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Abstract—The design and maintenance of APIs are complex
tasks due to the constantly changing requirements of its users.
Despite the efforts of its designers, APIs may suffer from a num-
ber of issues (such as incomplete or erroneous documentation,
poor performance, and backward incompatibility). To maintain
a healthy client base, API designers must learn these issues to
fix them. Question answering sites, such as Stack Overflow (SO),
has become a popular place for discussing API issues. These
posts about API issues are invaluable to API designers, not
only because they can help to learn more about the problem
but also because they can facilitate learning the requirements
of API users. However, the unstructured nature of posts and the
abundance of non-issue posts make the task of detecting SO posts
concerning API issues difficult and challenging.

In this paper, we first develop a supervised learning approach
using a Conditional Random Field (CRF), a statistical modeling
method, to identify API issue-related sentences. We use the
above information together with different features of posts and
experience of users to build a technique, called CAPS, that
can classify SO posts concerning API issues. Evaluation of
CAPS using carefully curated SO posts on three popular API
types reveals that the technique outperforms all three baseline
approaches we consider in this study. We also conduct studies to
test the generalizability of CAPS results and to understand the
effects of different sources of information on it.

Index Terms—API Issue, unstructured data mining, text clas-
sification, feature extraction, Stack Overflow

I. INTRODUCTION

Developers depend on frameworks and libraries for ef-

fective delivery of software in a timely manner. This is

supported through Application Programming Interfaces (APIs)

of those frameworks and libraries that provide access to the

implemented functionality. For example, the Java Software

Development Kit comes with thousands of components that

the developers can reuse in their projects. This saves both

development time and effort [1]. API designers must work

hard to make their APIs accessible to its users. This not only

ensures the business success of API providers/designers but

also enables them to maintain a healthy satisfied user-base.

Towards this goal, API designers need to provide development

tools, documentation, and tutorials to support working with

their APIs. Despite all these efforts, APIs may suffer from

several issues. These include but are not limited to documen-

tation error (including outdated or incomplete documentation),

poor memory management, breaking changes that lead to

backward incompatibility, and incompatibility of the APIs with

underlying operating systems or other external libraries [2].

All these may lead to incorrect use of APIs, introduce bugs

and security problems. The rapid changes in APIs does not

give the designers much time to validate various changes

and thus create confusion among its users [3]. It may also

introduce faults in designing APIs, introduce usability issues,

and ultimately leads to incorrect behaviour in applications

using those APIs. API designers need to learn about these

issues of using APIs to fix the problems and to find effective

ways of informing developers about various API changes.

API related issues can be learned by mining bug repositories

[4], newsgroups [5] and emails of developers [6]. However,

they are not the only places to look for API issues. Nowadays,

developers rely on online forums and question-answering sites

to discuss about issues of APIs, ask questions and seek help

from others. While many question answering sites (such as

Yahoo Answers1 and Quora2) allow users to ask questions on

any topics they are interested in, Stack Overflow (SO) par-

ticularly focus on programming related questions. Thus, API

issues discussed in SO are of great interest to API designers.

However, extracting SO posts concerning API issues is a non-

trivial task. This is mostly due to the presence of millions

of questions, many of which are not related to API issues,

and also due to the unstructured nature of the posts. Keyword

searching is not an efficient solution to the problem because

of the presence of a large number of how-to and newbie

questions [7] that introduce a lot of noise. This motivates us

to investigate the problem further.

We model the problem of identifying posts discussing API

issues as a binary classification problem. Our goal is to

separate these issue-related posts from the others. Towards

this goal, we develop a supervised learning technique using

Conditional Random Field (CRF) [8], that identifies API issue-

sentences in a post. We not only collect features from the

output of CRF but also combine that with different features of

posts and user experience to build a classification technique,

called CAPS. Evaluation of our technique using the corpus

reveals that CAPS outperforms all three baseline approaches

we consider in our study. Finally, we test the generalizability

of CAPS and also study the effects of different sources of

information on it.

To the best of our knowledge, the study most relevant to ours

is that of Wang et al. [9]. They develop a mechanism to distill

and rank SO posts that are likely to concern API related issues.

They select those posts which are asked by the expert users as

the candidate issue-related posts. While the technique is useful,

it suffers from the problem of missing API issue-related posts

that are not asked by experts. During our manual analysis,

1https://answers.yahoo.com/
2https://www.quora.com/
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we found examples of several API issue-related questions that

were asked by SO users with low reputation. For example, a

low reputed user posted a question3 in August, 2014 that is

related to the unexpected behaviour in JUnit API. After six

months, this was opened as a potential issue in the JUnit issue

tracker labeled as bug4.

Thus, our paper makes the following contributions.

• A supervised approach using Conditional Random Field

(CRF) that can be used to identify API issue-related

sentences in a post.

• A classifier that is created by combining the output of a

CFR-based supervised learning technique, a diverse set of

features from SO posts and the experience of SO users.

• An evaluation of our proposed technique against three

other baseline approaches that consider different sources

of information.

• A set of studies to test the generalizability of CAPS

results and to discover the effects of different sources

of information on it.

The remainder of the paper is organized as follows. Section

II briefly describes previous work related to our study. Section

III provides background of our work. We characterize the

SO posts concerning API issues in Section IV. We describe

our proposed technique in Section V. Section VI presents

evaluation results. We discuss the key issues related to our

study in Section VII. Section VIII summarizes threats to the

validity of our work and Section IX concludes the paper.

II. RELATED WORK

A number of research have been performed to characterize

different facets of Stack Overflow. This includes question

quality analysis [10], modeling difficulties of questions [11],

low-quality post detection [12], topic distribution [13], pat-

terns of asking and answering questions [7] and personality

trait of users [14]. To facilitate developers, a number of

recommendation systems are developed using SO data. For

example, Bacchelli et al. [15] integrated crowd knowledge in

the IDE by developing an Eclipse plugin, called Seahawk, that

links relevant discussions to the source code. Ponzanelli et

al. developed an Eclipse plugin, called Prompter, that can

automatically retrieve relevant SO discussions by giving a

context in the IDE [16]. Asaduzzaman et al. [17] conducted

a qualitative study to categorize the unanswered questions.

Correa and Sureka conducted an experimental study to analyze

and predict the closed questions of SO [18]. In another study,

they characterized the deleted questions in SO and build a

predictive model to detect deleted questions at their creation

time [19]. However, none focuses on the classification of API

issue posts in SO. A study on SO addressed the detection of

user issues and request types [20]. Their primary goal was

to categorize the sentences in anomaly, how to, property and

explanation categories using discourse analysis. While they

focus on user issues, we focus on API issues in our work.

3http://stackoverflow.com/questions/25436505/
4https://github.com/junit-team/junit4/issues/1083

API learning difficulties and other issues have been investi-

gated in many studies and the prime reasons are problematic

features, API evolution and learning obstacles. Robillard [1]

conducted a study of the obstacles faced by Microsoft devel-

opers when learning how to use APIs. Robillard and Deline

[21] identified that inadequate API documentation and API

structure are the top two obstacles in using APIs. Robbes et

al. [22] conducted an empirical study on the actual incidence

of the API changes and API deprecations, causing ripple effect

in practice. The study shows that deprecation messages are not

always helpful because of the absence of the guidelines and

unclear instructions. Ho and Li [5] analyzed 172 discussions

collected from a forum and identified a set of API learning

obstacles. Zibran et al. [2] identified 22 factors as the API

usability issues. Wang and Godfrey [23] analyzed Android and

IOS developer questions on SO to detect API usage obstacles.

However, the objectives of these studies are different from

ours. While they focus on problems that cause API issues, our

study focuses on detecting SO posts concerning API issues.

Wang et al. [9] developed a methodology to recommend API

design-related issues combining expert identification, topic

mining and selection of late answered questions. However,

their methodology only considers questions which are an-

swered late and submitted by the expert users having more

participation in SO. While the technique is useful, it may miss

API issue-related posts that are not asked by expert users.

Conditional Random Fields (CRFs) [8] have been used in

many natural language applications including parts-of-speech

tagging and entity linking [24]. CRFs have also been used

in extracting contexts and answers from online forums [25].

For example, Wang et al. [26] proposed a probabilistic model

in the CRFs framework to predict the replying structure for

a threaded online discussion. Raghavan et al. [27] extracted

problem and resolution information from online forum discus-

sions by formulating the problem as a sequence labeling task

and proposed a method using CRFs. Instead of considering

online forums, we consider the question answering site Stack

Overflow in our study. The problem we address in this paper

is also different from their studies.

TABLE I: Overview of the Corpus

API Date Questions Answers Sample Issues

Android 2008 - 2017 994237 1420973 2000

Jenkins 2008 - 2017 22782 26464 250

Neo4j 2008 - 2017 13434 16215 250

Total 1030453 1463652 2500

III. BACKGROUND

A. Motivating Example

This section presents an example that shows the benefits

of classifying SO posts concerning API issue. Although there

are many other examples, due to space limitation we cannot

discuss many others.

The example is about the issue of Android APIs. One

of the Android developers filed an issue5 about the design

5https://issuetracker.google.com/issues/36979732
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problem of ControlFilter and DrawableContainer class (check

Figure 1). However, SO users start discussing this issue almost

two years before filing this issue by the developer in issue

tracker. The Android developer detected this hidden issue

with the help of SO discussions and therefore, he or she

mentioned five different SO questions related to this issue.

Other Android developers analyzed the discussions of those

SO posts and using that knowledge they found a generalized

solution just after two weeks of submitting the issue report.

Eventually, this issue gets fixed almost two and a half year

after the initial discussion in SO. This example indicates

that SO posts concerning API issues can not only help API

designers/developers to learn about API issues faster but can

also help them to solve the problem. However, in the myriad

of SO posts, it is very difficult for the API designers to find

these issue posts. Therefore, a machine learning approach that

can automatically classify issue-related posts will be useful for

API designers.

B. Corpus Creation

To determine what constitutes API-related issues, we use

API usability factors discussed by Zibran et al. [2]. Although

they presented a number of usability factors, in this paper we

focus on only five of them. These are missing features, doc-

umentation, memory management, correctness, and backward

compatibility. We consider any issues related to these factors

as API-related issues.

We selected posts covering three different types of APIs

based on several criteria. First, we chose those APIs that

are popular, diverse in nature and have active user bases.

Second, we need to identify API issue-related posts to train

a classifier. We can make our decision with confidence for

only those APIs that we are familiar with. Finally, we wanted

APIs that have different sizes, and have varying number of SO

posts. Table I shows the types of APIs we considered in this

study. Among these API types, the largest is the Android6. It

allows developers to create applications and games for mobile

devices. Jenkins7 is a continuous integration and continuous

delivery application. Neo4j8 APIs provide access to scalable

graph databases.

We collected the latest September, 2017 SO data dump

from the Stack Exchange Data Dump9. This data includes the

publicly available history of question and answer posts, tags,

votes on the posts, and the reputation of the users from August

2008 to September 2017. We downloaded the four files (i.e.

posts, users, votes and tags) which were more than 80GB in

total size. Finding issue-related posts was not easy because

SO does not support identifying API issue-related posts. We

found that in the SO community, active users provide links to

issue trackers in the answer or comment sections of a post.

These are valid posts concerning API issues. We traversed

each of the SO posts and extract the link part with the tag

6https://developer.android.com
7https://jenkins.io
8https://neo4j.com
9https://archive.org/details/stackexchange

(a) Issue report

(b) Stack Overflow post

Fig. 1: Stack Overflow posts added in Android issue tracker

“〈a〉 .. 〈/a〉”. Then we checked whether the link contained

particular issue tracker address or not. We only considered

those posts for investigating where the links pointed to issue

trackers or the issue tracker pointed SO posts in their issue

description. Finally, we conducted a manual study to ensure

that all these posts were related to the issue and after that

we selected 2,500 SO posts for three different APIs. These

selected posts were used for validating the effectiveness of our

proposed technique for classifying API issue-related posts.

IV. CHARACTERISTIC OF ISSUE-RELATED SO POSTS

We analyzed the corpus to understand the characteristics of

SO posts concerning API issues. We analyzed the reputation

of those who asked the question of the issue post and also

those who provided the accepted answer. This is to understand

whether reputation has any connection in asking API issue-

related questions or answering them. We also investigated the

time duration between posting the question and submitting the
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TABLE II: Result of Reputation Analysis (IQ: Issue Ques-

tioner, IA: Issue Answerer, IAA: Issue Accepted Answerer,

AQ: All Questioner, AA: All Answerer, AAA: All Accepted

Answerer)

Reputation
IQ

(%)

IA

(%)

IAA

(%)

AQ

(%)

AA

(%)

AAA

(%)

<100 15.49 15.82 4.84 41.67 12.80 6.71

100 - 1000 31.56 28.86 19.13 33.03 27.14 22.31

1000 - 10000 40.69 38.42 43.68 22.01 39.23 41.35

10000 - 50000 9.86 12.56 20.42 3.01 14.92 20.19

>50000 2.42 4.35 11.92 0.27 5.88 9.42

answer in SO to see whether issue-related questions take more

time to get an answer or not. We also performed a topic model

analysis of issue posts to understand the frequently discussed

topics.

A. Reputation

For this analysis, we categorize users into five different

groups based on their reputation level. Table II shows the

percentage of the API issue-related questions which were

asked by users with different reputation categories. We find

that the largest number of questions were asked by users

(40.69%) having reputation between 1000 and 10000. When

we consider all the questions that are asked by SO users with

the reputation level 1000-10000, we find that only 22.01%

of them are in this reputation level but the number is almost

double for issue questioners (40.69%).

Thus, we see that experienced users ask more issue-related

questions than the other users. We find less participation of

novice users (< 100) in the issue-related posts (15.49% issue-

related questions were asked by novice users) compared to

the overall posts. However, the number is not insignificant.

In fact, around 46% of issue-related questions were asked by

users without high reputation. We also observe similar patterns

in reputation of those users who provided the accepted and the

first answer.

B. Time Duration

We investigated following two kinds of time duration: 1)

duration between the post creation and submission of the

accepted answer and 2) duration between the post creation

and submission of the first answer. Figure 2 shows the results

of our analysis. We can see that almost 60% of all SO

posts get the first and the accepted answer within one hour

of posting the question. However, only 25% and 33% of

the issue-related posts get the accepted answer and the first

answer (respectively) within the first hour. This is an indication

that issue-related questions are harder to answer than all the

questions in SO. Besides, 26.68% of issue-related questions

took 10 to 30 days to get the accepted answer. Withing the

same time duration, 21.15% of issue-related questions received

the first answer. However, only 7.5% of all questions get either

accepted or the first answer within this time period. This shows

that issue-related questions take considerably long time to get

the accepted answer or the first answer.
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Fig. 2: Time duration analysis of issue-related posts

C. Topic Distribution Analysis

We ran the LDA model [28], an unsupervised learning

method to generate topic word distribution for our corpus of

API issue posts using the tool MALLET [29]. We trained the

model for 200 iterations with 40 topics. Table III shows the

sample of topics discovered. The top words of T1 are “image”,

“bitmap”, “imageview”, “audio”, etc., which are related to

the image and media. T4 discusses with the emulator or

version related problem. T7 and T8 discuss with the error in

debugging, thread or compilation. Topic 9 discusses the layout

and design of the Android and the last topic is about string

related discussion.

V. PROPOSED TECHNIQUE

This section presents our proposed technique for classifying

API issue posts in Stack Overflow, called CAPS. We consider

the problem as a binary classification task that requires to

generate a model consisting features of API issue-related

posts. The model is used to train a classification method that

classifies any SO posts into two classes, issue and non-issue.

To avoid bias we need to train the method using equal number

of issue and non-issue posts.

Our proposed technique consists of the following steps. The

first step is the Sentence Extraction and Text Transforma-

tion. The textual content of a post is interleaved with HTML
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TABLE III: Topic Distribution Analysis

Topic Top Topic Words

T1 intent, image, bitmap, imageview, bitmapfactory, media, findviewbyid, bundle, onactivityresult, audio

T2 response, json, jsonobject, request, url, session, jsonarray, httppost, asynctask, progressdialog

T3 layout width, wrap cont, textview, linearlayout, fill par, relativelayout, gravition, edittext, layout grav

T4 ndk, device, debug, platform, fail, command, source, target, emul, version

T5 android, item, style, drawable, color, anim, tabhost, parent, res, layoutparameter

T6 intent, context, void, android, class, string, notif, overrid, log, message

T7 com, dalvikvm, android, debug, app, thread, freed, method, error, activitymanagement

T8 com, android, compile, org, gradle, class, support, google, app, error

T9 android, mediaplay, video, player, image, screen, drawable, videoview, text, png

T10 string, null, connect, log, ioexception, printstacktrace, return, inputstream, buffer, fileinputstream

tags. Thus, we need to parse those tags to get the textual con-

tent of the post. Besides, we also include text transformation

mechanism for successfully extracting sentences. The second

step is the Issue Sentence Identification. We argue that

issue-related sentences are valuable for our classification task

because they provide important hints for deciding whether a

post is API issue-related or not. Thus, we develop a supervised

learning approach using Conditional Random Field (CRF),

a statistical modeling method, to classify API issue-related

sentences. The third step is the Discriminative Classifier

Generation. In this step, we generate a set of feature values

considering textual content, structural properties, user experi-

ence and issue sentences (if any) of posts. This leads to the

development of a classification model. The model is used to

train our machine learning method. We also describe how the

trained machine learning method can be used for classifying

issue posts.

A. Sentence Extraction and Text Transformation

This step is responsible for extracting textual content, code

examples, and stack traces from each SO post that are in-

terleaved with HTML tags. We also extract sentences from

SO posts which are essential to train CRFs. We use Stanford

Parser [30] in order to extract sentences. This parser relies on

sentence ending characters to find the boundary of a sentence.

When we analyze the HTML data, we find that many text

units are not terminated by an ending symbol or are splitted by

structural elements (i.e., code snippets). To overcome these, we

remove the code snippets and inject punctuations as sentence

ending symbol. We extract each code examples and map them

with unique id. We find that SO users add code examples using

<p>I am not using Fragments, still there is a reference of 
FragmentManager
 If any body can throw some light on some 

hidden facts to avoid this type of issue:</p>
<pre><code>
java
lang
IllegalStateException: 
 
 
  

at android
app
FragmentManagerImpl
checkStateLoss 
 
 


at android
app
FragmentManagerImpl 
 
 
(FragmentManager
java:399) 

. . . . . </code></pre>

<p>I already tried a </p>
<pre><code>webView.destroy();
webView = null;

</code></pre>
<p>in onDestroy() of my activity, but that doesn't help much.</p>

Fig. 3: Text before removing code snippet

〈pre〉〈code〉 . . . 〈/code〉〈/pre〉 tag. Whenever the 〈pre〉〈code〉
part of the above tag is not ended with a sentence ending

symbol and the next word starts with an upper case letter, we

inject a period. This solves the problem of splitted text units

due to the insertion of code snippet. Figure 3 shows above

scenarios that are taken from SO posts. The result is shown

in Figure 4, after applying code collapsing and removing html

tags. Here, a period is added to indicate the end of the sentence

where it meets the above criteria. We also separate exception

I  am  not  using  Fragments,  still  there  is  a  reference  of 

FragmentManager.  If  any  body  can  throw  some  light  on  some  

hidden facts to avoid this type of issue: PROBLEM_CODE.

I already tried a NORMAL_CODE in onDestroy() of my activity, but 

that doesn't help much.

Fig. 4: Text after removing code snippet

code (i.e., having stack traces or log information) from the

normal code. If we find match of the content in 〈code〉〈/code〉
with a regular expression (see Figure 5), we consider them as

problematic source code (i.e., stack traces).

We remove the content and place the single word PROB-

LEM CODE. Otherwise, if the content does not match the

regular expression, we place the word NORMAL CODE

after removing the code snippet. Besides, we apply naming

convention in Java in order to detect the API elements (i.e.

method and class name). If we find a word having the first

letter of each internal word capitalized and does not contain

the opening and closing brackets, we consider them as a class.

However, if the first letter is lowercase and maintain a camel

case convention, we consider them as a method. Next, we

remove the word in the text and replace with the word CLASS

or METHOD. This generalized information help classifiers to

learn better.

B. Issue Sentence Identification

In this step, we propose a supervised learning approach

using Conditional Random Fields (CRFs) [8] for identifying

issue-related sentences. We consider detection of issue sen-

tences as a sequence labeling task because of the availability

1. at (.)* ? \\ ( [A-Z] [a-z0-9A-Z]*.java:[0-9]*

2. (V|D|I|W|E|F|INFO|DEBUG|WARN|FATAL|VERBOSE|ERROR)\\/(.)*?\\(

3. (Exception:|Error:)(.)*?\\([A-Z][a-z0-9A-Z]*\\.java:[0-9]*\\)

Fig. 5: Regular expression for extracting problematic code
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of the contextual information in a SO post. An issue-related

post should contain one or more issue-related sentences. We

first introduce the CRF model and later describe its application

to classify issue and non-issue sentences.

1) Conditional Random Field: CRFs are undirected and

discriminative graphical models trained to maximize the con-

ditional probability [8]. They are sequential version of the

logistic regression and a log-linear model for sequential label-

ing. Linear chain is a common special-case graph structure,

which corresponds to a finite state machine and is suitable for

sequence labeling. A linear chain CRF compute the probability

of label sequence give an observation sequence, assuming

that the current label depends only on the previous label and

observation, as given below:

P (Y |X,W ) =
1

Z(X)
exp(

T∑

t=1

∑

k

wkfk(yt−1, yt, t) (1)

where, Y = y1, y2, y3, ..., yT denote the label sequence and

X = x1, x2, x3, ..., xT denote the input sequence, fk(.) denote

the kth feature function which is often binary-valued, but

can be real-valued, wk denote the weight of the kth feature

function. Z(X) is the normalization constant that makes the

probability of all state sequences sum to one, defined as

follows:

Z(X) =
∑

y⊂Y L

exp(

T∑

t=1

∑

k

wkfk(yt−1, yt, t) (2)

where, Y L is the set of all label sequences.

Inference to the most probable labeling sequence given the

observation sequence, can be efficiently calculated by dynamic

programing using the Viterbi Algorithm in the following way:

Y ∗ = argmaxY P (Y |X,W ) (3)

CRFs have many advantages over other generative models.

One of the important advantages is that, a wide variety of

arbitrary number of independent and non-independent features

computed from the observation state can be used along with

observation for labeling task because there is no constraint that

feature components and observation should be independent of

each other.

2) CRF Training: We use manually annotated issue sen-

tences for the training of CRF. We use sentence-level labeling

for generating the data set and consider two labels. If we find a

sentence containing information about the API issue, we label

it as an issue. Otherwise, we use the non-issue to label the

sentence. Table IV shows examples of manual annotations at a

sentence-level. In order to train the CRF, we select textual and

structural features of sentences from the posts. We consider the

following features:

Words: In order to have a better contextual information, we

consider the words of a sentence as features for CRF. However,

we do not perform any stop word removal or stemming

operations. The reason behind this is that frequent words can

be representative of a class. Furthermore, stemming operation

can hamper the contextual information. One of the advantages

of CRFs is that they easily afford the use of arbitrary features

of input. Therefore, the number of features in CRF is not fixed

and it varies with the sentence containing different number of

words.

Part-of-Speech (POS): Part-of-speech (POS) tags are ex-

tracted from the sentence to include additional information of

the grammatical structure and category of words of a sentence.

We used Stanford NLP Part-Of-Speech Tagger [31] to extract

the information.

Sentiment Information: When we annotate the data, we

find that most of the API issue-related sentences express

negative sentiment. We used SentiWordNet 3.0 [32] in order

to capture the sentiment information. We calculate sentiment

value of each of the words in the sentence and average the

total sum. Using a threshold value over the total sum, we con-

sider the following sentiments of the sentence: very positive,

positive, neutral, negative and very negative.

Normalize Position in post: Most of the API issue-related

sentences are expressed in the beginning and in the middle

of a post. We consider this trend as a feature to improve the

learning of CRF. We normalize the position of the sentence

in a post and using threshold values we generate one of three

following features: BEGIN, MIDDLE and END.

C. Discriminative Classifier Generation

1) Feature Collection: In this section, we briefly describe

the set of features we collected for each post to train the

classifier. We selected these features by analyzing the issue-

related posts. Each SO post contains a title, a question, zero

or more answers and comments. Thus, we consider features

for the title, the question and the set of answers associated

to that question. In SO, novice users typically ask more how-

to questions and participate less in question answering. Bajaj

et al. [33] found that majority of the accepted answers are

provided by users with high reputation. Thus, the reputation

of questioners and answerers can help detecting issue-related

posts. Reputation indicates the expertise of a contributor in

SO. Thus, we include reputation of questioners and answerers

as features. We also consider three other features that can also

serve as a proxy for reputation. These features fall under the

experience category. A SO post can have a number of answer-

ers. Thus, we consider the answerer who has the maximum

reputation. In addition, we also consider two features whose

values are calculated by detecting issue sentences in question

body using the CRF. Table V summarizes the five sets of

features we selected for the classification model.

2) Training and Testing the Classifier: To train the classifier

we need to generate a training data set. For each post, we

collect all the feature values as described in the previous

section. These act as predictors or independent variables.

The target or response variable indicates whether the post is

API issue-related or not. Thus, the response variable has two

classes. We use logistic regression to derive our classification

model. Logistic regression is a discriminative classification

model that operates on the real valued vector input. It is also

a probabilistic classifier that given a test post generates a class
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TABLE IV: Examples of issue and non-issue sentences in post questions

PostId Sentence Label

5796611
So, should this really be considered a ”bug”, since we are officially,advised to use Activity.getApplication()
and yet it doesn’t function as,advertised

issue

12803797 It seems that the Android documentation about layout aliases is incorrect, and certainly appears inconsistent issue

12389115
So i added my project an AsyncTask class that i wrote a while ago for quick,testing
purposes but it is causing memory leak errors

issue

6218143 If anyone knows of a good Android book that deals with this please let me know non-issue

11014953
I want to provide user credentials from an Android application to the API, get the
user logged in, and then have all subsequent API calls pre-authenticated

non-issue

3264383 What is the difference between Service, Async Task & Thread non-issue
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Fig. 6: Overview of our proposed technique (SE = Sentence Extraction, TT = Text Transformation and FS = Feature Selection)

probability value. This values indicates the likelihood of the

post belonging to that class.

Figure 6 explains the training and the testing phases of

CAPS. We first create a corpus containing manually classified

SO posts. We select these SO posts for the training of CAPS

(Point 1). We extract sentences and perform text transfor-

mation (Point 2). We then determine the feature values for

each post (Point 3) (check Table V). We also train the CRF

(Point 4) classifier. We generate title, question body, answer

and experience level features for each post (Point 6). We use

all these and CRF features to train our classification model.

Point 7 shows the actual output of the training. To avoid any

biases, we use the same number of issue and non-issue-related

posts to train our classification model. To test CAPS, we also

need a manually classified SO posts. For each test post, we

determine the title, question body, answer and experience level

features (Point 8). We also collect the CRF features (Point

9). These five sets of feature values act as an input to our

classifier build in the training phase. A total of 18 features

are extracted including the post features and CRF features.

Then, the 18 dimensional vector fed into the previously trained

classification model for testing. The classifier then tell us

whether the test post is API issue-related post or not. Recall

that the posts in our data set are already manually classified.

We collect the results of manual classification (Point 10) and

compare the results with that of the classifier (Point 11).

VI. EVALUATION

We evaluate CAPS in two different ways. First, we compare

the technique with three baseline approaches. Second, we

compare the technique with the work of Wang et al. [9]. The

following section describes each of the experiment in detail.

A. Comparison with Baseline Approaches

We compare CAPS with three baseline approaches that ad-

dress the same problem using different heuristics and sources

of information. These are a text classification technique, a

CRF-based technique and a reputation-based technique.

1) Description: We consider a machine learning-based text

classification technique because it has shown great promise

in various problems in software engineering [6], [34]. To

determine whether issue-related sentences can solely be used

for classifying issue-related posts, we include the CRF-based

technique in this study. Finally, we consider a reputation-based

technique to determine the usefulness of reputation for solving

the classification problem. We briefly describe each of the

technique as follows.
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TABLE V: Summary of features

Feature Description

Title Features

titleIssueWord
True if the title contains the words
‘bug’, ‘issue’, ‘error’ or ‘exception’

titleWHwords
True if the title starts with ‘How’,
‘Where’ or ‘What’

titleWordCountNorm
Normalization value of number of
words in a title

Body Features

bodyProblemCode
True if there exists a stacktrace or log
information

bodyIssueLink
True if there is a link in the question
and contains the word ‘issue’ or ‘bug’

bodyNegativeSentiWordRatio
The ratio of negative sentiment word to
the total number of word in the post

bodySentenceNorm
The normalize value of sentence in the
body

CRF features

issueSentenceCount
Total number of issue sentences in the
post body

issueSentenceRatio
The ratio of issue-related sentences to
total number of sentences in the body

Answer Features

answerPresent True if there is at least one answer

answerIssueLink

True if there is a link in the
answer and contains the word ‘issue’
or ‘bug’

durationPostAnswer
The time duration between the post
created and first accepted answer

answerIssueWord
True if the answer contains ‘bug’,
‘issue’ ‘exception’ or ‘error’

Experience Features

questionerReputation SO reputation of the questioner

answererReputation
The highest SO reputation among
the answerers

questionerExperience
The total number of questions asked
and answered by the questioner

answererExperience
The total number of accepted answer
posted by the answerer

questionerQualityPost

The difference between the total
number of upVotes and downVotes of
the questioner

a) Text Classification Technique: In our study, we con-

sider a machine learning-based text classification technique

that automatically learns from training data. In our case,

the data comes from SO posts. Our technique is statistical

because we provide manually labeled API issue and non-issue-

related posts to learn each class. Automatic text classification

has been found effective in various problem areas that deal

with large amount of textual content. Examples include but

are not limited to content classification of developer emails

[6], separating features from bug reports, discovering tutorial

section that explain a given API type [34]. Typically, a text

classification technique generates features using terms appear-

ing in documents. The documents are modeled as vectors of

features and these features values are determined from the

frequency of those terms in documents. In our case, documents

are SO posts and features are the set of words appearing in

those posts.

• Term Selection: We consider each post as a bag of

words. For each post, we collect any words by tokeniz-

ing the title, question body, and answers including any

code fragments in them. We neither perform any stop

word removal nor apply any stemming. This is because

frequently appearing words or words that derive from

the same root word can representative of a class [6].

Depending on the posts size, the set of words can be

very large. Instead of considering all terms as features that

can lead to overfitting problem, we consider a subset of

terms as features using frequency-based feature selection

technique. The technique performs often well when many

thousands of features are considered.

• Machine Learning Method: We select the logistic

regression classifier that learns from the training data

and performs the classification. Logistic regression is a

discriminative classification model that operates on the

real valued vector input. Despite the simplicity, logistic

regression has been found effective in text classification

tasks. Details of the technique can be found elsewhere

[35].

b) CRF-based Technique: Conditional Random Fields

(CRFs) are statistical modeling methods. We use CRF to detect

API issue-related sentences. We hypothesize that if a post

contains such sentences, it is an API issue post. To validate

the hypothesis, we make the following change to allow CRF

to classify issue-related posts. We train CRF using manually

validated API issue sentences. Given a test post, we apply CRF

to its textual content to detect issue sentences. We classify the

post as API issue-related if CRF identify any issue sentences

in it.

c) Reputation-based Technique: We also implement an-

other technique that uses reputation of SO users to classify

a post into issue category. The basic idea is that if a post

question is asked or answered by a user with high reputation, it

is likely to be an issue post. We include the technique to verify

to what extent the claim can be supported by empirical study.

However, it is difficult to define the term high reputation. Thus,

we determine the average reputation of SO users participated

in the posts of target APIs and consider anything above the

average value as the high reputation. For a test post, if the

reputation of the questioner or any of its answerers is greater

than the average reputation, we classify the posts into issue

category.

2) Evaluation Metrics: We evaluate our results using pre-

cision, recall and F-measure which have been used in a

number of previous studies [34]. We compare our generated

ground truth with automatically generated classification. The

correctly classified posts have been considered as true positive

and the post incorrectly classified as belonging to the class

have been considered as false positive. The post incorrectly

labeled belonging to other class have been computed as the

false negative. Thus, precision, recall and F-measure can be

computed as the following way:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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TABLE VI: Evaluation Results

API Name Technique
Issue Non-issue

Precision Recall F-measure Precision Recall F-measure

Android

Reputation 0.63 0.43 0.51 0.27 0.25 0.26
CRF 0.46 0.83 0.59 0.30 0.34 0.32

Text Classification 0.54 0.56 0.54 0.49 0.51 0.49
CAPS 0.95 0.71 0.81 0.76 0.95 0.84

Neo4j

Reputation 0.38 0.25 0.30 0.32 0.31 0.31
CRF 0.28 0.45 0.34 0.36 0.51 0.42

Text Classification 0.50 0.59 0.54 0.64 0.55 0.59
CAPS 0.95 0.75 0.83 0.83 0.95 0.88

Jenkins

Reputation 0.43 0.36 0.39 0.32 0.31 0.31
CRF 0.42 0.62 0.50 0.39 0.52 0.45

Text Classification 0.49 0.50 0.49 0.50 0.59 0.54
CAPS 0.92 0.71 0.80 0.73 0.92 0.81

F −measure =
2× Precision×Recall

Precision+Recall
(6)

Here, TP denotes as true positive, FP denotes as false positive

and FN denotes as false negative.

3) Experimental Setup: We use our corpus consists of

SO posts that are labeled into two classes (issue and non-

issue) to perform the evaluation. We apply 10 fold stratified

cross-validation to measure the performance of each compared

technique. We split the dataset into 10 different folds of equal

sizes. We use the 9 folds (90% of data) to train the technique

and the remaining fold is used to test the performance of the

technique. We repeat the process 10 times by rotating the

training and test folds. The MALLET [29] tool is used to

train the CRF and we reuse the implementation of the logistic

regression available in the Weka [36].

4) Evaluation Results: Table VI summarizes the results

of our evaluation for both issue and non-issue classes. The

results clearly suggest that CAPS outperforms the other three

baseline approaches. For the Android API, reputation-based

technique performs the worst. While the precision and recall

values are 0.63 and 0.43 for the issue class, both values are

dropped for the non-issue class (0.27 and 0.25 respectively).

The CRF-based technique improves the performance on the

issue class but it does not work well on the non-issue class.

Since the number of non-issue posts are expected to be much

higher than the issue posts, the low recall value for the non-

issue class makes the technique ineffective. Text classification

technique also does not perform well comparing other three

baseline approaches. While the precision and recall values

are 0.54 and 0.56 for the issue class, for the non-issue class

the values are 0.49 and 0.51 respectively. CAPS achieves the

best precision and recall values for both classes. While the

precision and recall values are 0.95 and 0.71 for the issue

class, the technique achieves 0.76 and 0.95 for non-issue class.

We also observe similar results for the Neo4j and Jenkins API.

The reputation-based technique performs the worst again. The

text classification technique and the CRF-based technique rank

the second and the third positions respectively. CAPS performs

the best among all four techniques.

B. Comparison with the Work of Wang et al. [9]

A related work to our study is that of Wang et al. [9]. Given

a collection of SO posts, their technique recommends a ranked

list of API issue-related posts. Since the implementation is

not publicly available, we re-implement the technique. The

technique first detects experts and retains only those posts that

are asked by expert users. It then detects dominant SO discus-

sion topics and selects only those posts for recommendation

that are related to those topics. Next, the technique filters late

answered posts using a statistical quality control technique,

called control charts. The remaining posts are sorted based on

a set of metrics derived from SO data.

Their work does not focus on classifying issue-related posts

and does not utilizes textual features of SO posts. Thus, it

is difficult to compare CAPS with their work. However, we

follow the following approach for the purpose of comparison.

We select an equal number of issue and non-issue-related posts

(1000 in total) of Android API from our corpus for training.

The remaining 1500 issue posts of Android API are used for

testing. We would like to find how many of these issue-related

posts are detected by the technique of Wang et al.. We fed all

the Android related posts except those we use for training

CAPS as input to the technique. After filtering, the technique

selects 91,234 posts out of the 994,237 Android posts. This

selected set of posts only contain 324 issue-related posts out

of the 1,500 we selected for testing. Thus, the technique

achieves 21.6% accuracy. However, CAPS correctly classifies

1050 issue-related posts out of the 1500 and achieves 70%

accuracy.

VII. DISCUSSION

This section discusses a set of questions related to our study.

A. Testing Generalizability of the CAPS Results

SO posts that discuss issues of different APIs may use

different words and jargon. This is because these APIs are

quite different from each other. We are interested to know

TABLE VII: Evaluation results of CAPS in classifying unseen

APIs

Unseen API Class Precision Recall F-measure

Android
Issue 0.83 0.74 0.78

Non-issue 0.77 0.85 0.80

Neo4j
Issue 0.92 0.86 0.89

Non-issue 0.84 0.91 0.87

Jenkins
Issue 0.90 0.68 0.77

Non-issue 0.69 0.90 0.78
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TABLE VIII: Impact of different sets of features on the performance of CAPS

No Different Sources of Information
Issue Non-issue

Precision Recall F-measure Precision Recall F-measure

1. Title Features 0.61 0.56 0.58 0.59 0.63 0.60

2. Body Features 0.63 0.58 0.60 0.61 0.66 0.64

3. CRF Features 0.93 0.57 0.70 0.70 0.95 0.80

4. Answer Features 0.91 0.31 0.46 0.59 0.95 0.73

5. Experience Features 0.61 0.39 0.47 0.57 0.72 0.63

6. Title + Body Features 0.66 0.61 0.63 0.64 0.68 0.66

7. Title + Body + CRF Features 0.94 0.62 0.73 0.71 0.92 0.80

8. Title + Body + CRF + Answer Features 0.97 0.68 0.79 0.75 0.96 0.84

9. Title + Body + CRF + Answer Features + Experience Features 0.95 0.71 0.81 0.76 0.95 0.84

whether it is possible to train CAPS using SO posts discussing

issues of one API and then classify issue posts of another API.

To do that we use a three-fold cross-validation where the folds

are not randomly created. Instead, we create one fold for each

API in our corpus. We use any two folds to train the classifier

and then test using the third fold. Table VII reports the results

of our experiment. We use the term unseen API to refer to the

API under testing. The results indicate that the performance of

the CAPS drops, which is not surprising. However, the results

are not affected much which is an indication that CAPS can

be used to classify issue-related posts of unseen APIs.

B. Effects of Different Sets of Features

The proposed classification model considers five different

sets of carefully selected features. This section investigates

how different feature sets impact the performance of CAPS.

Towards this goal we run experiments on Android. Table

VIII shows the overall performance of CAPS when we use

different sets of features. All other settings of our technique

remain unchanged. To simply our discussion, we consider the

precision and recall of the issue class in this discussion. From

the table we can see that the precision and recall values of

CAPS reaches to 0.61 and 0.56 for the issue class when we

only use the title feature set. After adding the body feature

set with title, the performance improves again. We observe a

significant increase in the precision value when we use the

CRF feature set. The precision reaches from 0.66 to 0.94. We

observe small increase in the recall value. We also observe

significant improvement on precision and recall values for the

non-issue class. After adding the answer feature set, we find

a small increase in precision, but the recall value increases to

0.68. This is mostly contributed by the fact that sometimes

answerer provides issue links or use specific terms while

discussing API issues which can be a potential source of

information for classifying issue-related posts. Adding the

experience feature set does not improve the precision and

recall values of the issue class. It only slightly increase the

recall value for the non-issue class. Since, the number of non-

issue posts are significantly greater than the issue-related posts,

we recommend to use the experience feature set.

C. Runtime Performance

To measure the runtime performance of CAPS, we calculate

the time required to train our model and classify the posts. The

majority of the time involves in annotating the sentences for

training the CRF model. However, this is a one time operation

only. For 5000 SO posts, CAPS takes around 7s to train the

CRF model and generate the features. It takes around 1.2s

on average to train the discriminative classification model for

classifying the issue posts. For testing each of the instance

post, it only takes 1ms on average.

VIII. THREATS TO VALIDITY

This section summarizes the threats to the validity of our

study.

First, we re-implemented the technique developed by Wang

et al. [9] since the data and the technique were not publicly

available at the time of writing the paper. Although we cannot

guarantee that our implementation of the technique does not

contain any errors, we spent a considerable time in replicating

and testing the technique to ensure its correctness.

Second, our data set consists of posts concerning API issues

of three different APIs written in the Java language. One can

argue that the results obtained in our study may not hold for

other APIs or for different languages. However, we would

like to point to the fact that our selection was based on our

familiarity with these APIs. To avoid bias, we considered posts

from three different APIs. The features we used to develop our

technique is also not specific to any particular language.

IX. CONCLUSIONS AND FUTURE WORKS

Stack Overflow posts concerning API issues become a

valuable source of information to API designers. Towards

the goal of classifying API issue-related posts, we develop a

supervised learning approach using a CRF that can classify

issue-related sentences. We combine the features collected

from the output of CRF to that of the SO posts and user

reputation. This leads to the development of a issue classifier,

called CAPS. We evaluate CAPS using SO posts from three

different API types. Results from the study reveals that CAPS

achieves high precision and recall values for both classes.

We also compare CAPS with three other baseline approaches

and the technique outperforms all of them. Our approach also

enables highlighting problematic issue sentences which can

allow developers to (i) filter irrelevant sentences and focus on

the API issue-related information, (ii) understand issues more

quickly and (iii) be more responsive to issues submitted by

users. As a future work, we plan to implement the technique

as a Chrome plugin that enables a wide range of API designers

to use the technique.
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