
CMPT 858 HOME EXERCISE 2

HIGHER ORDER FUNCTIONS AS OPERATORS 1
Within this problem, you will implement two higher-order functions in Scala. The function will
each accept a function as an argument (amongst other things) and – further – returns a function.

In pursuing this home exercise, you may wish to make use of several useful facts regarding Scala:
a) recall that one can define a method that is curried (“staged”) to accept successive

arguments using syntax showing successive parameter lists. An example would be the
following:
 def curriedFn(argA: Int, argB: Double)(argC:String) = Some expression here

b) one can write a method taking a unary function as an argument using the syntax such as
the following:
 def higherOrderFunction(fn: Double => Double) = Some expression here

c) one can define an anonymous function (closure) using the syntax
args => body

where args can be a single parameter (e.g., x: Double) or a tuple of multiple parameters
(e.g., (x: Double, y: Double))

d) a one dimensional Vector of n double-precision values can be easily created using the
expression (among others), where fnOfIndex stands for a function accepting one
argument (giving the index within the vector, starting from 0) and returning a double-
precision value

Vector.tabulate(n)(fnOfIndex)

1) The function that we will implement is the derivative operator of Calculus. Specifically, given
a unary function f(x), we will return a function that can evaluate a numerical approximation to the
derivative (slope) df/dx of that function at a certain point x0. You may remember that the value of
the derivative of a function at a point is the slope of the function at that point – how quickly f is
rising with x.

Given a function f(x), we can evaluate a numerical approximation to the derivative at point x0 as
follows:

(f(x0+ε)-f(x0))/((x0+ε)-x0) = (f(x0+ε)-f(x0))/ε
Where “ε” (epsilon) is some small constant (e.g., 1E-2). Please note that the denominator,
(x0+ε)-x0, indicates the change in x, while the numerator f(x0+ε)-f(x0). indicates the change in
the function f(x) over that interval between x0 and (x0+ε).

Please create a Scala method (using def) that implements the derivative operator. This function
should take in a Double returning unary function fnUnary (which serves as f(x)) and an epsilon
(serving as ε), and return a unary function taking the value of x0 (x0) at which to evaluate the
derivative. Given x0, that returned function will simply return (f(x0+ε)-f(x0))/ε at that point x0.

2) Using a value of epsilon (ε) of 1E-3 for all, please create named functions (declared using
Scala’s with val declaration) representing derivatives of each the following functions:

f(x)=1
f(x)=x
f(x)=2*x
f(x)=x*x

3) Please test out your derivative operator on the above by taking the derivative of successive
values. Please first create a vector from going from -1 to 1, with steps of size 0.25. By using the
map operator in Scala, please apply each of the derivatives that you created in step 2 to the test

 Due in class September 20, 2016

CMPT 858 HOME EXERCISE 2

HIGHER ORDER FUNCTIONS AS OPERATORS 1
points in turn, reporting the results. Do these results look reasonable? What limitations (if any)
do you see?

3) Now create a numerical integration operator. This operator (implemented as a Scala method,
using def) should first take in an Double returning unary function fnUnary (which serves as f(x))
and a Double precision value representing the integration step size dx, and then return a function
which takes a starting point xStart and ending point xEnd, each represented Double precision
values, and which then returns the result of integrating fnUnary from xStart to xEnd according to
Euler integration with step size dx.

The currying requested above can be implemented by returning explicit functions, or by Scala’s
“curried” successive parameter lists, and using the “_” operator (as shown in class) to treat the
results of the partially applied curried function as a function.

 Due in class September 20, 2016

