
Scala Methods & Functions 1

•use "def" for a method (both functions and procedures)
• For functions, have “=“ separating fn header from body
• e.g., def exampleFunction(int n) = { }
• e.g. def performAction(int n) { }

•To turn a method fn created w/“def” into standard
function for passing or returning as an argument, follow
by _
• This makes it clear that are not simply calling, but seeking to

take its value as a function

Referring to Methods as Functions
scala> class Foo { var m = 2; def incr() = { m += 1; m } }

defined class Foo

scala> val foo = new Foo()

foo: Foo = Foo@419bc62d

scala> foo.incr

res4: Int = 3

scala> foo.incr _

res5: () => Int = <function0>

scala> floor _

res14: Double => Double = <function1>

This is a function that, when called, will
increment foo

Refers to the “floor” function (rather
than to the method itself)

Method Formal Parameters
• Can include default values

• These values are used if no argument is given for that parameter when the function
is called

• e.g. def join(sep = “,”)

• This can really cut down the amount of arguments that have to be passed. This
offers greater:
• Convenience

• Clarity of the key argument values

• This can also much reduce need for auxiliary constructors

• Can be specified by name when calling
• Given specification by name, can give in any order

• Can mix specification by just listing and then by name

• Can be specified as subject to implicit specification

Anonymous Functions 1

•Here, can write anonymous functions in syntax
(a: Int) => (a*a), a => a*a
• Thus we can write

(0 to 10).map(i => i * 3)

(1 to 30).reduceRight((n, a) => n + a)

Succinct Notation for Anonymous Functions

• To avoid writing out full closure when just single argument and only
appears once in body, can use “_” to denote parameter in the body alone

e.g., (0 to 10).map(_* 3)

• If “_” appears in the body twice, it is assumed to represent two different
values, e.g.,

(1 to 30).reduceRight(_ + _)

Statically Defined Methods in Scala

def square(x: Int) = x*x

def increment(x: Int) = x+1

scala> square(3)
res6: Int = 9

scala> increment(2)
res5: Int = 3

To treat as a function (and obtain a corresponding function object referring to the method),
follow by _

scala> square _
res7: Int => Int = <function1>

Anonymous Functions
• Some of the most powerful uses of closures occur with unnamed functions

• This functions are created to accomplish some particular ad hoc or dynamic task

• If the task is commonly needed, we can create a name function to abstract that
functionality

• Anonymous functions play a very important role in functional programming
for higher order fns
• Passed to functions

• Returned from functions

• What do these anonymous do?
• (n:Int) => n+1

• (n:Int) => n*2

• scala> (c:Int) => ((n:Int) => n+c) // requires closure

• res10: Int => (Int => Int) = <function1>

Creating Closures

• A closure binds a function to some scope (environment)
• Environment: A mapping of names to locations

• In a purely functional languages, this maps names to values

• When we create a function value, a closure is created with it that
captures the values for vars on which function relies

• e.g.
• val IncrementByFunctionGenerator = (c:Int) => ((n:Int) => n+c) // a closure

is formed when this (function) value is returned. This closure captures the
“binding” between “c” and whatever value was passed as the argument to
“foo”

Functions in Python
• Parameterizing: Add parameterized (e.g. user-specified) constant

to the elements
val FnIncrementBy = (c:Int) => ((n:Int) => n+c)

val FnSimpleIncrement = FnIncrementBy(1)

val FnSimpleIncrement(5)

res1: Int = 6

val FnAdd10=FnIncrementBy(10)

val FnAdd10(5)

res2: Int = 15

val testArray = (-1 to 10)

scala> testArray.map(FnAdd10)

res3: scala.collection.immutable.IndexedSeq[Int] = Vector(9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20)

scala> testArray.map(FnSimpleIncrement)

res4: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11)

Delay
• Wrapping in anonymous function w/ no args offers simple mechanism for delaying

evaluation of code

• Allows capturing of some benefits of lazy evaluation

scala> val fn = (() => print("foo"))

fn: () => Unit = <function0>

scala> fn()

foo

• Cf setting up event handlers
• arrEventHandlers(iOnMouseSingleClick) = () => PerformCalc1()
• arrEventHandlers(iOnMouseDoubleClick) = () => PerformCalc2()

• Cf Streams,BigNums

• In Scala, it can often be more natural to capture these with lazy values or call by name

Scala Functions: Contravariance & Covariance

• In contrast to traditional Java or C++, Scala supports more general type rules
for functions motivated by the Liskov Substitution Principle

• By LSP, Implementation of a function/method f in subtype B of a supertype A
must have
• Contravariant in Parameters: a given parameter of f as defined in B must have a type

that is equivalent or a supertypes of the corresponding parameter of f in supertype A
• “Contra” in “Contravariant”: As to go successive subtypes, the parameters can go to successive

supertypes! (As go to successive specialization, parameters can become more general)

• Covariant in Return values/exceptions: The return value and exceptions thrown by f in
B can be the same or subtypes of those of f in A

• Scala supports the latter of these (specifically, covariant return values)

Acceptable to Scala Compiler

class AClass {

def foo(v: AnyRef) : AnyVal = 0.0

}

class BClass extends AClass {

override def foo(v: AnyRef) : Double = 0.0

}

This is a supertype of that

Should be Acceptable,
But Refused by Scala Compiler

class AClass {

def foo(v: String) : AnyVal = 0.0

}

class BClass extends AClass {

override def foo(v: AnyRef) : Double = 0.0

}

This is a supertype of that

This satisfies the Liskov
Substitution Principle, but is still
refused by the Scala compiler

override

Apparent Danger to the Liskov Substitution
Principle with Scala Self Types

class AClass {
def bar(v: this.type) : AnyVal = 0.0 }

class BClass extends AClass {
override def bar(v: this.type) : AnyVal = 0.0 // This should not be allowed! }

• Ok
• val a: AClass = new AClass()
• val b: BClass = new BClass()
• val apparentAClass : Aclass
• a.bar(a)
• b.bar(a)
• val apparentAClass : AClass = b

• Should work but doesn’t
• apparentAClass.bar(a)
• apparentAClass.bar(apparentAClass)

This is a “self type”, which refers to
the type of the enclosing class. By the
L SP, Scala should not allow a subtype
Method using this as a parameter to
override a corresponding supertype
method, but does.
This leaves the door open to a
gratuitous violation of the LSP!

Scala Functions 2

•Note that can have methods that are themselves polymorphic

• Can be useful to use “this.type” to denote surrounding type
• For example, making the return value of an overridden function (method)

“this.type” allows subtypes to return corresponding subtypes (e.g., subtype A
return A) -- covariance

• Can have nested functions: Functions whose scope is limited
to and used within another function

• Currying: can explicitly define multiple lists for a function (in
successive parentheses), so that provide arguments in staged
fashion
• MyAdd(x:Double)(y:Double)

Scala Functions 3

• Methods that only take a single argument (but which are also applied to some
“target” as the method) can be used as infix operators
• def plus(a: Int): Int = ….
• e.g., a plus b

• Can use operators that don’t take an argument can be used as a postfix
operator
• def complement(): Set = ….
• e.g., ASet complement

• Above: need care & s.t. () to ensure scope of each parameter (e.g., a fn) is clear

• When call unary function, can omit

• can overload operator syntax, as in C++
• (e.g., use syntax like "^"), but I believe that can't change precedence easily

Built-in Support for Tuples

• Elements can be of different types

• Constructed implicitly with parentheses
• e.g., (“Pi”, 3.14159)

• With pattern matching, can put on left hand side of an assignment
• E.g. val (a,b,c) = fooReturningMultipleValues()

• The underlying type parameterized classes are Tuple2, Tuple3, Tuple4,
… Tuple22,etc.

Collections 1
• Scala provides rich set of collections, in 3 categories: seq, set, map

• Generally type parameterized (e.g., Array[T])

• Can create w/name of collection (e.g., Array(1,2,3), Map(“a”->1,”b”->2))

• Include all of
• Lazy vs. not

• Immutable vs. mutable

• Equality is based on
• If in different category, then not equal

• equality of elements (collections of different types/structures are unequal)

• Can use “par” method to render parallel version of collection

• Can use foreach syntax e.g.,
• coll foreach { (a) => print(a); }

Collections 2: Example Collections
• Stream[T] lazy, use #:: to build from head/tail. Operations are incremental

• Vector[T]: O(1) time for operations on head, others take time linear to
position/depth in sequence

• Range: Created w/“to” and “by” (e.g., 0 to 100 by 2) and until(m,n) (upper:n-1)

• Array[T] Familiar array
• single dimensional: can allocate an array of Ints of size n using new Array[Int](n)
• can access with array1D(i), add elements (single or tuple) to with +=, collection with ++=
• multidimensional: Array.ofDim[Int](countRows, countColumns)

• have then Array[Array[Int]]
• access with array2(i)(j)

• List[T]: Can use :: operator to build from head/tail

• Map[K, V]: to create a map from a key to a value (e.g., String to a
ComputeLivenessRule)
• val myMap = Map("square" -> ((a: Int) => (a*a)),

"cube" -> ((a: Int) => (a*a*a)))

Scala Maps
• Represent key-value mappings (Collections of key-value pairs)

• Can create with normal collection syntax: Map(“a”->1,”b”->2)
• Note no “new” operator!

• For mutable map, can add new item (key k and value v) in either of
the sort of way
• map(k)=v (e.g., map(“Scala” = “Great!”))

• map += (k -> v) (e.g., map += (“Scala” -> “Great!”))

• Can deconstruct via pattern matching as a (k,v) pair)
• Iterate over map with (for (k,v) <- map) body

Collections Hierarchy

http://docs.scala-lang.org/resources/images/collections.immutable.png

Classic Functional Programming Constructs

• Container[E].map: (E => F) => Container[F]
• Applies mapping function to each element of collection

• Container[E].flatMap: (E => Container[F]) => Container[F]
• Applies mapping function to each element of collection

• Container[E].reduce: (F × E => F) => F
• Applies a function to each element of a collection and to the previous result of the reduce

function

• Container[E].filter: (E => Boolean) => Collection[E]
• Returns a collection consisting of elements of a given collection matching a given predicate

(spec. via a function)

• Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]
• Returns a map (e.g., dict) whose keys are each value of k produced by applying function to

elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

High-Level Description

• Reduce represents “accumulation” – independent of what exactly
one is accumulating

• Filter represents conditional selection – independent of what exactly
one is selecting (the exact rules for selection)

• Map represents a mapping (transformation) of each element of a
collection

Classic Functional Programming Constructs

• Container[E].map: (E => F) => Container[F]
• Applies mapping function to each element of collection

• Container[E].flatMap: (E => Container[F]) => Container[F]
• Applies mapping function to each element of collection

• Container[E].reduce: (F × E => F) => F
• Applies a function to each element of a collection and to the previous result of the reduce

function

• Container[E].filter: (E => Boolean) => Collection[E]
• Returns a collection consisting of elements of a given collection matching a given predicate

(spec. via a function)

• Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]
• Returns a map (e.g., dict) whose keys are each value of k produced by applying function to

elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Initial Binding

scala> val testArray = (-1 to 10)
testArray: scala.collection.immutable.Range.Inclusive = Range(-1, 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10)

Map

• What does this do?
• scala> testArray.map(n => n * n)

• And this?
• scala> testArray.map(n => n + 1)

What is an alternative expression of the same function?

•What function does the following transformation undertake?
scala> testArray.map(n => n*(if (n > 1) 1 else -1))

Map: (EE)×Collection[E]Collection[E]

• Square the elements of the collection
• scala> testArray.map(n => n * n)
• res8: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 0, 1, 4, 9,

16, 25, 36, 49, 64, 81, 100)

• Add fixed value (one) to each elements
• scala> testArray.map(n => n + 1)
• res9: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11)
An alternative expression of the same function:
• scala> testArray.map(_ + 1)
• res10: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11)

• Value-specific mapping
scala> testArray.map(n => n*(if (n > 1) 1 else -1))
res13: scala.collection.immutable.IndexedSeq[Int] =

Vector(1, 0, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Passing closures resulting from higher-order
functions, and named closures

val FnIncrementBy = (c:Int) => ((n:Int) => n+c)

scala> testArray.map(FnIncrementBy(3))

res17: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13)

val FnAdd10=FnIncrementBy(10)

scala> testArray.map(FnAdd10)

res18: scala.collection.immutable.IndexedSeq[Int] = Vector(9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20)

Classic Functional Programming Constructs

• Container[E].map: (E => F) => Container[F]
• Applies mapping function to each element of collection

• Container[E].flatMap: (E => Container[F]) => Container[F]
• Applies mapping function to each element of collection

• Container[E].reduce: (F × E => F) => F
• Applies a function to each element of a collection and to the previous result of the

reduce function

• Container[E].filter: (E => Boolean) => Collection[E]
• Returns a collection consisting of elements of a given collection matching a given predicate

(spec. via a function)

• Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]
• Returns a map (e.g., dict) whose keys are each value of k produced by applying function to

elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Reduce
• Totalling up the elements of the array

>>> reduce(function(a,b) { return(a+b); }, rg)
10

• Concatening array elements
>>>reduce(function(a,b) { return(a+""+b); }, rg)

• Taking max of elements
>>> reduce(function(x,y) { return (x>y) ? x : y; }, rg);

Variants
• Reduce

• reduceLeft

• reduceRight

• Fold
• foldLeft

• foldRight

• “Curried” to take initial value

Classic Functional Programming Constructs

• Container[E].map: (E => F) => Container[F]
• Applies mapping function to each element of collection

• Container[E].flatMap: (E => Container[F]) => Container[F]
• Applies mapping function to each element of collection

• Container[E].reduce: (F × E => F) => F
• Applies a function to each element of a collection and to the previous result of the reduce

function

• Container[E].filter: (E => Boolean) => Collection[E]
• Returns a collection consisting of elements of a given collection matching a given

predicate (spec. via a function)

• Another: Container[E].groupBy: (E => K) => Map[K, Container[E]]
• Returns a map (e.g., dict) whose keys are each value of k produced by applying function to

elements of the source container, and whose value for a given key k consists of a container
of the values of the original container mapping to that key k

Filter
• scala> testArray.filter(n => n > 0)

• res19: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3, 4, 5, 6, 7, 8,
9, 10)
Alternatively,

• scala> testArray.filter(_ > 0)

• res20: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3, 4, 5, 6, 7, 8,
9, 10)

• scala> testArray.filter(_ % 2 == 0)

• res21: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 2, 4, 6, 8, 10)

• Numbers between 0 and 5 (inclusive)
• scala> testArray.filter(n => (n >= 0 && n <= 5))
• res22: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 5)

