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Quantum Bound States

The study of quantum bound states is important because they

are often what is actually observed.

Simple atomic bound states can be studied with the

Schrödinger equation:

HΨ = EΨ.

More complicated problems require the use of approximation

schemes, such as perturbation theory:

H = H0 + λH1.

For perturbation theory to be valid, the expansion parameter λ

must be small.



Beyond Perturbation Theory

In the theory of the strong nuclear force (quantum

chromodynamics or QCD) the coupling can become large,

making perturbation theory unsuitable.

Non-perturbative bound states can be described by an integral

equation (IE) called the Bethe-Salpeter equation:

Γ(p;P) =
∫

d4q

(2π)4
K (q,p;P)S

(
q+
)

Γ(q;P)S
(
q−
)
.

Γ(p;P) is the Bethe-Salpeter amplitude, and can be thought

of as a wavefunction for the bound state.

S (q) is a quantum propagator for a bound particle.

The kernel K (q,p;P) represents all possible interactions

between the bound particles. It is generally approximated.

Since these are relativistic quantum objects (spin is important)

they are all 4x4 matrices.



Lorentz Decomposition

Particle physics relies on invariance under Lorentz

transformations.

Γ(p;P) can be decomposed into Lorentz basis elements:

Γ(p;P) =
N

∑
i=1

Fi (p;P) τ̂i (p;P) .

The matrix structure of these τ̂i (p;P) allows them to be

orthogonal under a trace operation:

Tr [τ̂i (p;P) τ̂j (p;P)] = δij .

Expanding Γ on both sides and taking the trace of the

equation uses the orthogonality to transform the 4x4 IE to N

coupled 1x1 IEs.



Chebyshev Decomposition

4-dimensional quadrature is ine�ecient, so further

simpli�cations are desired.

The integral can be transformed into 4-d spherical coordinates:

(q0,q1,q2,q3)−→ (|q| ,φ1,φ2,θ) .

Due to the rotational symmetry of the problem, the angular

dependence can be factored out through a decomposition into

orthogonal Chebyshev polynomials (with u = cos(φ1)):

Fi (p,P) =
M

∑
j=0

Uj (u) F̃ij
(
p2,P2

)
.

Again expanding the Fi on both sides of the system and

integrating over the angular variables removes any angular

dependence from the solution. The kernel becomes more

complicated, however.



Discretization

There is now a set of N×M coupled 1-dimensional IEs.

Written as a vector equation, this looks like:[
F̃ij
(
p2,P2

)
...

]
=
[
Kij ,kl

(
p2,q2,P2

)][ F̃kl
(
p2,P2

)
...

]
.

Now the equation is discretized in its p2 and q2 dependecies

on a grid of size r : [F̃ij]
...

=

[ [
Kij ,kl

(
P2
)]

. . .
...

. . .

] [F̃kl]
...

 .

The result is a r ×N×M dimensional linear system.



Eigenvalue Problem

The system still has a free parameter P , which needs to be

�xed.

An arti�cal eigenvalue depending on P is inserted into the

equation, turning it into a proper eigenvalue problem:

λ
(
P2
)[
F̃ij

]
=
[
K
(
P2
)][

F̃kl

]
.

To solve the equation with λ
(
P2
)

= 1, the eigenvalue problem

needs to be solved for many di�erent values of P . The value

of P that gives an eigenvalue of 1 is the correct value.

Physically, P is the mass of the bound state and the solution[
F̃ij

]
gives the components of the bound state wavefunction.

Solving this eigenvalue problem is then equivalent to solving

the IE.



Summary and Parallelization

There are three separate computational problems which might

bene�t from parallelization.

First is the computation of the matrix
[
K
(
P2
)]
, which

involves tens of millions of double quadratures.

Second is the eigenvalue computation, which is relatively

cheap.

Finally, the above two steps must be repeated for a range of P

values until λ
(
P2
)

= 1 is found.


