Parallel Numerical Solutions of the QCD Bethe-Salpeter Equation II

F. Sage

Department of Physics and Engineering Physics

CMPT 851 Final Presentation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- The purpose of the project is to model 2-body bound states in quantum chromodynamics (QCD).
- The wavefunction of a bound state can be obtained by solving the QCD Bethe-Salpeter equation:

$$\Gamma(p; P) = \int \frac{d^4q}{(2\pi)^4} K(q, p; P) S(q^+) \Gamma(q; P) S(q^-).$$

- This is an integral equation for the Bethe-Salpeter amplitude Γ(p; P), which is a 4 × 4 matrix.
- The equation can be made more numerically accessible by expanding the solution in various degrees of freedom.

Expansions

The first step is to expand the solution in Lorentz components (reducing the problem from an IE for a 4 × 4 solution to 4 coupled IEs for 1 × 1 solutions):

$$\Gamma(p; P) = \sum_{i=1}^{N} F_i(p; P) \widehat{\tau}_i(p; P).$$

 Then a Chebyshev decomposition can be performed to reduce 4D integration to a set of coupled 1D integrations:

$$F_i(p,P) = \sum_{j=0}^M U_j(u) \tilde{F}_{ij}(p^2,P^2).$$

 The remaining integration can be discretized, and an artifical eigenvalue can be inserted to allow the external momentum scale P to be fixed:

$$\lambda\left(P^{2}\right)\tilde{F}_{ij}\left(p^{2}\right)=\mathscr{K}\left(q^{2},p^{2},P^{2}\right)\cdot\tilde{F}_{ij}\left(q^{2}\right).$$

Evaluation of $\mathscr{K}(P^2)$

- Evaluating the elements of $\mathscr{K}(P^2)$ requires double integrations over the angular variables u. These integrations were attempted using both an adaptive Simpson quadrature rule and a Gauss-Legendre nonadaptive quadrature rule.
- Timings for adaptive Simpson quadrature (in seconds):

Evaluation of $\mathscr{K}(P^2)$

■ Timings for Gauss-Legendre quadrature (in seconds):

The two methods produce results that are the same to within 1%: $\max \left[\frac{\mathscr{K}_{Simp} - \mathscr{K}_{GL}}{\mathscr{K}_{Simp}} \right] = 0.0033.$

200

Parallelization of Problem

■ The problem can be visualized as evaluation of a 3D array:

■ Several methods were implemented on Socrates for the basic problem (32 grid size, both expansions truncated after one entry: N = M = 1). The following tables show minimum timings over 5 runs for 80 different values of P.

Parallelization of Problem

These two tables are for versions which parallelize the loop over P (Table A), and the loop over the elements of *K* (Table B).

A)	р	Time (seconds)	Speedup] B)	р	Time (seconds)	Speedup
	1	161.522337	1		1	166.076348	1
	2	85.508760	1.8890		2	89.910633	1.8471
	4	49.311946	3.2755		4	53.421731	3.1088
	8	36.629304	4.4096		8	41.934506	3.9604

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parallelization of Problem

- The left table (C) makes both the loops over P and over the elements of *K* parfor loops.
- The right hand table (D) involves a single parallel loop over the elements of the full 3D array.

C)	р	Time (seconds)	Speedup] D)	р	Time (seconds)	Speedup
	1	162.320255	1		1	163.824436	1
	2	85.886755	1.8899		2	87.518920	1.8719
	4	49.494977	3.2795		4	49.092138	3.3371
	8	36.357750	4.4645		8	34.331397	4.7719

Discussion

- For the basic problem, all these methods perform similarly.
- It is hard to draw any conclusions with only 8 workers available (maximum on Socrates).
- Note that versions A and C are functionally the same, given how workers are assigned.
- Version B likely scales slightly worse than the others due to overhead associated with setting up the loops.
- It is likely that version D will scale better than the others.
- Version D requires that the full problem be stored in memory (as a 3D array) to obtain the eigenvalues, and this may require too much memory with the full problem.

Future Work

- Obviously the main extension is to use the full kernel *K* and solve the complete problem.
- Tests with the basic problem need to be done on a larger system to see which method actually scales the best.
- The convergence rates of the Chebyshev expansions also need to be examined.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

And finally, extension to 3-body problems.