Scala Methods & Functions 1

*use "def" for a method (both functions and procedures)
* For functions, have “=" separating fn header from body
e e.g., def exampleFunction(intn) ={}

* e.g. def performAction(int n) { }

*To turn a method fn created w/“def” into standard
function for passing or returning as an argument, follow
by _

* This makes it clear that are not simply calling, but seeking to
take its value as a function

Referring to Methods as Functions

scala>class Foo {varm=2; defincr()={m+=1; m}}
defined class Foo

scala> val foo = new Foo()
foo: Foo = Foo@419bc62d
scala> foo.incr

resd: Int=3

scala> foo.incr _

This is a function that, when called, will
ress: () => |Int = <function0> increment foo

_———Refers to the “floor” function (rather
than to the method itself)
resl4: Double => Double = <function1>

scala> floor _

Method Formal Parameters

* Can include default values
* These values are used if no argument is given for that parameter when the function

is called
l(”)

* e.g. defjoin(sep =
* This can really cut down the amount of arguments that have to be passed. This

offers greater:
* Convenience
* Clarity of the key argument values

* This can also much reduce need for auxiliary constructors

* Can be specified by name when calling
* Given specification by name, can give in any order
e Can mix specification by just listing and then by name

* Can be specified as subject to implicit specification

Anonymous Functions 1

*Here, can write anonymous functions in syntax
(a: Int) => (a™a), a =>a*a
* Thus we can write
(0 to 10).map(i=>i * 3)

(1 to 30).reduceRight((n, a) =>n + a)

Succinct Notation for Anonymous Functions

* To avoid writing out full closure when just single argument and only
appears once in body, can use “ " to denote parameter in the body alone

e.g., (0 to 10).map(_* 3)

o If “ 7 appears in the body twice, it is assumed to represent two different
values, e.g.,

(1 to 30).reduceRight(_+)

Statically Defined Methods in Scala

def square(x: Int) = x*x scala>square(3)
res6:Int=9
def increment(x: Int) = x+1

scala>increment(2)
res5:Int=3

To treat as a function (and obtain a corresponding function object referring to the method),
follow by _

scala> square _
res7: Int => Int = <function1>

Anonymous Functions

e Some of the most powerful uses of closures occur with unnamed functions

* This functions are created to accomplish some particular ad hoc or dynamic task

* |f the task is commonly needed, we can create a name function to abstract that
functionality

 Anonymous functions play a very important role in functional programming
for higher order fns

e Passed to functions
e Returned from functions

* What do these anonymous do?
* (n:Int) =>n+1
e (n:Int) => n*2
 scala> (c:Int) => ((n:Int) => n+c) // requires closure
* res10: Int => (Int => Int) = <function1>

Creating Closures

A closure binds a function to some scope (environment)

* Environment: A mapping of names to locations
* In a purely functional languages, this maps names to values

 When we create a function value, a closure is created with it that
captures the values for vars on which function relies
* e.g.

 val IncrementByFunctionGenerator = (c:Int) => ((n:Int) => n+c) // a closure
is formed when this (function) value is returned. This closure captures the
“binding” between “c” and whatever value was passed as the argument to
llfoo”

Functions in Python

* Parameterizing: Add parameterized (e.g. user-specified) constant
to the elements

val FnincrementBy = (c:Int) => ((n:Int) => n+c)
val FnSimplelncrement = FnincrementBy(1)
val FnSimplelncrement(5)

resl: Int=6

val FnAdd10=FnlncrementBy(10)

val FnAdd10(5)

res2: Int=15

val testArray = (-1 to 10)

scala> testArray.map(FnAdd10)

res3: scala.collection.immutable.IndexedSeq[Int] = Vector(9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20)

scala> testArray.map(FnSimplelncrement)

res4: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7,
8 9 10, 11)

Delay

* Wrapping in anonymous function w/ no args offers simple mechanism for delaying
evaluation of code

e Allows capturing of some benefits of lazy evaluation
scala>val fn = (() => print("foo"))
fn: () => Unit = <function0>

scala> fn()
foo

e Cf setting up event handlers
 arrEventHandlers(iOnMouseSingleClick) = () => PerformCalc1()
* arrEventHandlers(iOnMouseDoubleClick) = () => PerformCalc2()

e Cf Streams,BigNums
* |[n Scala, it can often be more natural to capture these with lazy values or call by name

Scala Functions: Contravariance & Covariance

* In contrast to traditional Java or C++, Scala supports more general type rules
for functions motivated by the Liskov Substitution Principle

* By LSP, Implementation of a function/method f in subtype B of a supertype A
must have
* Contravariant in Parameters: a given parameter of f as defined in B must have a type

that is equivalent or a supertypes of the corresponding parameter of fin supertype A

e “Contra” in “Contravariant”: As to go successive subtypes, the parameters can go to successive
supertypes! (As go to successive specialization, parameters can become more general)

e Covariant in Return values/exceptions: The return value and exceptions thrown by fin
B can be the same or subtypes of those of fin A

 Scala supports the latter of these (specifically, covariant return values)

Acceptable to Scala Compiler

class AClass {

def foo(v: AnyRef) : AnyVal '—kQQ\T
\ his is a supertype of that

class BClass extends AClass { /

override def foo(v: AnyRef) : Double/== 0.0

Should be Acceptable,
But Refused by Scala Compiler

class AClass {

def foo(v: String) T AnyVal =0.0
} This is a supertype of that

overri

class BClass extends AClass {

override def foo(v: AnyRef) : Double =Thcl)slosatisfies the Liskov

Substitution Principle, but is still
refused by the Scala compiler

Apparent Danger to the Liskov Substitution
Principle with Scala Self Types

class AClass {

def bar(v: this.type).. AnyVal =0.0 }
class BClass extends Am

override def bar(v: this.tymr%;ao // This should not be allowed! }
* Ok is is a “self type”, which refers to

* val a: AClass = new AClass()

+ val b: BClass = new BClass() the type of the enclosing class. By the
* val apparentAClass : Aclass L SP, Scala should not allow a subtype
) E'.Eg';((g)) Method using this as a parameter to
« val apparentAClass: AClass = b override a corresponding supertype

* Should work but doesn’t method, but does.

* apparentAClass.bar(a)

 apparentAClass.bar(apparentAClass) This leaves the door open to a

gratuitous violation of the LSP!

Sca

la Functions 2

* Note that can have methods that are themselves polymorphic

* Can be useful to use “this.type” to denote surrounding type

* For example, making the return value of an overridden function (method)
“this.type” allows subtypes to return corresponding subtypes (e.g., subtype A

return A) -- covariance

e Can have nested functio
to and used within anot

ns: Functions whose scope is limited
ner function

* Currying: can explicitly o
successive parentheses)
fashion

* MyAdd(x:Double)(y:Dou

efine multiple lists for a function (in

, 50 that provide arguments in staged

ble)

Scala Functions 3

* Methods that only take a single argument (but which are also applied to some
“target” as the method) can be used as infix operators

e def plus(a: Int): Int =
e e.g.,, aplusb
* Can use operators that don’t take an argument can be used as a postfix
operator

e def complement(): Set =....
e e.g., ASet complement

* Above: need care & s.t. () to ensure scope of each parameter (e.qg., a fn) is clear
* When call unary function, can omit

e can overload operator syntax, as in C++
* (e.g., use syntax like "7A"), but | believe that can't change precedence easily

Built-in Support for Tuples

* Elements can be of different types

* Constructed implicitly with parentheses
e e.g., (“Pi”,3.14159)

* With pattern matching, can put on left hand side of an assignment
e E.g.val (a,b,c) = fooReturningMultipleValues()

* The underlying type parameterized classes are Tuple2, Tuple3, Tuple4,
... Tuple22,etc.

Collections 1

» Scala provides rich set of collections, in 3 categories: seq, set, map
* Generally type parameterized (e.g., Array[T])
* Can create w/name of collection (e.g., Array(1,2,3), Map(“a”->1,"b"”->2))

* Include all of
* Lazy vs. not
 Immutable vs. mutable

* Equality is based on
* |f in different category, then not equal
» equality of elements (collections of different types/structures are unequal)

* Can use “par” method to render parallel version of collection

* Can use foreach syntax e.g.,
e coll foreach { (a) => print(a); }

Collections 2: Example Collections

e Stream([T] lazy, use #:: to build from head/tail. Operations are incremental

* Vector|T]: O(1) time for operations on head, others take time linear to
position/depth in sequence

* Range: Created w/“to” and “by” (e.g., 0 to 100 by 2) and until(m,n) (upper:n-1)

* Array[T] Familiar array
* single dimensional: can allocate an array of Ints of size n using new Array[Int](n)
e can access with array1D(i), add elements (single or tuple) to with +=, collection with ++=

* multidimensional: Array.ofDim[Int](countRows, countColumns)

* have then Array[Array[Int]]
 access with array2(i)(j)

e List[T]: Can use :: operator to build from head/tail

* Mapl[K, V]: to create a map from a key to a value (e.g., String to a
ComputelLivenessRule)
e val myMap = Map("square" -> ((a: Int) => (a*a)),
"cube" -> ((a: Int) => (a*a™a)))

Scala Maps
* Represent key-value mappings (Collections of key-value pairs)

e Can create with normal collection syntax: Map(“a”->1,"b”->2)
* Note no “new” operator!

* For mutable map, can add new item (key k and value v) in either of
the sort of way

 map(k)=v (e.g., map(“Scala” = “Great!”))
e map +=(k ->v) (e.g., map += (“Scala” -> “Great!”))

e Can deconstruct via pattern matching as a (k,v) pair)
* |terate over map with (for (k,v) <- map) body

Collections Hierarchy

fz% Ha 5 I-I rl.l1 a FI S c"-t E.d rl.l1 E FI

e TreeMap

http://docs.scala-lang.org/resources/images/collections.immutable.png @

Classic Functional Programming Constructs

e Container[E].map: (E => F) => Container[F]
* Applies mapping function to each element of collection

* Container[E].flatMap: (E => Container[F]) => Container[F]
* Applies mapping function to each element of collection

* Container|[E].reduce: (FXE=>F)=>F
* Applies a function to each element of a collection and to the previous result of the reduce
function
e Container[E].filter: (E => Boolean) => Collection[E]
* Returns a collection consisting of elements of a given collection matching a given predicate
(spec. via a function)
* Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]

e Returns a map (e.g., dict) whose keys are each value of k produced by applying function to
elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

High-Level Description

* Reduce represents “accumulation” — independent of what exactly
one is accumulating

* Filter represents conditional selection — independent of what exactly
one is selecting (the exact rules for selection)

* Map represents a mapping (transformation) of each element of a
collection

Classic Functional Programming Constructs

e Container[E].map: (E => F) => Container[F]
* Applies mapping function to each element of collection

* Container[E].flatMap: (E => Container[F]) => Container[F]
* Applies mapping function to each element of collection

* Container|[E].reduce: (FXE=>F)=>F
» Applies a function to each element of a collection and to the previous result of the reduce
function
e Container[E].filter: (E => Boolean) => Collection[E]
* Returns a collection consisting of elements of a given collection matching a given predicate
(spec. via a function)
* Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]

e Returns a map (e.g., dict) whose keys are each value of k produced by applying function to
elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Initial Binding

scala> val testArray = (-1 to 10)
testArray: scala.collection.immutable.Range.Inclusive = Range(-1, O, 1,
2,3,4,5,6,7,8,9, 10)

Map

 What does this do?
 scala>testArray.map(n =>n * n)

* And this?
* scala> testArray.map(n=>n + 1)

What is an alternative expression of the same function?

* What function does the following transformation undertake?
scala> testArray.map(n => n*(if (n > 1) 1 else -1))

Map: (E—>E)xCollection[E]—Collection[E]

* Square the elements of the collection
 scala>testArray.map(n=>n * n)
* res8:scala.collection.immutable.IndexedSeq[Int] = Vector(1, 0, 1, 4, 9,
16, 25, 36,49, 64, 81, 100)
* Add fixed value (one) to each elements
e scala>testArray.map(n=>n+1)

* res9: scala.collection.immutable.IndexedSeq[Int] = Vector(O, 1, 2, 3, 4, 5,
6,7,8,9, 10, 11)

An alternative expression of the same function:
e scala>testArray.map(_+ 1)
* res10: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4,
5,6,7,8,9,10, 11)
* Value-specific mapping
scala> testArray.map(n => n*(if (n > 1) 1 else -1))

res13: scala.collection.immutable.IndexedSeq[Int] =
Vector(1, 0, -1, 2,3,4,5,6, 7,8, 9, 10)

Passing closures resulting from higher-order
functions, and named closures

val FnincrementBy = (c:Int) => ((n:Int) => n+c)

scala> testArray.map(FnincrementBy(3))

res17: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13)

val FnAdd10=FnlncrementBy(10)

scala> testArray.map(FnAdd10)

res18: scala.collection.immutable.IndexedSeq|Int] = Vector(9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

Classic Functional Programming Constructs

e Container[E].map: (E => F) => Container[F]
* Applies mapping function to each element of collection

e Container[E].flatMap: (E => Container[F]) => Container[F]
* Applies mapping function to each element of collection

e Container|[E].reduce: (FXE=>F)=>F
* Applies a function to each element of a collection and to the previous result of the
reduce function
e Container[E].filter: (E => Boolean) => Collection[E]
* Returns a collection consisting of elements of a given collection matching a given predicate
(spec. via a function)
* Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]

e Returns a map (e.g., dict) whose keys are each value of k produced by applying function to
elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Reduce

 Totalling up the elements of the array

>>> reduce(function(a,b) { return(a+b); }, rg)
10

e Concatening array elements
>>>reduce(function(a,b) { return(a+""+b); }, rg)

* Taking max of elements
>>> reduce(function(x,y) { return (x>y) ? x : y; }, rg);

Variants

 Reduce
* reduceleft
* reduceRight

* Fold
 foldLeft
 foldRight
e “Curried” to take initial value

Classic Functional Programming Constructs

e Container[E].map: (E => F) => Container[F]
* Applies mapping function to each element of collection
e Container[E].flatMap: (E => Container[F]) => Container[F]
* Applies mapping function to each element of collection
e Container[E].reduce: (FxE=>F)=>F
» Applies a function to each element of a collection and to the previous result of the reduce
function
e Container[E].filter: (E => Boolean) => Collection|[E]
* Returns a collection consisting of elements of a given collection matching a given
predicate (spec. via a function)
* Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]

e Returns a map (e.g., dict) whose keys are each value of k produced by applying function to
elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Filter

 scala> testArray.filter(n => n > 0)

* res19: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3,4, 5, 6, 7, 8,
9, 10)
Alternatively,

 scala> testArray.filter(_ > 0)

* res20: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3,4, 5, 6, 7, 8,
9, 10)

 scala> testArray.filter(% 2 == 0)
* res21: scala.collection.immutable.IndexedSeq[Int] = Vector(O, 2, 4, 6, 8, 10)

* Numbers between 0 and 5 (inclusive)
 scala> testArray.filter(n => (n >= 0 && n <=15))
e res22: scala.collection.immutable.IndexedSeq[Int] = Vector(O, 1, 2, 3, 4, 5)

