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The Bethe-Salpeter Equation

The purpose of the project is to model 2-body bound states in

quantum chromodynamics (QCD).

The wavefunction of a bound state can be obtained by solving

the QCD Bethe-Salpeter equation:

Γ(p;P) =
∫

d4q

(2π)4
K (q,p;P)S

(
q+
)

Γ(q;P)S
(
q−
)
.

This is an integral equation for the Bethe-Salpeter amplitude

Γ(p;P), which is a 4×4 matrix.

The equation can be made more numerically accessible by

expanding the solution in various degrees of freedom.



Expansions

The �rst step is to expand the solution in Lorentz components

(reducing the problem from an IE for a 4×4 solution to 4

coupled IEs for 1×1 solutions):

Γ(p;P) =
N

∑
i=1

Fi (p;P) τ̂i (p;P) .

Then a Chebyshev decomposition can be performed to reduce

4D integration to a set of coupled 1D integrations:

Fi (p,P) =
M

∑
j=0

Uj (u) F̃ij
(
p2,P2

)
.

The remaining integration can be discretized, and an arti�cal

eigenvalue can be inserted to allow the external momentum

scale P to be �xed:

λ
(
P2
)
F̃ij
(
p2
)

= K
(
q2,p2,P2

)
· F̃ij

(
q2
)
.



Evaluation of K
(
P
2
)

Evaluating the elements of K
(
P2
)
requires double

integrations over the angular variables u. These integrations

were attempted using both an adaptive Simpson quadrature

rule and a Gauss-Legendre nonadaptive quadrature rule.

Timings for adaptive Simpson quadrature (in seconds):



Evaluation of K
(
P
2
)

Timings for Gauss-Legendre quadrature (in seconds):

The two methods produce results that are the same to within

1%: max
[

KSimp−KGL

KSimp

]
= 0.0033.



Parallelization of Problem

The problem can be visualized as evaluation of a 3D array:

Several methods were implemented on Socrates for the basic

problem (32 grid size, both expansions truncated after one

entry: N = M = 1). The following tables show minimum

timings over 5 runs for 80 di�erent values of P .



Parallelization of Problem

These two tables are for versions which parallelize the loop over

P (Table A), and the loop over the elements of K (Table B).

A)

p Time (seconds) Speedup

1 161.522337 1

2 85.508760 1.8890

4 49.311946 3.2755

8 36.629304 4.4096

B)

p Time (seconds) Speedup

1 166.076348 1

2 89.910633 1.8471

4 53.421731 3.1088

8 41.934506 3.9604



Parallelization of Problem

The left table (C) makes both the loops over P and over the

elements of K parfor loops.

The right hand table (D) involves a single parallel loop over

the elements of the full 3D array.

C)

p Time (seconds) Speedup

1 162.320255 1

2 85.886755 1.8899

4 49.494977 3.2795

8 36.357750 4.4645

D)

p Time (seconds) Speedup

1 163.824436 1

2 87.518920 1.8719

4 49.092138 3.3371

8 34.331397 4.7719



Discussion

For the basic problem, all these methods perform similarly.

It is hard to draw any conclusions with only 8 workers available

(maximum on Socrates).

Note that versions A and C are functionally the same, given

how workers are assigned.

Version B likely scales slightly worse than the others due to

overhead associated with setting up the loops.

It is likely that version D will scale better than the others.

Version D requires that the full problem be stored in memory

(as a 3D array) to obtain the eigenvalues, and this may require

too much memory with the full problem.



Future Work

Obviously the main extension is to use the full kernel K and

solve the complete problem.

Tests with the basic problem need to be done on a larger

system to see which method actually scales the best.

The convergence rates of the Chebyshev expansions also need

to be examined.

And �nally, extension to 3-body problems.


