
Solving an optimization problem 

for maximizing the forward velocity of arm model

(Mohammad Shabani)



Introduction

Method

Goals



Introduction
What is OpenSim?

• OpenSim is a musculoskeletal simulation toolkit



Introduction
What is OpenSim?

• OpenSim is a musculoskeletal simulation toolkit



What  does OpenSim do?
• Using it as a developer

• You can implement your own model 

• You can improve it (it is open source)

• Using it as an end user
• You can use an implemented model to analyze it (using GUI) 

Introduction



What is the model we are interested to?

A simple model of arm consisting of:
• 2 bones

• 6 muscles

• 2 joints

Introduction



What we are going to do?
• Maximizing forward velocity of wrist

• By finding optimized muscle control

• We should solve an optimization problem

Introduction



What is the problem?
• It takes a lot of time 

• Optimizer is not fast enough

• We should repeat simulation

for a huge number of input arguments

Introduction



Introduction

Method

Goals



What is the solution?

• We need to reduce the execution time

• Same process is repeated for every input parameters 

• This program is easily parallelizable

Method



The idea to solve the problem:

• This program is easily parallelizable so we can run it on a cluster

• Using PythOPT as our new solver for optimizing 
• PythOpt is a solver

• It can call an application

• We can run our C++ code from PythOPT

Method



Method

Objective 
Function

double f(a) {
Set muscle controls (a)
Simulate ()
Return velocity

}

Max f(a)
a

PythOPT



Method

Optimizer
(PythOPT)

Thread 1
OBJ Func

Thread 3
OBJ Func

Thread 2
OBJ Func

Thread n
OBJ Func…



• Investigating PythOPT and 
implemented code in OpenSim Step 1

• Connect PythOPT to a 
simple C++ programStep 2

• Connecting main OpenSim 
program to PythOPTStep 3

• Running code on a cluster 
(using MPI)Step 4

Method



Introduction

Method

Goals



• Using PythOPT as our solver

• Running the program on a cluster

• Getting results in a less time 

Goals



• Test cases: we want to see how using PythOpt and parallelism 
affect our problem
• Running serial code with PythOPT

• Measuring execution time with and without PythOPT

• Can see the improvement on execution time 

Goals



• Test cases: we want to see how using PythOpt and parallelism 
affect our problem
• Running final code on a cluster using PythOPT

• Can see gains on speed up totally

Goals



• Test cases: we want to see how using PythOpt and parallelism 
affect our problem
• All comparisons are based on execution time

• With a certain amount of samples

Goals


