
“Functional Programming in Scala”
Chapter 4

Handling errors without exception(s)

Nathaniel Osgood

Important Topics
•Referential transparency (context-free
expressions)

•Functional means of handling errors

•Problems with exceptions

•Problems with sentinel values/distinguished
return codes

•Type-safe return values (via Option, Either, Try)

Problems with exceptions

• Lack of referential transparency

• High performance cost

• Difficulty in reasoning about control flow

• Lack of type safety

• Difficulty of composing into higher order functions

• Cruft/Bloat: Verbosity around handling

Problems with sentinel values/distinguished
return codes

• Lake of (enforced) type safety (& enforced awareness)

• Difficulty in using in higher order functions

• Difficult to apply to type parameterized code

• Lack of canonical values

• Cruft/Bloat: Verbosity around handling

Option: Encoding Possible Absence of a Value
• Handling of possibly absent values that is

• Type-safe
• Uniform with other collection (e.g., can map, flatMap, filter)

• Related points
• Has Some(a)/None option
• Offers compose operations (e.g., via flatmap)
• isEmpty/ifDefined
• getOrElse: Get value or another value
• orElse: Perform some (otherwise unevaluated) option only if empty
• Filter
• None is ignored by sum

• Common uses: Return value of calculation, output of filter, value from data structure

• Using flatmap, map define long “pipelines” of operations, which naturally handle and
just pass through failure at any stage

• This is a key monad (a “contained” value that wraps values with metadata)

Option Examples 1:

• Try(scala.io.StdIn.readLine().toDouble).toOption

• Seq("2.13", "4.3", "", "as").flatMap(str => Try(str.toDouble).toOption).sum

• Seq.fill(1000)(nextInt(100)).zip(Seq.fill(1000)(nextInt(100))).flatMap(pair =>
Try(pair._1 / pair._2).toOption).sum

• v.filter(_.length > 2).map(_.length).reduceLeftOption((a,b) => a+b)

Using Options to detect problems, which are
then filtered out

import scala.io._

val collURLs = Seq("http://www.usask.ca", "http://www.cnn.com",
"http://www.shrf.ca", "http://www.fakefoobar.com")

val collPageOptionStrings = collURLs.map((str:String) =>
Try(Source.fromURL(str).mkString).toOption)

// total up the sizes

collPageOptionStrings.filter(_.isDefined).map(_.get).map(_.size).sum

http://www.fakefoobar.com/

Comprehensions via “for” loops
• For “comprehensions” consist of using a for loop to construct a collection

• These are reminiscent of the comprehensions seen in Python

• Because for loops (like other Scala statements) have values, can create such
collections very readily, e.g.,

values = for (i <- m to n; j <- p to q [if guardcondition]) yield expr

• For collections that include Option values, for values that are empty (i.e., that are
None) nothing is performed for that value

• Note that the types of functionality possible with such comprehensions can
sometimes be handled in with constructs such as map & filter

• These play key role in making monadic operations transparent, as they desugar
to calls to flatMap, map, and withFilter
• Key point: we can write the operations in the loop with respect to the unwrapped values

• These define partial function; only values over which this is defined are used

• Often we write looping factors in a { } block with separate lines (; not needed)

“for” Loops Basics
Can contain multiple generators

for (int i <- m to n; j <- p to q [if guardcondition]) { body }

Example Guarded condition:

for (int i <- m to n; j <- p to q if i != j) { body }

With destructuring (extraction):

for (PersonCaseClass(age,income,name) <- population)

println(s"$name has income $income")

Intermediate variables: for (int i <- m to n; j <- p to q; prod = i*j; prod > 0) { body }

This is very commonly used with range expressions such as

m to n

m until n (goes up to n – 1)

m until (n, k) (goes up to n – 1, in steps of k)

For Expression [Comprehensions]/loop: Anatomy
• Generators, e.g.,

• for (p <- population)

• for (nbhd <- getNeighborhoods())

• for (x <- expr1; y <- expr2)

• for (x <- expr1; y <- expr2(x))

• Embedded definitions of values
• for (nbhd <- getNeighborhoods(); meanIncome = nbhd.meanIncome)

• Filters
• for (nbhd <- getNeighborhoods() if nbhd.meanIncome <= povertyLine)

• For for expressions, these are followed by a yield expression e.g.,

yield nbhd.population

• Such for expressions translate into pipelines of calls to
• for expressions: flatMap (all but innermost)/map (innermost)/filterWith

• for loop (“statement”): foreach/filterWith

Unless constrained, this gives combinatorial semantics,
like nested loops: Iterate over all pairs of
contained values of x & y

Key: These variables on the left hand side actually refer to
The values within the containers to the right – not to the
dontainers themselves. These are automatically extracted
for us, without needing to write an enclosing function.

Central Points

• For expressions allow us to focus on the code operating on the
elements of a container
• The operations on the container itself are taken care of in the background

• For expressions are especially suited for dealing with Monads (TBC)

• For expressions are compiled into (and are interchangeable with) calls
to map, flatMap, filter(With)
• To understand the constraints and error messages associated with for

expressions, it is useful to understand how they are compiled into such calls

Desugaring for expressions [comprehensions]
to pipelined operators

• for {
x1 <- expr1

x2 <- expr2

x3 <- expr3

…

xFinalLHS <- exprFinalRHS

} yield exprYield desugars into

expr1.flatMap(x1 => expr2.flatMap(x2 => expr3.flatMap(x3 => …
exprFinalRHS.map(xFinalLHS => exprYield)))))

• An “if” clause following an exprN above desugars into a corresponding
“withFilter” call on that exprN (with condition in Boolean-returning function)

• for { x1 <- expr1 if cond(x1); x2 <- expr2 } yields exprYield => expr1 withFilter (x1
=> cond(x1)).flatMap(x1 => expr2.map(x2 => exprYield)

Try the following…

import scala.io.StdIn;

for {

v1 <- Try(readLine().toInt).toOption

v2 <- Try(readLine().toInt).toOption

v3 <- Try(readLine().toInt).toOption

v4 <- Try(readLine().toInt).toOption

z = v1+v2+v3+v4

} yield z

import scala.util.Random._

case class Person(age:Int, yearlyIncome:Option[Double], name: String);

// Create members of the population, recognizing that some have no income

val population = Vector.fill(1000)(Person(nextInt(100), if (nextBoolean) Some(nextDouble * 30000.0)
else None, nextString(3)))

// case where abort computation if result is not available for any subpiece

for {

ageLowerThreshold <- Try(scala.io.StdIn.readLine().toInt).toOption

ageUpperThreshold <- Try(scala.io.StdIn.readLine().toInt).toOption

totalIncome = population.filter(person => (person.age >= ageLowerThreshold &&
person.age <= ageUpperThreshold)).flatMap(_.yearlyIncome).sum

} yield totalIncome

Another example

def tryUserQuotient() =

{

for {

a <- Try(scala.io.StdIn.readLine().toInt).toOption

b <- Try(scala.io.StdIn.readLine().toInt).toOption

quotient <- Try(a/b).toOption

} yield quotient

}

Note that this performs integer division for legal arguments and quotients

Example 1: Incrementally working an Option[T]

def findSmokingInPageAtURL(strURL: String) =

for {

url <- Some(strURL)

strPageContents <- Try(Source.fromURL(url).mkString).toOption

matchingString <- """[sS]moking""".r.findFirstIn(strPageContents)

} yield matchingString

findSmokingInPageAtURL("https://en.wikipedia.org/wiki/Truth_Initiative")

Comparison

import scala.io._

val collURLs = Seq("http://www.usask.ca", "http://www.cnn.com",
"http://www.shrf.ca", "http://www.fakefoobar.com")

Option 1:
val collPageOptionStrings = collURLs.map((str:String) =>
Try(Source.fromURL(str).mkString).toOption)
// to total up the sizes
collPageOptionStrings.filter(_.isDefined).map(_.get).map(_.size).sum

Option 2

(for (url <- collURLs; pageString <-
Try(Source.fromURL(url).mkString).toOption) yield
(pageString.size)).sum

http://www.fakefoobar.com/

Additional Topics
• Lifting

• Bringing a function (e.g., A => B) into Option[A] => Option[B]

• For comprehension as providing “lift” functionality with minimal cruft when
dealing with “Option” (and other monads)

• map vs. flatMap
• map: value in container

• Other monads for error handling
• “Either” data type

• “Try” data type

Some Ideas for Projects
• Within Spark, mining social media & analyzing with machine learning algs

• Twitter

• Facebook

• Google search API

• Examples: Influenza symptoms, vaccination safety/effectiveness, foodborne Illness, suicide
references or occurrences

• Findings from cross linking sensor-data with browsed page contents

• Findings from cross linking sensor-data with EMA responses
• e.g., probability of being answered, timing of answering

• Behavioural correlates to answers

• Findings from cross linking sensor-data with weather & EMA responses

• Repurposing existing systems as transformers for Spark
• AnyLogic

• Code to support HMM analysis from “Scala for Machine Learning” (available via library)

