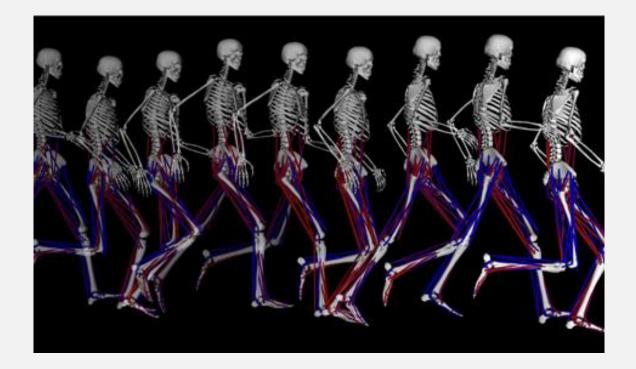
#### Solving an optimization problem


#### for maximizing the forward velocity of arm model

(Mohammad Shabani)



#### What is OpenSim?

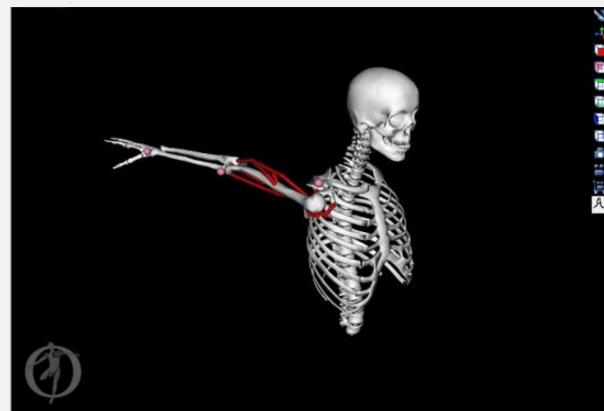
• OpenSim is a musculoskeletal simulation toolkit



#### What is OpenSim?

• OpenSim is a musculoskeletal simulation toolkit




#### What does OpenSim do?

- Using it as a developer
  - You can implement your own model
  - You can improve it (it is open source)
- Using it as an end user
  - You can use an implemented model to analyze it (using GUI)

What is the model we are interested to?

A simple model of arm consisting of:

- 2 bones
- 6 muscles
- 2 joints



What we are going to do?

- Maximizing forward velocity of wrist
- By finding optimized muscle control
- We should solve an optimization problem



#### What is the problem?

- It takes a lot of time
- Optimizer is not fast enough

| h |                                         | The second second |                                                     |        |
|---|-----------------------------------------|-------------------|-----------------------------------------------------|--------|
|   | Optimization Step<br>-3.0077            | #: 2              | controls - ~[0.01 0.01 0.01 0.01 0.01 0.01] bestSoF | ar -   |
|   | Optimization Step<br>Far = -3.00783     | <b>I</b> : 4      | controls - ~[0.00999728 0.01 0.01 0.01 0.01 0.01 b  | sstSo_ |
|   | Optimization Step<br>Far = -3.0079      | <b>II:</b> 6      | controls = ~[0.01 0.00999728 0.01 0.01 0.01 0.01] b | est\$o |
|   | Optimization Step<br>628                | <b>#:</b> 15      | controls - ~[0.01 0.01 0.01 1 1 0.01] bestSoFar -   | -3.87  |
|   | Optimization Step<br>-3.87636           | #: 20             | controls = ~[0.01 0.00999728 0.01 1 1 0.01] bestSol | Far -  |
|   | Optimization Step<br>ar = -4.0675       | <b>#:</b> 29      | controls - ~[0.01 0.01 0.0577658 1 1 0.0594141] be  | stSoF  |
|   | Optimization Step<br>stSoFar = -4.06773 | #: 31             | controls = ~[0.0100027 0.01 0.0577658 1 1 0.059414  | 1] he  |
|   | Optimization Step<br>stSoFar = -4.06773 | #: 33             | controls = ~[0.01 0.0100027 0.0577658 1 1 0.059414  | 11 he  |

suel\OptimizerExampleArmBuild\RefWithDebInfo\u

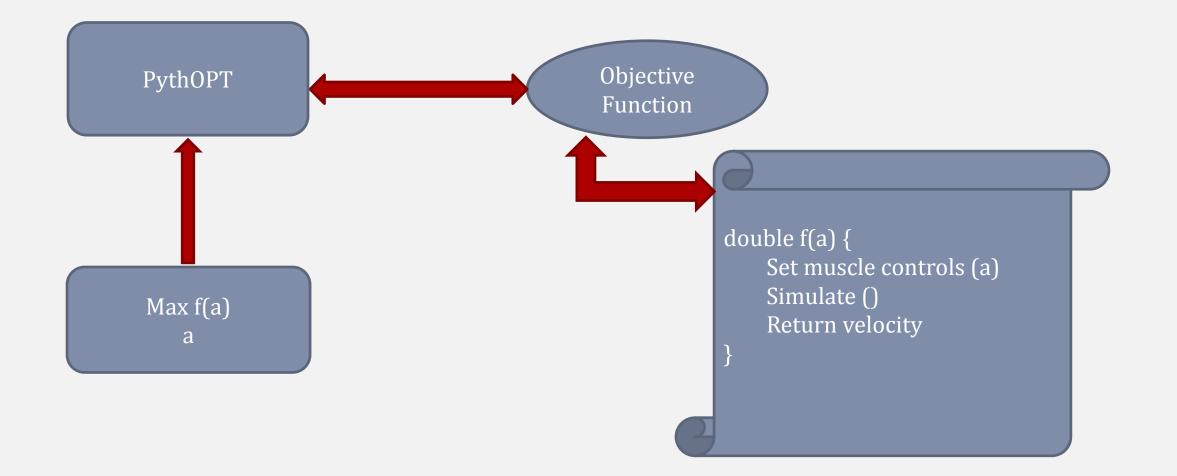
• We should repeat simulation

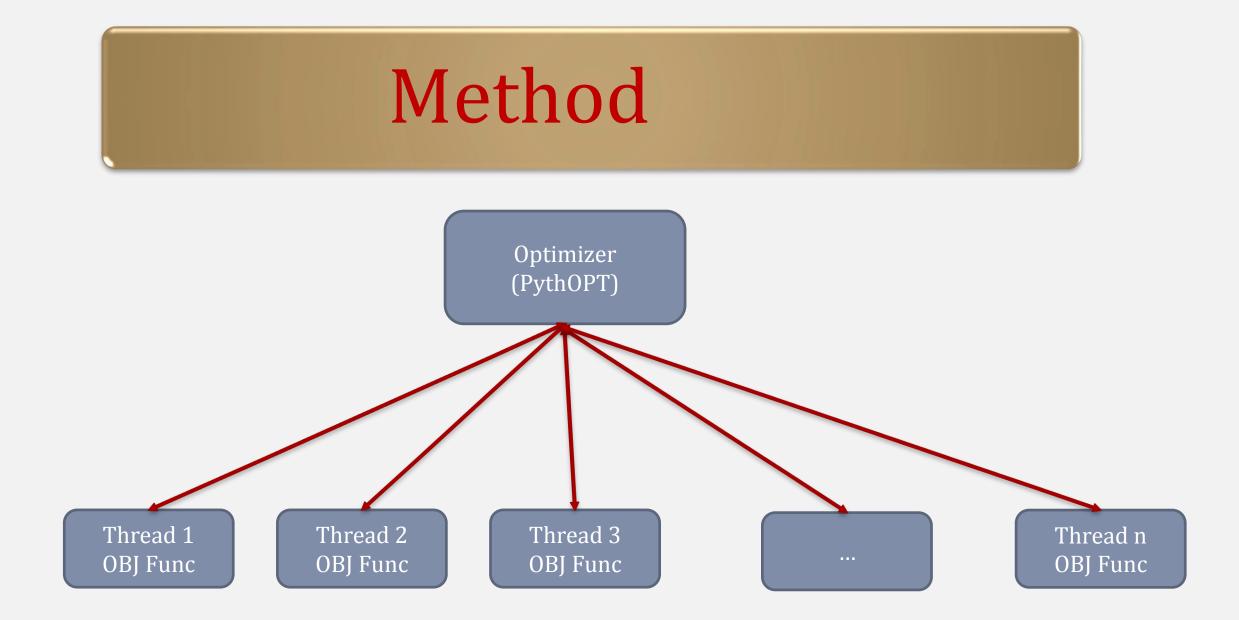
for a huge number of input arguments



# Method

What is the solution?


- We need to reduce the execution time
- Same process is repeated for every input parameters
- This program is easily parallelizable




The idea to solve the problem:

- This program is easily parallelizable so we can run it on a cluster
- Using PythOPT as our new solver for optimizing
  - PythOpt is a solver
  - It can call an application
  - We can run our C++ code from PythOPT

### Method





#### Method



- Investigating PythOPT and implemented code in OpenSim
- Connect PythOPT to a simple C++ program
- Connecting main OpenSim program to PythOPT
- Running code on a cluster (using MPI)



## Goals

- Using PythOPT as our solver
- Running the program on a cluster
- Getting results in a less time



- Test cases: we want to see how using PythOpt and parallelism affect our problem
  - Running <u>serial</u> code with PythOPT
  - Measuring execution time with and without PythOPT
  - Can see the improvement on execution time



- Test cases: we want to see how using PythOpt and parallelism affect our problem
  - Running final code on a cluster using PythOPT
  - Can see gains on speed up totally



- Test cases: we want to see how using PythOpt and parallelism affect our problem
  - All comparisons are based on execution time
  - With a certain amount of samples