
CMPT 898 HOME EXERCISE 1
BUILDING ON HIGHER-ORDER FUNCTIONS BASICS

Building on the examples used in class, please attempt to perform the following using the file “document.txt”
posted to the moodle site (and sent to class members). The solution should be able to execute in a single
line, and should use the higher order functions that we discussed, particularly map, mapValues, filter and
groupBy. While this will be discussed extensively in the second class, recall that:

• Applying map passed a unary function f to a collection coll (via coll.map(f)) will yield a new
collection, each of whose element consists of applying f to the corresponding element of coll.

• Applying filter passed a predicate (a unary function p returning a boolean) to a collection coll (via
coll.filter(p)) will yield a new collection consisting of just those elements of coll that match the
predicate (i.e., elements elt for which the predicate returns the boolean true, i.e., when p(elt) is
true).

• Applying groupBy given a function f on a collection coll (via coll.groupBy(f)) will create a dictionary,
whose keys consist of all of the values of f applied to the elements of the collection coll. For a
given key k, the value of the dictionary entry for that k consists of a collection of all of the elements
elt of coll for which f(elt) is k.

• A dictionary is an abstract data type which keeps track of the values associated with different keys.
(For example, a dictionary might map a string representing a word to a collection of occurrences of
that word count of times that this word has appeared in a document. Alternatively, a dictionary hold
keys that are double precision values, each of which represents the beginning of a bin, and the
value associated with each such count indicates the count of times values in some collection have
fallen within that bin). Applying mapValues(f) to a dictionary dict with a function f returns a new
dictionary with the same keys, with the value associated with each such key k

 For the sake of the below, term “word” is defined as a contiguous series of alphabetic characters in the
range a-z (or A-Z). Two words are considered the same if they differ only in terms of case (and thus should
both be counted as the same word). You will throw away other characters.

• Number of occurrences of words: Count the number of times that a given word appears in the
document (ignoring the case of the word).

• Number of occurrences of word lengths: Count the number of times that words of a given length
appear in the document.

• Please redo the above, sorting by the counts of occurrences. Please note that a dictionary can be
converted into a sequence using toSeq and then sorted by the above toSeq.sortWith((pair1, pair2)
=> pair1._2 > pair2._2)

For the above, the following hints may be helpful:
• Given a string str, you can convert that string to lower case via the call str.toLowerCase
• to create a function that takes an argument a and returns some expression expr (typically

involving) a, you can simply write
 a => expr

• You can get a stream of lines as follows (please note that getLines returns an iterator over lines):
Source.fromFile("document.txt")("ISO-8859-1").getLines.toStream.flatMap(_.split(raw"[^a-zA-Z]+"))

• Before pursuing the above and using “Source”, you will need to issue the following command in the
Scala Read-Eval-Print Loop (REPL – also called the “Scala command line”):
import scala.io._

Among other matters, you will want to eliminate lines that are blank (“”) from this list.

Due in class September 15, 2016

