
“Functional Programming in Scala”
Chapter 6

Functional Management of State

Nathaniel Osgood

Important Topics
•Returning state representations rather than mutating
them in place
•Central abstraction as a mapping: State transition
(action, transformation)
•Chaining computations
•Passing results from previous to next
• flatMap as
• Sequencer
• Cleaning up syntax: Eliminating obvious passing via flatMap

•Use of for comprehensions to hide calls to flatMap, map
& filter(With)

•Compatibility of functional perspective and
imperative semantics

Central Role of Flatmap (Bind)
• It is easy to fall prey to the misunderstanding that flatMap

(bind) is…
• A hack to deal with the uncomfortable nesting of data structures

that sometimes comes about from map
• Just another slightly more powerful tweak to map
• Just something that allows us to “short circuit” a computation by

returning error codes from failing calculations

• In fact, flatMap (bind) is the key sequencing operation that
opens up a huge potential functionality using monads
• Allows us to compose successive actions in a general way

• Supports easy definition of other methods

• Permits easy custom sequencing

A New Look at flatmap

• flatMap/“bind”: M[A]  (A M[B])M[B]

When we invoke flatMap on a
monad in object-oriented style
(m.flatMap(f) as in Scala), this is
implicit

This argument to flatMap indicates
“what to do next” (using the value
of type A coming out of the current
monad (here, Rand[A])

This return value
Is a combination of
(when monad is a fn,
composing) M[A]&f

flatMap itself
performs the sequencing
of M[A] and A M[B]

Example of Sequencing of Computations

Try(scala.io.StdIn.readLine().toInt).flatMap(a =>

Try(scala.io.StdIn.readLine().toInt).flatMap(b =>

Try(a/b).map(quotient => quotient)))

Example Using Flatmap Behind the Scenes

for {

a <- Try(scala.io.StdIn.readLine().toInt)

b <- Try(scala.io.StdIn.readLine().toInt)

quotient <- Try(a/b)

} yield quotient

Additional Points on Flatmap

• Exactly how the monads M[A] and f are “combined” to yield
the result M[B] varies from monad to monad
• Rand[A] and many other “action” monads: composition
• Option[A]: m.flatMap(f) only calls f if m is some value; if m is None, f

is not even called!
• Try[A]: m.flatMap(f) only calls f if m has succeeded; if m indicates

failure, f is not even called!

• The semantics of flatMap are constrained by the need to
adhere to monad laws

Mapping Abstractions: “Rand”/”State”: Examples
from “Functional Programming in Scala”

• type Rand[T] = (RNG => (T, RNG)) // really a “computation using randomness”

• def unit[T](v:T) = rng:RNG => (v, rng)

• def int: Rand[Int] = rng:RNG => rng.nextInt

• def nonNegativeInt: Rand[Int] = rng:RNG => { val (vInt, rng2) = rng.nextInt;

if (vInt == Int.MinValue) nonNegativeInt(rng2) else abs(vInt) }

• def map[T,U](action: Rand[T])(f: T => U): Rand[U] = (rng1:RNG) => { val (v, rng2) =
action(rng1); (f(v), rng2) }

• def flatMap[T,U](action: Rand[T])(nextAction: T => Rand[U]): Rand[U] =
(rng1:RNG) => { val (v2, rng2) = action(rng1); nextAction(v2)(rng2) }

• nonNegativeEven: Rand[Int] = map(nonNegativeInt)(k => k – (k % 2))

• nonNegativeLessThan(n: Int): Rand[Int] = flatMap(nonNegativeInt)(i => val mod =
i % n; if ((i + n-1) – mod >= 0) (rng => (mod, rng)) else NonNegativeLessThan(n))

flatMap serves to compose
the two actions given to it

“what comes
next”

Rand[A] here represents an Action

• In FPiS, Rand[A] itself represents a transition / action /
computation that
• Takes in a RNG state
• Returns a pair of a value and an RNG state

• The result of r.flatMap(f) represents the composition
(sequencing) of the actions represented in r (Rand[Int]) and
that resulting from applying f (itself of type Int => Rand[Int])
• This action resulting from flatMap represents the combination of

considering both actions (most often, by sequencing those
operations)

FlatMap as “chaining together” behind the scenes
Part 1: Traditional Code Combinator “Pipeline”

val ns: Rand[List[Int]] =
int.flatMap(x =>

int.flatMap(y =>
ints(x).map(xs =>

xs.map(_ % y))))

Code from Chiusano & Bjarnason, “Functional Programming in Scala” page 89

Returns a
List[Int]

Returns a
Rand[List[Int]]

Returns
an Int

Returns a
Rand[List[Int]]

Returns a
List[Int]

These are both
Rand[Int]

FlatMap as “chaining together” behind the scenes
Part 2: For Comprehension

val ns: Rand[List[Int]] = for {
x <- int
y <- int
xs <- ints(x)
} yield xs.map(_ % y)

Code from Chiusano & Bjarnason, “Functional Programming in Scala” page 89

flatMap over this

flatMap over this

map over this

Design Space Option 1: Lowest Level
def unit[T](v:T) = rng:RNG => (v, rng)

def int(rng:RNG): (Int, RNG) = rng.nextInt

// There is no “map” or “flatMap” because there is no abstraction/structure
holding values

Use

val (v1, rng1) = int(rngInitial)

val (v2, rng2) = int(rng1)

val (v3, rng3) = int(rng2)

(v1+v2+v3, rng3)

Pros:
Conceptually straightforward

Cons:
It is awkward to:

“Chain”: to pass the rng along to later exprs
string together expressions that operate on the values

returned in nice ways

Example: nextInt(rngInitial).map((v1, rng1) => (v1*v1, p._2))
.map((v1, rng1) => { (v2,rng2) = nextInt(rng1); (v1+v2, rng2)})

The above lead to much “cruft”, impeding transparent
understanding of the key things taking place

Design Space Option 2: Object Oriented Approach
case class ValueWithRNGState(val value: Int, val rngState: RNG)

int(): ValueWithRNGState

map(f:Int =>Int) : ValueWithRNGState

flatMap(f:Int => ValueWithRNGState) : ValueWithRNGState // because f is
purely a function of double this CANNOT be used for actions depending on state

// other functions “lifted” here b/c flatMap is not an option

Use:

val vrs1 = x.int()

… // use vrs.state

val vrs2 = vrs1.int()

...

val vrs3 = vrs2.int()

ValueWithRNGState(vrs1.value + vrs2.value + vrs3.value, vrs3.rngState)

Pros:
Conceptually straightforward
Slightly reduced syntactic ugliness

Cons:
Can’t chain together computation in “pipeline” that is very

general or neat (critically, would need to operate on both
the values and the state, and f in flatMap can’t access state)

Can’t define general other functions in terms of nice flatMap
Can’t use flatMap to chain in for comprehensions

Design Space Option 3: Approach Seen Earlier
type Rand[T] = (RNG => (T, RNG)) // really a “computation using randomness”

def unit[T](v:T) = rng:RNG => (v, rng)

def int: Rand[Int] = rng:RNG => rng.nextInt

def map[T,U](action: Rand[T])(f: T => U): Rand[U] = (rng1:RNG) => { val (v, rng2) =
action(rng1); (f(v), rng2) }

def flatMap[T,U](action: Rand[T])(f: T => Rand[U]): Rand[U] = { val (v2, rng2) =
action(rng1); f(v)(rng2) }

Use:

for {
x <- int

y <- int

z <- int

} yield (x+y+z)

Pros
Conceptually straightforward
Greatly enhanced transparency

The rng maintenance essentially “goes away”
Cons:

Conceptually a bit confusing in that the monad represents an
ACTION/TRANSITION/COMPUTATION
The handling of the functions accepting the rngs is hidden and

not obvious

Design Space Option 4: Variant on Approach Seen Earlier
case class ValueWithRNGStateAction(run: RNG => (Int, RNG))

int: ValueWithRNGStateAction

map(f:Int =>Int) : ValueWithRNGStateAction

flatMap(f:Int => ValueWithRNGStateAction) : ValueWithRNGStateAction //
because returning something that takes in an RNG, f has access to the state
component of the monad

Use:

for {
x <- int

y <- int

z <- int

} yield (x+y+z)

Pros
Conceptually straightforward
Greatly enhanced transparency

The rng maintenance essentially “goes away”
Cons:

Conceptually a bit confusing in that the Abstract (monad)
represents an ACTION/TRANSITION/COMPUTATION
The handling of the functions accepting the rngs is hidden and

not obvious

