
Introductory Comment on Spark
Nathaniel Osgood

Key Characteristics of Spark
• Platform for distributed (cluster) computing

• A central use area: data science

• To key desiderata:
• Generality (middleware support across diverse types of applications)

• Performance (enable interactive exploration, even for iterative applications)

• Common stack
• Mixing & matching mechanisms across pipeline

• Maintaining & updating one system vs. fragmented, minimally-compatible systems

• Cross-language support

• Support for existing infrastructures: SQL RDBMSs, Cassandra, Hadoop, etc.

• Multiple components: ML/MLlib, GraphX, Spark Streaming, Spark SQL

• Rapid evolution

Key Performance Advantages

• Distributed processing (different subsets of data handled on different units)

• Memory-conscious computation
• Enabling much in memory computation for iterative algorithms

• Lazy (and thus incremental) evaluation

• Immutable
• Ability to share

• And provenance recording: Capacity to discard and recompute results when necessary

• User-specification of memory constraints

Anti-Patterns that Seeking to Avoid

• Need to pre-join all tables in database
• Often far too expensive, if feasible at all

• Loading entire datasets into memory

• Transforming full dataset to full dataset

• Need to process all on one computer

• Need to “shuffle” (send) lots of data across the network to perform
computation

• Slow performance of iterative algorithms in classic map-reduce
frameworks

Important Concepts
• Immutability

• Provenance

• Resilient Distributed Data Sets

• Laziness: Transformers vs. actions

• Memory consciousness
• Preferences over persistence & memory hierarchy level

• Distributed computation consciousness
• Partitions, shuffling

• Implicit conversions between datatypes (e.g., for numeric operations)

• Key-value pairs

• Dataframes

• Type safety

Collection Abstractions: Common Features
• Lineage (provenance) preserving: Remember their history

• Fault tolerant: With knowledge of lineage, can redo computation if
required

• Memory conserving: Can discard and recompute data, place in lower
levels of the memory hierarchy (e.g., on disk), etc.

• Lazy (and therefore potentially incremental): Computation deferred
until action; distinction between
• Transformation

• Action

• Target multiple machines: Transparently distributed for processing to
different machines

• Interoperable: Easy conversion to
• Other Spark collection types

• Scala collection types

Three Types of Collections
• 1st Generation: Resilient Distributed Datasets (RDDs)

• Developer needs to specify schema to use (fields & types that apply)

• Lower efficiency in moving data, querying

• 2nd Generation: DataFrames (previously SchemaRDDs)
• Named columns (can add additional columns being over time)

• Conscious of schema

• Optimization of querying, data movement, memory management

• Schema known statically: Lack of type safety using fields

• Inability to recover type-safe data turned into a data frame

• 3rd Generation: DataSets
• Improved (but not fully complete) type safety

• Enhanced optimization

• Greater interoperability: Movement of JVM objects into DataSets and
recovery of objects from DataSets

• Query optimization, memory management
All three types of collections are co-existing and can be readily used, with conversions between them

Areas of Strength of Each API
• 1st Generation: Resilient Distributed Datasets (RDDs)

• Non-tabular data
• Need lower level control
• Less structured data

• 2nd Generation: DataFrames (previously SchemaRDDs)
• Tabular data: Named columns (can add additional columns being over time)
• Higher performance: Optimization of querying, data movement, memory management
• Seek higher level operations (e.g., with user defined functions)
• R use

• 3rd Generation: DataSets
• Enhanced type safety
• Benefits of DataFrames
• Enhanced optimization
• Greater interoperability: Movement of JVM objects into DataSets and recovery of objects

from DataSets
• Query optimization, memory management

• References:
• http://www.agildata.com/apache-spark-rdd-vs-dataframe-vs-dataset/
• https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-

dataframes-and-datasets.html

http://www.agildata.com/apache-spark-rdd-vs-dataframe-vs-dataset/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

Machine Learning Libraries

• MLLib
• Lower-level

• Works with RDDs

• Focused on particular algorithms

• Older & more established

• Additional features

• ML
• Higher level: Pipeline based

• Works with DataFrames

Functions on RDDs
• Cache: Request in-memory cache

• toDebugString: This shows the provenance (lineage) of this RDD
• The series of operations that gave rise to it

• persist: Can pass in the persistence level sought (e.g., Memory only,
Memory and Disk, etc.)

• unpersist

• Checkpoint

• isCheckpointed

• val partitioner: returns Option[SparkPartitioner]

• partitionBy: For Key-Value RDDs: Return RDD partitioned by specified
partitioner

Input/Output

• saveAsTextFile

• saveAsObjectFile

Laziness Distinction

• Transformation: Lazy operation

• Actions: Force computation

Some Actions and Transformations
Transformations

• distinct : returns RDD with distinct
values of this one

• Mapping
• Map
• flatMap

• Note that the function given to flatMap
returns a TraverseableOnce[U] -- doesn’t
have to be an RDD!)

• mapPartitions [applies on each
partition, Can indicate if preserves
partitions]

• Filter

• randomSplit

• sample

Actions

• Aggregate

• foreach

• foreachPartition

• reduce/fold

• groupBy

• Set transformations: intersection, union, subtract, cartesian

• Uncertain: sortBy (?), zip, zipWithIndex

• Summary statistics:max,min, count, countApprox, countByValue,
countByValueApprox, countDistinctApprox

• Extractions: first, take [first n], takeOrdered [n that are
smallest according to user-specified ordering], top [n that
are largest according to user-specified ordering]

• keyBy [Returns RDD of key-value pairs]

• collect [Like scala’s:filter & map at same time]

With respect to persistent performance

• Narrow: only process data in the same partition, e.g.,
• map

• flatMap

• Wide e.g., reduceByKey
• If those with same key aren’t all mapped to same partition, shuffling will go

on

Useful Input/Output

• sc.textFile()

Manipulating Cassandra Tables

• https://docs.datastax.com/en/datastax_enterprise/4.8/datastax_ente
rprise/spark/sparkSCcontext.html

• sc.cassandraTable[CaseClassGivingSchema](“strKeyspace”,
“strTableName”)
• This returns a CassandraRDD[CaseClassGivingSchema]

• To get column names: cassandraRDD.columnNames

• cassandraRDD.toArray

• cassandraRDD.select(“amount”).as((a:Int) => a).sum

• cassandraRDD.select(“age”).filter(“sex = ?”,”Male”), as((a:Int) =>
a).sum

https://docs.datastax.com/en/datastax_enterprise/4.8/datastax_enterprise/spark/sparkSCcontext.html

DataFrame Features
• Creation

• toDF(collOfCaseClass)

• sqlContext.createDataFrame(sc.makeRD
D(coll))

• Use $”colname” to indicate column in
current DataFrame

• show [Displays in tabular format]

• printSchema [Displays schema]

• dfA.join(dfA(“id”) === dfB(“id”))

• df(“colName”) gets the column
• Can combine element-wise with other

columns e.g., df(“colName1”)/ df(“colName2”)

• Agg(op(col)): Avg, Max,
CountDistinct, Count, Sum, Min,
First

• withColumn(column) returns a
DataFrame with an added column

• df.select(“colName1”,”colName2”…)
selects columns

• write.json(“filename”)

• Can define user-defined functions to
apply to data & use in queries

• Call as[CaseClass] to return
equivalent (strongly typed) Dataset

Special Syntax

• $”colName” indicates the column name in the context of the current
dataframe

Spark SQL

• Register data as temporary table
• createOrReplaceTempView

• Code
import org.apache.spark.sql.SQLContext

val sqlContext = new SQLContext(sc);

import sqlContext.implicits._

Creation

• Via calls to spark.sql(sqlExpression)

• Via mapping read data into instances of a case class and calling .toDF

• spark.read.load(strParquetFilePath)

• spark.read.format(json).load(strJsonFilePath)

Spark Dataset Features
• count

• map & flatMap

• filter

• reduce

• groupBy

• as[ClassClassName]: [convert to
DataSet[ClassClassName]

• show

• coalesce [consolidate at n partitions]

• distinct [Returns new dataset of unique]

• joinWith [specify condition as well]

• Intersection/union/subtract

• cache

• persist [save with
Memory_and_disk]/unpersist

• printScheme

• rdd [to RDD]

• toDF [to DataFrame]

• sample [sample fraction of records]

• select (column expressions)

• take [first n as array] & take [first n as
list]

• transform [allows applying function to
map entire Dataset)]

