-
sider changes in the cloned portions of the fully or partially cloned methods.
Partially cloned methods are also considered when calculating the dispersion
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of non-cloned code, because changes might occur in the non-cloned portions
of the partially cloned methods. Also, while determining method genealogies
it might be the case that a partially cloned method has become fully cloned
or fully non-cloned after a change. These methods are considered when cal-
culating the dispersions of both cloned and non-cloned code. Here, we should
mention that we have not considered changes to the preprocessor directives
while calculating change dispersion. As we conduct our experiment consid-
ering method level granularity and preprocessor directives are not common
in method-bodies, changes to the preprocessor directives do not have any
considerable impact on our experiment results.

Given a subject system with R revisions, we first find the methods and
their boundaries in each revision and then extract the method genealogies.
We also use a clone detection tool on each revision to determine the clone
blocks. With the clone block and method information, we determine which
methods contain clone blocks and count the number of method genealogies
with cloned code and the number of method genealogies with non-cloned
code. We also determine the changes between consecutive revisions and if
the changes affect the cloned or non-cloned portions of the methods.

Suppose, for a subject system, that the number of method genealogies
with cloned code is C and the number of method genealogies with non-
cloned code is N . During the evolution of the software system, the number
of method genealogies with cloned code that receive some changes to their
cloned portions is Cc. Generally, C is greater than Cc. Also, Nc is the number
of method genealogies that have some changes to their non-cloned portions.

Change Dispersion in Cloned Code (CDc): We calculate the dis-
persion of changes in cloned code (CDc) according to the following equation.

CDc =
Cc × 100

C
(1)

Change Dispersion in Non-cloned Code (CDn): The dispersion of
changes in non-cloned code (CDn) is calculated using the following equation.

CDn =
Nc × 100

N
(2)

Change Dispersion in the Entire Code-base (CDEC ): We also
wanted to determine whether higher dispersion of changes to methods in the
entire source code is an indicator of higher instability (i.e., change-proneness)
in the source code. If a subject system has G method genealogies (cloned or
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non-cloned) in total and Gc of these genealogies received some changes during
the evolution, the dispersion of changes to the methods of this subject system
(CDEC ) can be calculated by the following equation.

CDEC = Gc × 100

G
(3)

The total number of method genealogies in a subject system (G) might be
smaller than the summation of the counts of method genealogies selected sep-
arately for cloned (C) and non-cloned code (N), because as mentioned in our
discussion (at the very beginning of this section ) some method genealogies
(the partially cloned method genealogies) can be considered for calculating
both CDc and CDn.

4. Steps for Calculating Change Dispersion

The following subsections describe how we obtained the subject systems
and how we calculated change dispersions for cloned and non-cloned code.

Extraction of Repositories: All of the subject systems (listed in Table
II) on which we have applied our method to calculate change dispersion were
downloaded from open source SVN repositories. For a subject system, we
extracted only those revisions which were created because of some source
code changes (additions, deletions or modifications). To determine whether
a revision should be extracted or not, we checked the extensions of the files
which were modified to create the revision. If some of these modified files
are source files, we considered the revision to be a target revision.

Preprocessing: We applied two preprocessing steps on the source files
of each target revision of the subject systems written in Java, C and C#
before clone detection. They are: (i) the deletion of lines containing only a
single brace (‘{’ or ‘}’) and appending the brace at the end of the previous
line and (ii) the removal of comments and blank lines. For Python systems
we removed the comments and the associated blank lines created due to the
removal of comments.

Method Detection and Extraction: For detecting the methods we
applied Ctags2 on the source files of a revision. For each method we col-
lected: (i) package name (Java), (ii) file name, (iii) class name (Java and
C# systems), (iv) method name, (v) signature, (vi) starting line number
and (vii) ending line number. We also assigned a unique id to each method
within each revision. However, the id of a method of one revision can be
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the same as that of a method of another revision. This does not introduce
conflicts because a separate file is generated for each revision.

Clone Detection: We used CCFinderX1 and NiCad [24] to detect clones
in our experiment. CCFinderX is a token based clone detection tool that cur-
rently detects block clones of Type-1 and Type-2. Also, NiCad is a recently
introduced clone detection tool that can detect three types of clones (Type-
1, Type-2, and Type-3) with high precision and recall [23] considering both
block level and method level granularities.

We applied the two clone detection tools to each target revision to detect
clone blocks. The clone blocks were then mapped to the already detected
methods of the revision by comparing the beginning and ending line numbers
of clone blocks and methods. For each method we collect the beginning and
ending cloned line numbers (if they exist). CCFinderX currently outputs
the beginning and ending token numbers of clone blocks. We automatically
retrieve the corresponding line numbers from the generated preprocessed files.

Detection and Reflection of Changes: We identified the changes be-
tween corresponding files of consecutive revisions using the UNIX diff com-
mand. diff outputs three types of changes with corresponding line numbers:
(i) addition, (ii) deletion, and (iii) modification. We mapped these changes
to methods using line information. For each method we gathered two more
pieces of information: the count of lines changed in the cloned portions and
the count of lines changed in the non-cloned portions.

Storage of Methods: At this stage, we have obtained all the necessary
pieces of information for all methods belonging to a particular revision. We
store the methods in an XML file with an individual entry for each method.
For each revision we create a separate XML file containing the methods of
the corresponding revision. A file name is constructed by appending the
revision number at its end so that we can generate it when necessary (for
getting previously stored methods of the unchanged files of a former revision
and for calculating dispersion).

Method Mapping: For mapping methods between two consecutive re-
visions we followed the technique proposed by Lozano and Wermelinger [18]
(described in Section 2). We store the mapping information for each two con-
secutive revisions in a separate file. Method mapping was accomplished using
method ids. The file names contain the revision numbers in a disciplined way
so that we can generate them when necessary.

Calculation of Change Dispersion: To calculate change dispersion
we examine each method genealogy and during this examination we update
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four counters: (i) the count of method genealogies containing cloned code
(C) (ii) the count of method genealogies containing non-cloned code (N)
(iii) the count of method genealogies that have some changes in their cloned
portions (Cc), and (iv) the count of method genealogies that have some
changes in their non-cloned portions (Nc).

For each method genealogy, we first determine the revision in which the
method was created. Starting from this revision we examine each method
instance in subsequent revisions while the method remains alive. While pro-
cessing a method genealogy we update the counters in the following way.

� If one or more of the method instances contains cloned code, we incre-
ment C by 1.

� If one or more of the method instances contains non-cloned code, we
increment N by 1.

� If one or more of the method instances were changed in their cloned
portions, we increment Cc by 1.

� If one or more of the method instances were changed in their non-cloned
portions, we increment Nc by 1.

When processing a method genealogy it is the case that each of the counters
can be at most incremented by 1.

5. Experimental Setup

Setup for CCFinderX: We set CCFinderX to detect clone blocks with
a minimum size of 30 tokens with a TKS (minimum number of distinct types
of tokens) set to 12 (as the default).

Setup for NiCad: Using NiCad [3] we detected block clones with a
minimum size of 5 LOC in the pretty-printed format that removes comments
and formatting differences. We used the NiCad settings in Table 3 for de-
tecting three types of clones. The dissimilarity threshold means that the
clone fragments in a particular clone class may have dissimilarities up to
that particular threshold value between the pretty-printed and/or normal-
ized code fragments. For all the settings in Table 3, NiCad was shown to
have high precision and recall [23]. These settings for NiCad are considered
standard [25, 26, 27, 28] for detecting the three types of clones. Before using
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Table 2: SUBJECT SYSTEMS

System Domain LER SRev ERev

J
a
v
a

DNSJava DNS protocol 23,373 2 1635

Ant-Contrib Web Server 12,621 5 176

Carol Game 25,092 2 1699

jabref Project Management 79,853 2 32

C

Ctags Code Def. Generator 33,270 2 774

Camellia Multimedia 85,015 1 55

QMail Admin Mail Management 4,054 5 317

Gnumakeuniproc Project Building 83,269 689 799

C
#

GreenShot Multimedia 37,628 4 999

ImgSeqScan Multimedia 12,393 2 73

Capital Resource Database Management 75,434 1 122

MonoOSC Formats and Protocols 18,991 2 355

P
y
th

o
n Noora Development Tool 14,862 4 140

Marimorepy Collection of Libraries 13,802 1 49

Pyevolve Artificial Intelligence 8.809 3 200

Ocemp Game 57,098 5 438

SRev = Starting Revision ERev = End Revision

LER = LOC in End Revision

Table 3: NICAD SETTINGS

Clone
Type

Identifier
Renaming

Dissimilarity
Threshold

Type 1 none 0%

Type 2 blindrename 0%

Type 3 blindrename 20%

15



the NiCad output for the Type-2 and Type-3 cases, we processed them in
the following way.

1. Every Type-2 clone class that exactly matches a Type-1 clone class
was excluded from the Type-2 outputs.

2. Every Type-3 clone class that exactly matches a Type-1 or Type-2
clone class was excluded from the Type-3 outputs.

Subject Systems: Table 2 lists the subject systems that were included
in our study. Most of the systems except Carol5 and Capital Resource6

were downloaded from Sourceforge7. We selected this set of subject systems
because they are diverse, differ in size, span 13 different application domains,
and cover three different programming languages.

6. Experimental Results and Discussion

In this section, we present our experimental results and answer our re-
search questions (presented in Table 1) on the basis of these results.

6.1. RQ 1: Is the change dispersion in cloned code higher than
the change dispersion in non-cloned code?

Motivation. Our central goal of this research work is to determine
whether cloned code has any negative effect(s) on software evolution. For
this purpose, we perform a comparative study of change dispersion in cloned
and non-cloned code. If change dispersion in cloned code appears to be
higher compared to that of non-cloned code, then it is likely that cloned
code negatively affects software evolution and maintenance.

Methodology. To answer research question RQ 1 and the next two
research questions (RQ 2 and RQ 3), we first determine the change dispersion
of cloned (CDc) and non-cloned code (CDn) for each subject system using
Eq. 1 and Eq. 2, respectively. The magnitude of CDc and CDn for each
of the systems with associated decision points is shown in Table 4 (NiCad
results) and in Table 5 (CCFinderX results). CCFinderX cannot detect
clones in Python systems; however, including this clone detector in our study
strengthens our language centric decisions, as seen in the next section when

5Carol: http://websvn.ow2.org/listing.php?repname=carol
6Capital Resource: http://www.ohloh.net/p/capitalresource/enlistments
7SourceForge: http://sourceforge.net
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Table 4: DISPERSION OF CHANGES USING NICAD RESULTS

Type 1 (NiCad) Type 2 (NiCad) Type 3 (NiCad)

System CDc CDn DP CDc CDn DP CDc CDn DP

J
a
v
a

DNSJava 24.53 5.91 ⊖ 15.17 7.82 ⊖ 18.16 7.55 ⊖

Ant-Contrib 17.64 1.63 ⊖ 2.22 1.95 ⊖ 5 1.97 ⊖

Carol 5.87 19.50 ⊕ 9.35 19.33 ⊕ 18.92 19.72 ⊗

jabref 11.23 20.43 ⊕ 8.95 21.78 ⊕ 13.05 18.44 ⊕

C

Ctags 0 10.04 ⊕ 20 9.66 ⊖ 14.53 9.78 ⊖

Camellia 0 9.85 ⊕ 12.5 9.55 ⊖ 35 8.76 ⊖

QMail Admin 50 7.29 ⊖ 42.85 8.03 ⊖ 60 8.15 ⊖

Gnumakeuniproc 12.5 0.42 ⊖ 0 0.50 ⊕ 1.38 0.51 ⊖

C
#

GreenShot 8.88 29.32 ⊕ 22.96 29.49 ⊕ 30.37 30.47 ⊗

ImgSeqScan 0.0 3.76 ⊕ 0.0 3.73 ⊕ 0.0 3.72 ⊕

Capital Resource 0.0 4.92 ⊕ 0.0 4.79 ⊕ 3.95 4.47 ⊕

MonoOSC 3.17 10.48 ⊕ 5.26 10.42 ⊕ 39.13 10.03 ⊖

P
y
th

o
n

Noora 20.12 17.88 ⊖ 14.52 21.81 ⊕ 23.72 17.44 ⊖

Marimorepy 2.32 15.83 ⊕ 0 16.66 ⊕ 37.5 15.12 ⊖

Pyevolve 25.49 25.11 ⊗ 25.0 30.12 ⊕ 22.98 27.39 ⊕

Ocemp 22.94 66.59 ⊕ 42.28 65.54 ⊕ 38.67 62.45 ⊕

CDc= Dispersion of Changes in Cloned Methods

CDn= Dispersion of Changes in Non-cloned Methods

DP = Decision Point : ⊕ = CDn > CDc ⊖ = CDn < CDc ⊗ = CDn ≈ CDc
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addressing research question RQ 3. The tables contain 60 decision points in
total.

Decision Point: Based on the change dispersion of non-cloned code
(CDn) and cloned code (CDc) we make a decision as to whether the changes
are more dispersed in the cloned code, more dispersed in the non-cloned
code, or similarly dispersed. These decision points are determined for each
system and for each of the following four clone cases: Type 1 (NiCad), Type
2 (NiCad), Type 3 (NiCad), and CCFinder. The decision points are shown
in the dispersion tables under the column DP and are one of the following:

Category 1 (indicated with a ⊕). Changes to the non-cloned code
are more dispersed than changes to the cloned code (i.e., CDn > CDc).

Category 2 (indicated with a ⊖) Changes to the non-cloned code are
less dispersed than changes to the cloned code (i.e., CDn < CDc).

Category 3 (indicated with a ⊗) There is no substantive difference
between the change dispersion of non-cloned and cloned code; the changes
are similarly dispersed in both the non-cloned and the cloned code (i.e.,
CDn ≈ CDc).

To determine whether the difference between the dispersions of cloned
and non-cloned code of a subject system for a particular case is significant
we calculated an EligibilityValue on the observed dispersions according to
the following equation.

EligibilityValue = (CDn −CDc) × 100

min(CDn,CDc)
(4)

DecisionPoint =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊕, if EligibilityValue > threshold

⊖, if EligibilityValue < −threshold

⊗, otherwise

We use a threshold of 10 when considering if the difference between disper-
sions is significant. An eligibility value between −10 and 10 inclusive is con-
sidered insignificant (i.e., −10 ≤ EligibilityValue ≥ 10). When EligibilityValue
is greater than the threshold value (i.e., EligibilityValue > 10), the subject
system will be considered to belong to Category 1. When EligibilityValue is
less than the negative of the threshold value (i.e., EligibilityValue < −10), the
subject system will be considered to belong to Category 2.

Rationale behind Selection of Threshold. We selected the cal-
culation procedure and the threshold value to force a subject system with
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Table 5: DISPERSION OF CHANGES USING CCFINDERX RESULTS

Systems CDc CDn DP

J
a
v
a

DNSJava 18 7 ⊖

Ant-Contrib 5 0 ⊖

Carol 23 7 ⊖

jabref 31 8 ⊖

C

Ctags 21 10 ⊖

Camellia 30 9 ⊖

QMail Admin 50 12 ⊖

Gnumakeuniproc 1.26 2.73 ⊕

C
#

GreenShot 14 5 ⊖

ImgSeqScan 25 0.55 ⊖

Capital Resource 3.95 4.58 ⊕

MonoOSC 39.44 12 ⊖

CDc= Dispersion of Changes in Cloned Methods

CDn= Dispersion of Changes in Non-cloned Methods

DP = Decision Point

⊕ = CDn > CDc ⊖ = CDn < CDc ⊗ = CDn ≈ CDc

* CCFinderX cannot detect clones in Python systems.
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large but very near dispersions to be placed in Category 3. For example, if
CDn = 41 and CDc = 40, then EligibilityValue = ((41 − 40) × 100)/40 = 2.5,
which is between −10 and 10 and considered insignificant. A subject system
with small but nearly identical dispersions will be placed in either Category 1
or Category 2, which is to be expected. For example, if CDn = 3 and CDc = 4,
then EligibilityValue = ((3 − 4) × 100)/3 = −33.33, which is less than −10 and
Category 2 (i.e., ⊖) will be chosen.

Among 60 decision points contained in the tables, Table 4 and Table 5,
57 points fall in Category 1 or Category 2. We call them significant deci-
sion points because the differences between the dispersions for these points
are significant according to the Eligibility Value of Eq. 4. We ignored the
remaining 3 decision points marked with a (⊗).

According to 49.12% of the significant points, dispersion of changes in
cloned code is less than the dispersion of changes in non-cloned code. The
opposite is true for the remaining 50.88% points. Although the difference
between the percentages is not significant, it indicates that, the changes in
the cloned portions of our investigated subject systems are sometimes more
scattered than the changes in the non-cloned portions.

Answer to RQ 1: In answer to RQ 1 we can state that change dis-
persion in cloned code can sometimes be higher than the change dispersion
in non-cloned code. Considering the equations (Eq. 1 and Eq. 2) for calcu-
lating change dispersion we can, more specifically, say that the percentage
of methods affected by the changes in cloned code is sometimes greater than
the percentage of methods affected by the changes in the non-cloned code.
This scenario indicates that the percentage of the cloned regions affected
(by changes) during the evolution of a subject system is sometimes greater
than the percentage of the affected non-cloned regions. Thus, cloned code is
(sometimes) expected to exhibit higher change-proneness compared to non-
cloned code.

6.2. RQ 2: Do different types of clones exhibit different change
dispersion? If so, which type(s) of clones shows higher change
dispersion compared to the others?

Motivation. From the answer to the first research question we realize
that cloned code sometimes negatively affects software evolution by exhibit-
ing higher change dispersion compared to non-cloned code. This phenomenon
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Figure 2: Overall type centric analysis of NiCad results

raised the question whether different types of clones are equally likely to ex-
hibit higher change dispersion than non-cloned code. We find the answer to
the question in the following way.

Methodology. We perform a clone-type centric analysis of the change
dispersion results for answering this research question. Our type centric
analysis depends only on NiCad results, since CCFinderX does not make a
distinction between different types of clones. Considering all the significant
decision points belonging to a particular clone type (Type 1, Type 2 and
Type 3) in Table 4 we calculate two measures: (1) the proportion of decision
points indicating that there is a higher dispersion of changes in cloned code,
and (2) the proportion of decision points indicating that there is a lower
dispersion of changes in cloned code. We plot these two measures for each
clone type in Fig. 2. According to this graph, for most of the subject systems
the dispersion of changes in Type 3 clones is higher than the dispersion of
changes in the corresponding non-cloned code. However, the opposite is
observed for the other two clone types. From these results we determine that
Type 3 clones are likely more change-prone than Type 1 and Type 2 clones.

Using the data in Table 4 we plot another bar chart (Fig. 3) that shows
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Figure 3: Type centric analysis of NiCad results by programming language

the type-wise change dispersion for each programming language. Considering
the significant decision points belonging to a particular clone type and a
particular language in Table 4 we measure: (1) the percentage of decision
points indicating a higher dispersion of changes in cloned code, and (2) the
percentage of decision points indicating a higher dispersion of changes in non-
cloned code. According to this chart, in case of both Java and C systems, each
type of clone has the probability of having more dispersed changes compared
to the corresponding non-cloned code. We also see that Type 3 clones have
the highest possibility of having more dispersed changes compared to the
other two clone types for these two languages (Java and C). However, for the
other two programming languages (C# and Python) cloned code has a lower
likelihood of having more dispersed changes in general, except for Type 3
clones in Python.

Answer to RQ 2: In answer to RQ 2 we can state that Type 3 clones
generally exhibit a higher likelihood of having more dispersed changes (than
non-cloned code) compared to the other two clone types (Type 1 and Type 2).
So, it is expected that Type 3 clones likely exhibit higher change-proneness
and also require more maintenance effort compared to the other two types of
clones.

We also investigated the reason why the changes in Type 3 clones are
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more dispersed compared to the other two clone types. According to our
analysis, a possible reason is that the average number of clone fragments in a
Type 3 clone class is generally higher than the average number of clone frag-
ments per clone class of each of the other two clone types. A higher number
of clone fragments in a clone class increases the possibility of dispersed or
scattered changes, because clone fragments in a particular class often require
corresponding changes and thus have a tendency of changing together. For
further clarification we present the following example.

Suppose there are two clone classes, Class1 and Class2. Class1 has five
clone fragments and Class2 contains ten clone fragments. If a change occurs
in a particular clone fragment in a particular class (Class1 or Class2 ), the
change might need to be propagated to the other clone fragments in the same
class for ensuring consistency among the fragments. The clone fragments in
a clone class might belong to different methods. In this situation, while
a consistency ensuring change in Class1 can affect at most five different
methods, such a change in Class2 can affect ten different methods and, in
this way, Class2 would exhibit a higher change dispersion.It is important to
note that we measure change dispersion of a code region by determining the
percentage of methods affected by changes in that region during evolution.

Considering the above example we infer that as Type 3 clone classes
have a higher number of clone fragments (on average) compared to the clone
classes of the other two clone types, Type 3 clones will exhibit a higher
change dispersion than the other two types. Fig. 10 and Fig. 11 together
present an example of the consistency ensuring changes in a Type 3 clone
class. The Type 3 class in the example contains four clone fragments, which
are four different methods. These four methods were changed consistently by
adding the same parameter to each of the methods in a commit on revision
36. Each of the figures (Fig. 10 and Fig. 11) shows changes to two methods.
The figures and their detailed descriptions are presented in Section 6.6.

Table 6 shows the average number of clone fragments per clone class for
each clone type in each of the subject systems. For determining the average
for a particular clone type of a particular subject system, we considered all
the clone classes of that particular clone type in all of the revisions. From
the table we see that the average number of clone fragments in a Type 3
clone class (ANCF 3) is most often higher (ten systems out of sixteen) than
the average number of clone fragments in the other types of clone classes
(ANCF 1 and ANCF 2).
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Table 6: AVERAGE NUMBER OF CLONE FRAGMENTS PER CLONE CLASS TYPE

System ANCF 1 ANCF 2 ANCF 3

J
a
v
a

DNSjava 2.44 2.31 2.89

Ant-Contrib 2.22 2.66 3.01

Carol 2.40 2.14 3.30

JabRef 2.23 2.6 2.99

C

Ctags 2.47 2.45 2.9

Camellia 2.49 3.23 2.94

QMailAdmin 3.20 3.77 5.9

Gnumakeuniproc 2.20 2.87 3.0

C
#

GreenShot 3.69 3.14 3.03

ImgSeqScan 2.00 2.34 2.89

CapitalResource 2.71 3.00 3.05

MonoOSC 4.52 2.00 2.44

P
y
th

o
n

Noora 2.61 4.86 4.01

Marimorepy 3.18 3.13 3.17

Pyevolve 2.21 3.90 3.76

Ocemp 2.55 2.41 2.73

ANCF 1 = Average number of clone fragments per Type 1 clone class

ANCF 2 = Average number of clone fragments per Type 2 clone class

ANCF 3 = Average number of clone fragments per Type 3 clone class
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Figure 4: Programming language centric statistics of CCFinderX results

6.3. RQ 3: Do cloned and non-cloned code in the subject systems
of different programming languages show different compara-
tive scenarios of change dispersion?

Motivation. Answering this question is important, because if the clones
in a system written in a particular programming language generally show
higher change dispersion than non-cloned code, then it is likely that clones
in systems written in that language will be more change-prone, and it may be
desirable to give clone management tasks a higher priority for these systems.

Methodology. In order to answer this research question, we perform a
language centric analysis of our experimental results. Table 4 and Table 5,
present the language centric statistics of the dispersion of changes occurring
in the cloned and non-cloned code. Considering the significant decision points
belonging to a particular programming language in a particular table we
measured two proportions: (1) the proportion of significant decision points
that indicate there is higher change dispersion in cloned code, and (2) the
proportion of significant decision points that indicate there is higher change
dispersion in non-cloned code.

According to the language centric statistics in Fig. 4 obtained from the
CCFinderX results (Table 5), for Java, C and C#, most of the decision points
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Figure 5: Programming language centric statistics of NiCad results

indicate that there is a higher dispersion of changes in cloned code than in
non-cloned code.

The language statistics that we obtain from the NiCad results are shown
in Fig. 5. According to this figure, a higher proportion of decision points
belonging to both Java and C indicate that there is a higher dispersion of
changes in cloned code compared to non-cloned code. However, the opposite
is observed for the other two programming languages, C# and Python. For
each of these two languages, a higher proportion of the significant decision
points indicate there is a lower dispersion of changes in cloned code than in
non-cloned code.

Answer to RQ 3: Considering Fig. 4 and Fig. 5 we can answer RQ 3
by stating that cloned code in subject systems written in Java and C often
exhibit a higher change dispersion than non-cloned code. Thus, it is expected
that cloned code in Java and C systems is more change-prone than non-cloned
code. However, clones in C# and Python systems are not likely to show a
higher change dispersion than non-cloned code. Thus cloned code in these
systems (written in C# and Python) are expected to be less change-prone
than non-cloned code.

It is very difficult to explain why the comparative dispersion scenario of
cloned and non-cloned code is different for different programming languages.
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A possible reason could be the difference in the application domains of the
subject systems. Several other factors such as: programmer’s expertise and
programmer’s knowledge about the subject system can play important roles
in controlling the comparative scenario between the change-proneness as well
as change dispersion of cloned code and non-cloned code. For example, while
making changes to a particular clone fragment if a maintenance program-
mer has the proper knowledge about the other similar clone fragments, they
might decide to make changes to those clone fragments as well and eventu-
ally the dispersion of changes in clones will increase. On the other hand,
a programmer that does not know that other clone fragments exist, may
make changes to only a single clone fragment and in this way clones might
gradually appear to exhibit less dispersed changes compared to non-cloned
code. However, in this research we have not considered these factors while
determining the change dispersion of cloned and non-cloned code.

6.4. RQ 4: Is higher dispersion of changes an indicator of higher
instability (or change-proneness) in the source code?

Motivation. We have already mentioned that higher change disper-
sion is a possible indicator of increased effort for understanding and ana-
lyzing the consequences (or impacts) of changes. In this subsection we in-
vestigate whether higher change dispersion indicates higher instability (i.e.,
change-proneness) of source code because, if higher change dispersion indi-
cates higher code instability, then higher change dispersion should also be an
indicator of higher maintenance effort.

Methodology. For the purpose of our investigation we determined the
correlation between two measures, (1) Change Dispersion in the Entire Code-
base (CDEC) and (2) Change-proneness (or instability) of the Entire Code-
base (CEC). If these two measurements are correlated we can say that high
CDEC is a possible indicator for high CEC. We calculate CDEC according
to Eq. 3. The CEC of a subject system is calculated as follows.

Calculation of Change-proneness (or instability) of the Entire
Code-base (CEC ): For each of the subject systems, we determined the
average number of changes that occurred per commit operation considering
only those commits where there were some changes to the source code. The
definition of change is presented in Terminology (Section 2).

After calculating the CEC and CDEC for all candidate systems we deter-
mined whether the distribution of these two measures are normal. According
to our investigation, the distribution of change dispersion (CDEC) is normal
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Table 7: SPEARMAN CORRELATION BETWEEN CHANGE DISPERSION AND
CODE INSTABILITY

System Dispersion Instability

J
a
v
a

DNSjava 33.16 6.88

Ant-Contrib 2.9 2.41

Carol 18.7 10.07

JabRef 35.97 12.11

C

Ctags 41.85 4.95

Camellia 67.1 25

QMailAdmin 49.16 20.67

Gnumakeuniproc 2.79 5.1

C
#

GreenShot 28.52 4.39

ImgSeqScan 3.7 5.27

CapitalResource 4.72 4.92

MonoOSC 27.15 4.77

P
y
th

o
n

Noora 23.45 11.89

Marimorepy 16.52 3.81

Pyevolve 32.38 4.36

Ocemp 67.62 20.68

Correlation coefficient between dispersion and instability = 0.60

Table 8: Significance Test Details of Correlation Coefficient

Significance test details

Correlation Coefficient = 0.60

Sample Size = 16 (As there are 16 subject systems)

t-Value = 2.81

Degrees of freedom = 14

Two-tailed probability value (p-value) = 0.013

If a probability value is less than 0.05, the corresponding

correlation coefficient is considered significant.

Thus, Correlation is significant at the 0.05 level (2-tailed).

It reflects a true (rather than due to chance) correlation

between change dispersion and code instability.
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but, code instability (CEC) does not seem to be normally distributed. For
this reason, we determined a non-parametric correlation, Spearman Rank
Correlation, between these two measures. The details of correlation are
shown in Table 7. We see that the correlation coefficient is positive (co-
efficient = 0.60) and it indicates the tendency that high change dispersion
(CDEC) is often (for about 60% of the cases) associated with high code in-
stability (CEC). We have also calculated the significance8 of this correlation
coefficient. The details of the significance test are presented in Table 8. The
two-tailed probability value regarding this test is 0.013 which is less than
0.05. Thus, the observed correlation coefficient is statistically significant and
it reflects a true correlation9 (rather than due to chance) between change
dispersion and source code instability.

Answer to RQ 4: In answer to RQ 4 we can say that higher change
dispersion often indicates higher instability (i.e., change-proneness) of source
code. Also, as higher change-proneness indicates increased maintenance ef-
fort, higher change dispersion can possibly be regarded as an indicator of
increased maintenance effort as well.

6.5. RQ 5: If cloned code has higher change dispersion than non-
cloned code, then does it also indicate that cloned code is
more change-prone (i.e., unstable) than non-cloned code?

Motivation. From the answers to the first (RQ 1 ), second (RQ 2 ), and
third (RQ 3 ) research questions it is clear that changes in cloned code are
sometimes more dispersed compared to the changes in non-cloned code and,
more specifically, clones in both Java and C systems have a higher probability
of getting more dispersed changes compared to non-cloned code. From the
answer to the fourth research question (RQ 4 ) we understand that higher
change dispersion is a possible indicator of higher change-proneness. From
this scenario we suspected that cloned code in the subject systems written in
Java and C might have higher change-proneness (i.e., instability) compared
to the non-cloned code in these systems. We investigated this matter consid-
ering method level granularity. For each of the candidate systems written in
Java and C, we determined whether the presence of clones in methods causes
these methods to become more change-prone compared to the methods that
do not contain any clone fragments.

8Significance of correlation coefficient: http://vassarstats.net/corr_rank.html
9Implications of Correlation: http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
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Methodology. In this investigation we used the combined type clone
results of NiCad. We can get clone detection results of NiCad in two ways:
(1) obtaining the results of three types of clones (Type 1, Type 2, and Type
3) separately and (2) obtaining the results by combining these three types
of clones. In the previous investigations we calculated dispersions for three
types clones separately. However, in the following investigations we used the
combined type results of NiCad to determine the combined effect of clones on
code instability (i.e., change-proneness). CCFinderX provides us only with
combined type results. While NiCad combines three types of clones (Type
1, Type 2, and Type 3) in the combined type result, CCFinderX provides
only two types of clones (Type 1 and Type 2), since CCFinderX cannot
detect Type 3 clones. We did not consider CCFinderX for the following
investigations.

For the purpose of investigation, we at first separated the method ge-
nealogies detected in a candidate Java or C system into two disjoint sets:
(1) cloned (fully cloned or partially cloned) method genealogies (CMG), and
(2) fully non-cloned method genealogies (NMG). If any method instance in
a particular method genealogy contains a clone, that genealogy is considered
a member of CMG. On the other hand, if no method instance in a particular
genealogy contains a clone, that genealogy is considered a member of NMG.
Then, for the CMG and NMG sets we calculated an instability metric for
methods.

The instability metric was calculated to quantify method change-proneness
considering two things, (1) method longevity, and (2) method size. A
method with high longevity has the probability of getting more changes than
a method with comparatively low longevity. Also, method size might have
an effect on method instability. We normalized the effects of method size
and longevity in the instability metric in the following way.

Method Instability considering Longevity and Size (MILS): For
a particular set of method genealogies, we calculate the average number of
changes received per 100 LOC (Lines of Code) of a method instance per
100 commit operations. A particular method genealogy consists of several
method instances. For both sets of genealogies (the CMG set and the NMG
set) we calculate MILSCMG and MILSNMG in the following way.

MILSCMG = NOCCMG × 10000

∣CMG∣ ×ALSCMG ×ASCMG

(5)

NOCCMG denotes the total number of changes that occurred to all method
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instances of the method genealogies in the set CMG, ALSCMG denotes the
average life span per genealogy in CMG, and ASCMG is the average size
of a method instance in CMG. A particular method genealogy in CMG
can have several method instances. While determining ASCMG we at first
find the summation of the sizes of all method instances of all genealogies.
Then, we divide this sum by the total count of all method instances of all
genealogies in CMG to get ASCMG. We calculate ALSCMG according to the
following equation.

ALSCMG = ∑gεCMG LS(g)
∣CMG ∣ (6)

Here, g is a cloned method genealogy in the set CMG. We know that the
set CMG contains the cloned (fully or partially) method genealogies. LS(g)
is the life span of g. LS(g) is the count of commit operations for which the
genealogy g remained alive during evolution.

Justification of MILS metric: Now we have a close look at Eq. 5. The
term NOCCMG/(∣CMG∣×ALSCMG) gives us the count of changes received by
a method instance (of CMG) per commit operation. ASCMG is the average
size of a method instance. So, if we divide the term NOCCMG/∣CMG∣ ×
ALSCMG by ASCMG, we will get the count of changes that occurred per line
of code of a method instance (of CMG) per commit operation. At last, by
multiplying 10000 with the result we get the count of changes happened per
hundred LOC of a method instance per hundred commit operations. Thus,
Eq. 5 reasonably calculates MILSCMG.

Similarly, we calculate MILSNMG according to the following equation.

MILSNMG = NOCNMG × 10000

∣NMG∣ ×ALSNMG ×ASNMG

(7)

A particular genealogy might not live for 100 commits and might not con-
sist of 100 LOC. However, multiply by 10000 in the above equations just gives
us larger values for MILSCMG and MILSNMG for better understanding. We
perform the following three investigations using the MILS metric.

(1) Investigation of the instability (i.e., change-proneness) of
cloned and non-cloned methods: We calculated the values of MILSCMG

and MILSNMG using the NiCad clone detector for each of the Java and C
subject systems and plotted these values in Fig. 6. We see that for all systems
but Camellia, MILSCMG >MILSNMG.
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Figure 6: Instability of cloned (fully or partially) and non-cloned method genealogies using
NiCad Results

Findings: Fig. 6 indicates that cloned methods in Java and C systems
have more changes than non-cloned methods. In other words, the instability
(i.e., change-proneness) of cloned methods for the subject systems written
in Java or C is, most of the time, higher than the instability of non-cloned
methods in these systems.

(2) Investigation of the instability (i.e., change-proneness) of
fully cloned and partially cloned methods: In the previous investiga-
tion we observed that cloned methods (or cloned method genealogies (CMG))
exhibit higher instability compared to the non-cloned methods (or non-cloned
method genealogies NMG)). We suspected clones to be a possible cause of
this higher instability of cloned (fully or partially) methods. For determining
whether clones are really responsible for higher instability of cloned meth-
ods, we considered the instability of fully cloned and partially cloned methods
separately. Then, we made the following two comparisons.

� comparison of the instabilities of fully cloned and fully non-cloned
method genealogies
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� comparison of the instabilities of partially cloned and fully non-cloned
method genealogies

The intuition behind these comparisons is that if both fully cloned and
partially cloned methods exhibit higher instability compared to the fully non-
cloned methods, clones can be a possible cause of the higher instability of
cloned (fully or partially) methods.

The set CMG contains both fully cloned and partially cloned method
genealogies. A method genealogy is considered to be a fully cloned geneal-
ogy if each method instance of this genealogy is fully cloned. On the other
hand, in a partially cloned method genealogy there is at least one method
instance that is not fully cloned. The sets of fully cloned and partially cloned
genealogies are termed FCG and PCG respectively. For each of these sets we
computed the value of the already defined instability metric MILS according
to the following equations.

MILSFCG = NOCFCG × 10000

∣FCG∣ ×ALSFCG ×ASFCG
(8)

MILSPCG = NOCPCG × 10000

∣PCG∣ ×ALSPCG ×ASPCG
(9)

We calculated MILSFCG and MILSPCG for each of the candidate sys-
tems using the NiCad clone detector. The comparison between the instabili-
ties of fully cloned and fully non-cloned method genealogies has been shown
in the graph of Fig. 7. According to this graph, fully cloned methods ex-
hibit higher instability compared to the fully non-cloned methods for all of the
subject systems but Camellia.

We compare the instabilities of fully non-cloned and partially cloned
method genealogies in Fig. 8. We did not find any partially cloned methods
in our subject system, GNUMakeUniproc. For this reason, this system does
not have a black bar. According to this graph, partially cloned methods ap-
pear to exhibit a higher probability of being more unstable (i.e., change-prone)
than the fully non-cloned methods.

Findings: From the above scenario we infer that clones are a possible
cause of making the cloned (fully or partially) methods more unstable.

(3) Investigation of the commits having changes to the cloned
portions of the cloned methods: We also investigated the commit op-
erations of the Java and C subject systems to determine whether clones are
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Figure 7: Instability of fully cloned and fully non-cloned method genealogies considering
NiCad Results

Figure 8: Instability of partially cloned and fully non-cloned method genealogies consid-
ering NiCad Results
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Figure 9: Average number of changes per commit operation considering NiCad Results

responsible for the higher instability of cloned methods. For the purpose of
this investigation we separated the commit operations that occurred for a
subject system into the following two disjoint sets.

Set 1: The commits with some changes to the cloned portions of the
cloned methods are contained in this set.

Set 2: This set consists of the commits with no changes to the cloned
portions of the cloned methods.

Then, we calculated the following two measures for these two sets.
Measurement-1: Average number of changes to methods (cloned or

non-cloned) per commit operation of Set 1.
Measurement-2: Average number of changes to methods (cloned or

non-cloned) per commit operation of Set 2.
We calculated the values of these two measurements using NiCad for each

of the subject systems and show these values in Fig. 9. We see that for each
of the subject systems, Measurement-1 is higher than Measurement-2. The
subject system, QMailAdmin, shows the highest difference between these two
measures. We performed the MWW (Mann Whitney Wilcoxon) test [33] on
the observed values for these two measures to see whether there is a signif-
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icant difference between Measurement-1 and Measurement-2. The p-value
(probability value) of the test is 0.0018 which is less than 0.05 and it indi-
cates that there is a significant difference between these two measures. Thus,
Measurement-1 is significantly higher than Measurement-2. In other words,
the average number of changes to the commits where there are some changes
to the clones is significantly higher than the average number of changes to
the commits with no changes to the clones.

Findings: From this we conclude that, changes to the cloned portions
of methods are always associated with a higher amount of changes. Such a
finding is consistent with that of Lozano and Wermelinger [18].

Answer to RQ 5: Considering the findings of the three investigations
conducted for answering RQ 5 we can state that cloned code is more change-
prone (or unstable) than non-cloned code. In other words, higher change
dispersion in cloned code than in non-cloned code also indicates higher insta-
bility or change-proneness of cloned code compared to non-cloned code.

6.6. RQ 6: How does change dispersion in clones affect the sta-
bility of cloned code?

Motivation. From the answer to RQ 5 we understand that higher
change dispersion in cloned code also indicates higher instability of cloned
code compared to non-cloned code. Based on this scenario we wanted to
further investigate how higher change dispersion in clones increases the in-
stability of cloned methods. We investigate in the following way.

Methodology. We manually investigated all of the changes occurred
to the clones of our subject system Ctags. We choose this subject system
because it is relatively small in size and has a reasonably long revision history.

Our investigation was based on the combined type clone results from
NiCad. As indicated in Table 2, we analyze 774 revisions as well as commits
of Ctags. We found 61 commit operations where there were some changes
to the cloned portions of cloned methods. We separated these commits into
two sets. One set consists of those commits each of which had changes to
a single clone fragment only. We refer to this set as Set-1. The other set
contains those commits each of which had changes to more than one clone
fragments. We term this set Set-2. We found respectively 33 and 28 commits
in Set-1 and Set-2. We consider that Set-2 contains dispersed changes to
clones, because each of the commits in this set affects more than one clone
fragment. We analyzed the commits in Set-2 to determine whether the clone
fragments changed in a particular commit belong to the same clone class.
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Figure 10: Changes in CTAGS from the commit operation applied to revision 36
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Figure 11: Changes in CTAGS from the commit operation applied to revision 36
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Our intention was to find the reason why changes are happening to multiple
clone fragments at a time and whether these changes are related.

We identified 19 commit operations in Set-2 where more than one clone
fragment belonging to the same clone class were changed in the same way.
The pattern of changes indicates that they were made to maintain consis-
tency in the clone fragments. The changes in the commit operation applied
to revision-36 are shown in Fig. 10 and Fig. 11. These figures contain four
methods in revision 36 and their corresponding snap-shots in revision 37.
Each figure shows the corresponding snapshots for two methods. According
to NiCad result these four methods are four clone fragments (Type-3 clones)
that belong to the same clone class in revision 36. The commit operation
on revision 36 changed each of these methods by adding an extra parame-
ter, file. We can easily understand the changes happened to the methods in
revision 36 by comparing the corresponding snap-shots in revision 37. The
changes imply that they were made to all the clone fragments for ensuring
consistency. We have already defined (Section 2) such changes as Consis-
tency Ensuring Changes to Clones. We consider these 19 commit operations
(having Consistency Ensuring Changes to Clones) as a separate set and term
this set CEC (the set of Consistency Ensuring Commits).

However, for each of the remaining 9 commit operations in Set-2, the clone
fragments that received some changes belonged to different clone classes. In
other words, no two clone fragments in such a commit belonged to the same
clone class.

We observe that in all 61 commits (the commits with some changes to
the cloned portions of the cloned methods) the cloned portions of the cloned
methods received 175 changes in total. Among these changes, 85 (48.57%)
changes occurred during the 19 commit operations in the set CEC. We see
that CEC contains only 31.14% of the 61 commits. From this scenario we
come to the conclusion that a major portion of the changes to the cloned code
are made to ensure the consistency of the clone fragments. These consistency
ensuring changes are responsible for higher change dispersion as well as higher
change-proneness in cloned code and possibly require additional effort during
maintenance.

We investigated the clone fragments appeared in the set CEC to see
whether we can categorize the clone fragments that require consistency en-
suring changes. We found that for 12 commits (63.15%) in CEC the clone
fragments are full methods (not just a portion of method). For the remain-
ing commit operations, the clone fragments were either condition blocks (if /
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else) or case statements. From this we determine that consistency ensuring
changes mainly occur to the fully cloned methods.

We further analyzed the clone fragments changed in commits of the set
CEC to determine which type(s) of clones mainly require the consistency
ensuring changes. According to our observation,

� 12 commits (63.15%) in CEC contained changes to the Type 3 clone
fragments.

� 8 commits (42.1%) in CEC contained changes to the Type 2 clone
fragments.

� 5 commits (26.31) in CEC contained changes to the Type 1 clone
fragments.

From this scenario we see that the highest proportion of the consistency
ensuring commits involve changes to the Type 3 clone fragments. However,
this percentage for the Type 2 clones should also be taken into account. The
lowest proportion of commits (in CEC) contained changes to the Type 1
clones. Possibly because of such a scenario in other systems, Type 3 clones
appear to exhibit the highest probability of getting more dispersed changes
compared to the other two types of clones (Fig. 2).

Answer to RQ 6: From our findings described above we answer RQ 6
by stating that consistency ensuring changes to clones are mainly responsible
for higher change dispersion as well as higher change-proneness in cloned
code. Because of these consistency ensuring changes, cloned code is expected
to require additional maintenance effort.

6.7. Discussion

Summary of Our Findings: From our answers to six research questions
we understand that high change dispersion is an indicator of high change-
proneness. Higher change dispersion in the code-base can also be an indicator
of higher coupling among program entities. If two or more entities are cou-
pled, that means related, changes in one entity might require corresponding
changes in the other related entities1. In presence of higher coupling among
program entities, changes will affect a higher number of entities and change
dispersion will eventually be higher.

Cloned code, especially in the subject systems written in Java and C,
often exhibits higher change dispersion than non-cloned code. Type 3 clones
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exhibit the highest probability of having more dispersed changes (than non-
cloned code) among three clone types (Type 1, Type 2, and Type 3). We
also observed that cloned methods (both fully cloned and partially cloned)
have higher instability (i.e., change-proneness) compared to non-cloned meth-
ods. We manually investigated whether and how higher change dispersion in
cloned code is related to higher change-proneness. According to our inves-
tigation, consistency ensuring changes to clones (defined in Section 2) are
primarily responsible for higher change dispersion as well as higher change-
proneness in cloned code. We also observed (from one of our subject systems)
that consistency ensuring changes mainly occur to the Type 3 clone classes.
However, Type 1 and Type 2 clone classes also require such consistency en-
suring changes.

Implications: Our findings imply that clone refactoring might help us
in reducing change dispersion as well as change-proneness (or instability) in
cloned code. More specifically, reduction of the number of clone fragments in
a clone class will help in minimizing change dispersion in cloned code, because
intuitively, a higher number of clone fragments in clone classes increases the
possibility of consistency ensuring changes to the clone classes. In the case
of refactoring we should primarily focus on Type 3 clone classes, because
according to our observation, Type 3 clones required the highest proportion
of consistency ensuring changes. Also, according to our findings, it might be
a good idea to primarily consider the subject systems written in Java and C
while making clone refactoring decisions. Type 1 and Type 2 clones should
also not be ignored during refactoring. In general, refactoring of Type 1 clone
classes might seem easier, because all the clone fragments in a Type 1 clone
class are the same.

Effect of Cross-Cutting Concerns on Change Dispersion: Bruntink
et al. [2] performed an in-depth investigation on the presence of clones in
cross-cutting concerns. According to their observation, cross-cutting con-
cerns are sometimes implemented using similar code fragments (i.e., clone
fragments) and these clone fragments are scattered throughout the code-
base. They reported that about 25% of the lines of code in a code-base can
be dedicated to cross-cutting concerns. Because of corresponding changes
to these cross-cutting concern clones, changes in cloned code might be more
dispersed (or scattered) compared to non-cloned code. In the previous para-
graph, we mentioned that clone refactoring is a way of minimizing change
dispersion in cloned code. However, sometimes it might not be possible to
decompose those clone fragments that implement cross cutting concerns from
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the rest of the system [4]. In other words, refactoring of cross-cutting concern
clones might not be possible. Thus, we feel the necessity of an automated
system that will be able to keep track of all the clone classes and respec-
tive clone fragments (whether these clone fragments implement cross cutting
concerns or not) so that while changing a particular clone fragment in a par-
ticular clone class the responsible programmer should also be notified about
the other clone fragments in the same class, because these fragments might
require corresponding changes.

Finally, we conclude by saying that our proposed measurement, change
dispersion, can help us in fine grained analysis of clone impact and also can
help us in deciding how to minimize negative impacts.

7. Threats to Validity

7.1. Threats to Construct Validity

We have measured the change dispersion of a particular code region
(cloned region, non-cloned region, or the entire code base) by determining
how many methods in that region have changed during evolution. With such
a consideration, the changes occurred outside any method boundary have
been disregarded in our experiment. Changes might also be dispersed on
some other program entities such as structures, unions, and non-source-code
files which have not been considered in our measurement.

However, we limited our experiment on the source code files only because,
we wanted to compare the change-proneness of cloned and non-cloned code.
Also, from our answer to the fourth research question (RQ 4 ) we observe that
our measured change dispersion (i.e., the percentage of affected methods) is
positively correlated with source code change-proneness of the entire code
base and the correlation coefficient is statistically significant. From such an
observation we believe that consideration of methods (only) for measuring
change dispersion is reasonable.

7.2. Threats to External Validity

We calculated and analyzed the dispersion of changes of cloned and non-
cloned code for only 16 subject systems, which is not a sufficient number of
systems to make a general conclusion regarding different types of clones and
programming languages. Also, some other important factors such as pro-
grammer expertise, application domain, and programmer knowledge about
application domain were not considered in our experiment. However, our
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selection of subject systems considering different application domains (thir-
teen domains), and programming languages (four programming languages)
has considerably minimized these drawbacks, and thus we believe that our
findings are significant.

The subject systems used in this study are relatively small to medium
sizes. However, the systems have long version histories. Also, for the smaller
systems (such as Ctags) we could perform an in-depth manual investigation
regarding the effect of clones on method instability and change dispersion.
Moreover, the systems are diverse in size, and thus, we believe that our
experimental results and findings are not influenced by system size.

7.3. Threats to Internal Validity

CCFinderX cannot detect clones in Python code. Also, the two clone
detectors do not provide entirely comparable results: NiCad provides clone
results for three types of clones separately and CCFinderX provides only
combined type results. However, the inclusion of CCFinderX strengthens
our language centric decision results for both Java and C systems, since the
CCFinderX decision results agree with NiCad’s for these two languages.

For different clone detector settings the experimental results more specif-
ically the type centric analysis outcome (i.e., regarding NiCad) can be dif-
ferent. However, the settings that we have used for NiCad are considered
standard [25, 26, 27, 28]. Also, we use the default settings for CCFinderX.
Thus, we believe that our experimental results and findings are reliable.

Our proposed metric, change dispersion, may not be perfectly represen-
tative of the maintenance efforts required for a particular code region. We
have not measured source code change effort in this experiment. However,
change dispersion is positively correlated with source code change-proneness
and this correlation is statistically significant. From this we expect that
change dispersion is a possible indicator of maintenance effort.

8. Related Work

Over the last several years, the impact of clones has been an area of focus
for software engineering research resulting in a significant number of studies
and empirical evidence. Kim et al. [12] proposed a model of clone genealogy.
Their study with the revisions of two medium sized Java systems showed
that refactoring clones may not always improve software quality. They also
argued that aggressive and immediate refactoring of short-lived clones is not
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required and that such clones might not be harmful. Saha et al. [29] extended
their work by extracting and evaluating code clone genealogies at the release
level of 17 open source systems involving four different languages. Their
study reports similar findings to Kim et al. and concludes that most of the
clones do not require any refactoring effort.

Kapser and Godfrey [11] strongly argued against the conventional belief
that clones are harmful. In their study they identified different patterns of
cloning and showed that about 71% of the cloned code has a kind of positive
impact in software maintenance. They concluded that cloning can be an
effective way of reusing stable and mature features.

Lozano and Wermelinger [18] developed a prototype tool to track the fre-
quency of changes to cloned and non-cloned code with method level granular-
ity. On the basis of their study on four open source systems they concluded
that the existence of cloned code within a method significantly increases the
required effort to change the method. In a recent study [17] they further
analyzed clone imprints over time and observed that cloned methods remain
cloned most of their life time and cloning introduces a higher density of
modifications in the maintenance phase.

Juergens et al. [10] studied the impact of clones on large scale commer-
cial systems and suggested that inconsistent changes occurs frequently with
cloned code and nearly every second unintentional inconsistent change to a
clone leads to a fault. Aversano et al. [1] on the other hand, carried out
an empirical study that combines clone detection and co-change analysis to
investigate how clones are maintained during evolution or bug fixing. Their
case study on two subject systems confirmed that most of the clones are con-
sistently maintained. Thummalapenta et al. [32] in another empirical study
on four subject systems concluded that most of the clones are changed con-
sistently and other inconsistently changed fragments evolve independently.

In a recent study [5] Göde and Harder replicated and extended Krinke’s
study [14] using an incremental clone detection technique to validate the
outcome of Krinke’s study. They supported Krinke by assessing cloned code
to be more stable than non-cloned code in general while this scenario reverses
with respect to deletions.

Hotta et al. [9] studied the impact of clones by measuring the modification
frequencies of cloned and non-cloned code of several subject systems. Their
study using different clone detection tools suggests that the presence of clones
does not introduce extra difficulties to the maintenance phase.

Krinke [13] measured how consistently the code clones are changed during
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maintenance using Simian [31] and diff on Java, C and C++ code bases con-
sidering Type-I clones only. He found that clone groups changed consistently
through half of their lifetime. In another experiment he showed that cloned
code is more stable than non-cloned code [14]. In his most recent study [15]
he calculated the average last change dates of the cloned and non-cloned code
and observed that cloned code is more stable than non-cloned code.

Bruntink et al. [2] performed an in-depth investigation on the presence of
clones in cross-cutting concerns. They showed that clone detection tools can
also be used for detecting cross-cutting concerns, because some cross-cutting
concerns are implemented using similar pieces of code.

None of the existing studies measured change dispersion. It is important
to measure change dispersion because, it can help us in fine-grained analysis
of the impact of a particular code region on maintenance. Our experimental
results suggest that the changes in the cloned regions can sometimes be more
dispersed than the changes in the non-cloned regions of a subject system.
We have also investigated and reported the implications and causes of higher
change dispersion in cloned code. This information can help us minimize the
negative impact of clones on maintenance.

9. Conclusion

In this paper, we introduced a new metric change dispersion that mea-
sures the extent to which the changes in a particular code region (cloned,
non-cloned, or the entire code-base) are scattered. The intuition is that
higher dispersion of changes results in more maintenance effort and cost. We
performed a fine grained empirical study using change dispersion with the
primary goal of determining whether cloned code negatively effects software
maintenance, and, if so, how can we minimize any negative effects. With
this focus we answered six important research questions presented in Table
1. To answer these research questions we investigated 16 subject systems
written in four different programming languages (Java, C, C# and Python)
involving two clone detection tools (CCFinderX and NiCad) and considering
three major types of clones (Type 1, Type 2, and Type 3). The answers to
the research questions are presented in Table 9 and are summarized below.

Cloned code, especially in Java and C systems, often exhibits higher
change dispersion compared to non-cloned code. Higher change dispersion is
an indicator of higher change-proneness in the source code (change disper-
sion is positively correlated with source code change-proneness, Spearman’s
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Table 9: Answers to the Research Questions

Serial Answers to the Questions (AQ)

Answers to the Questions Regarding Change Dispersion in Cloned and
Non-cloned Code

AQ 1. Dispersion of changes in the cloned code is sometimes higher than the dispersion
of changes in the non-cloned code. In other words, the percentage of methods
affected by changes in cloned code is sometimes higher than the percentage
of methods affected by the changes in non-cloned code. Thus, cloned code
is possibly more change-prone than non-cloned code during the maintenance
phase.

AQ 2. Type-3 clones exhibit higher change dispersion compared to the Type-1 and
Type-2 clones.

AQ 3. Cloned code in the subject systems written in Java and C has a higher proba-
bility of getting more dispersed changes than non-cloned code. Thus the clones
in Java and C systems are expected to require more maintenance effort than
non-cloned code.

Answers to the Questions Regarding Change Dispersion and its Relation
with Source Code Change-proneness (or Instability)

AQ 4. High change dispersion in source code is a possible indicator of high change-
proneness (i.e., instability) in source code.

AQ 5. In the case of subject systems written in Java and C we found that cloned code
has higher change dispersion compared to non-cloned code. For each of these
subject systems we also found cloned code to be more change-prone (i.e., unsta-
ble) than non-cloned code considering method level granularity. We observed
that both fully cloned and partially cloned methods of Java and C systems
exhibit higher instability compared to the fully non-cloned methods.

AQ 6. Consistency ensuring changes to clones are mainly responsible for higher change
dispersion as well as higher change-proneness in cloned code. According to
our manual investigation of all the changes to the clones of CTAGS during its
evolution,

� A considerable amount (48.57%) of changes in the cloned code were made
to ensure consistency of the clone fragments belonging to the same clone
class.

� Consistency ensuring changes mainly took place to the fully cloned meth-
ods.

� A major proportion (63.15%) of the consistency ensuring changes oc-
curred to Type 3 clone fragments.
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Rank correlation coefficient = 0.60, and the correlation is statistically sig-
nificant). Cloned code often shows higher change-proneness than non-cloned
code. From this scenario we suspect that cloned code sometimes requires
more effort and cost to be maintained than non-cloned code. We also ob-
served that Type 3 clones exhibit the highest change dispersion among the
three types of clones (Type 1, Type 2, and Type 3).

We also investigated the reason(s) behind higher change dispersion in
cloned code. According to our manual analysis of all the changes that oc-
curred to the clones in our subject system, Ctags, we came to the conclusion
that consistency ensuring changes to clones (defined in Section 2) are mainly
responsible for higher change dispersion as well as higher change-proneness
in cloned code.

Clone refactoring can be helpful in reducing change dispersion in cloned
code however, clones can sometimes be a result of implementing cross-cutting
concerns [2] and it might sometimes not be possible to refactor such clones
[4]. From this we feel it is necessary to have an automated clone management
system to track all the clone classes with their respective clone fragments so
that when a programmer attempts to change a particular clone fragment they
will be automatically notified about the presence of other clone fragments in
the same class.

As future work we plan to investigate change dispersion in cloned and
non-cloned code for different application domains to determine if different
types of applications generally exhibit higher change dispersion.
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