
CMPT 898 HOME EXERCISE 8
PROCESSING TWEETS VIA THE TWITTER SEARCH API & TWITTER4J

This exercise will build on class exposure to the Twitter search API, in light of learning
regarding functional and imperative programming styles. A later exercise will focus on
twitter streaming.

Recall that the Twitter search API allows for harvesting results using a paging model, in
which received results are not all obtained at once, but are instead obtained in batches
(one “page” at a time), similar to how a human user processes search queries in a
browser. Among other factors, this allows twitter to avoid speculatively delivering all of
the data at once to the user when only some of that data may be needed. This model also
provides flexibility for the provider to update results for some pages if required.

Recall that the twitter4j version of the API covered calls search() on a Twitter object.
This search method takes a Query object in as an argument, and returns a
TwitterResponse. On TwitterResponse, the .hasNext method can be used to determine if
there are further results available. If there are, the .nextQuery method can be called on a
TwitterResponse to obtain a query that can be (in turn) processed through the search
method on the Twitter object.

Please recall further that the Query object can be built up successively -- and in a
functional manner – by allocating a Query object using new Query(), and then calling
successive methods on that object (e.g., query, geoCode, since, count, resultType). Please
be sure to always call “count” (specifying the number of results to obtain per page – 100
is suggesed). While we did not cover it in class, calling “resultType” with the argument
Query.RECENT is also recommended, so as to return the most recent results.

Within this take-home exercise, you will provide two different implementations of a
method called identifyInterestingTweets. This function will serve to harvest tweets
deemed interesting from a search, moving as required through successive pages, and
returning all the tweets judged to be of interest and metadata on the tweets obtained and
those processed along the way. Both implementations of this method have identical
externally observable behaviour – they take in as arguments a maximum count of tweets
to examine (process), a predicate (a function) which takes as an argument a Status
associated with a tweet which then returns a boolean indicating if that tweet (status) is of
interest to harvest, and a Query to execute to obtain the tweets. This method
identifyInterestingTweets returns a 4-tuple as a result. The elements of this 4-tuple
consist of (respectively), the total number of tweets processed (whether judged interesting
or not), the total number of “interesting” tweets found (as judged by the predicate
returning true for such tweets), a collection (Seq[Status]) of the status associated with
tweets that are interesting, and the earliest tweet Date encountered while processing the
tweets needed to find the above. This method (regardless of impolementation) shoudl
only look through the maximum number of tweets as specified by the user in the first
parameter to the method.

One general implementation note: While – per good software engineering practice – the
users of identifyInterestingTweets will know only that the 3rd element of the tuple returned
by the function is a Seq[Status] (rather than it being an instance of any particular class),

Due in class November 29, 2016

CMPT 898 HOME EXERCISE 8
PROCESSING TWEETS VIA THE TWITTER SEARCH API & TWITTER4J

for both implementations below, you are requested to use geographia Vector[Status]
(which is a subtype of and can thus be returned as a Seq[Status]). A motivation for using
such a Vector as the implementation of Seq[Status] is the fact that a Vector allows nearly
constant-time appends of one vector to another (using the “++” operator), which is how
you will join together successive Sequences obtained from different pages.

Two additional points:
• Please remember when testing your method that the Twitter search API restricts

the number of tweets provided within a 15 minute period. Particularly initially,
you are advised to please test your identifyInterestingTweets with a smaller
maximum count of tweets to examine (e.g., a few thousand at most per
invocation). When it is working, and in a separate 15 minute period you can test
it in retrieving a larger number of tweets.

• Please also note that, for reasons unclear to the instructor, the Twitter search API
often appears to provide access to a rather longer date sequence when an actual
query search term (e.g., “influenza”) is specified, rather than when a search is
made without any such search string (and only with other constraints, such as by
geography or time period). You are thus advised to use a query search term (and
one that occurs at least reasonably often) for testing.

a) Please provide an implementation of the identifyInterestingTweets method that is
imperative in method, in that works using a do-while loop, going through each successive
page (as required) to examine the tweets on the page, and identify those of possible
interest. To cleanly implement this imperative version of the method, you will want to
use variables (using Scala’s “var” construct). Please note that while you will use a loop
to go through the pages, you are not required to undertake all operations in an imperative
manner; for example, you may wish to process tweets within a given page in a functional
manner.

b) In the second implementation, please provide a recursive implementation of
identifyInterestingTweets. (For this problem, you may assume that the standard stack
size for recursive invocations is sufficient to handle the recusive calls required). Within
this recursive method, the parameters passed to the identifyInterestingTweets method are
identical to what is seen in the imperative style implementation, but when processing of
further pages is required, instead of looping into such pages, a given invocation the
method identifyInterestingTweets will instead recusively call itself with a query, and with
the appropriate parameters, and then – following a return from that function – will return
its own values, taking into account both the values returned from the recursive calls and
the information gleaned from this page. Please note that – as is typical for recursive
methods – there needs to be a “base case” where no recursive calls are performed. In this
case, that base case will occur when no further pages are required for processing.

Due in class November 29, 2016

