
MPI Programming — Part 2

Objectives

• Barrier synchronization

• Broadcast, reduce, gather, scatter

• Example: Dot product

• Derived data types

• Performance evaluation

1

Collective communications

In addition to point-to-point communications,
MPI includes routines for performing collective
communications, i.e., communications involving all
processes in a communicator, to allow larger groups
of processors to communicate, e.g., one-to-many or
many-to-one.

These routines are built using point-to-point
communication routines, so in principle you could build
them yourself.

However, there are several advantages of directly using
the collective communication routines, including

• The possibility of error is reduced. One collective
routine call replaces many point-to-point calls.

• The source code is more readable, thus simplifying
code debugging and maintenance.

• The collective routines are optimized.

2

Collective communications

Collective communication routines transmit data
among all processes in a communicator.

It is important to note that collective communication
calls do not use the tag mechanism of send/receive for
associating calls.

Rather, calls are associated by the order of the program
execution.

Thus, the programmer must ensure that all processes
execute the same collective communication calls and
execute them in the same order.

The collective communication routines can be applied
to all processes or a specified set of processes as defined
in the communicator.

For simplicity, we assume all processes participate in
the collective communications, but it is always possible
to define a collective communication between a subset
of processes with a suitable communicator.

3

MPI Collective Communication

Routines

MPI provides the following collective communication
routines:

• Barrier sychronization across all processes.

• Broadcast from one process to all other processes.

• Global reduction operations such as sum, min, max,
or user-defined reductions.

• Gather data from all processes to one process.

• Scatter data from one process to all processes.

• Advanced operations in which all processes receive
the same result from a gather, scatter, or reduction.
There is also a vector variant of most collective
operations where messages can have different sizes.

4

MPI Collective Communication

Routines

Notes:

1. In many implementations of MPI, calls to
collective communication routines will synchronize
the processes. However, this synchronization is not
guaranteed, so you should not count on it!

2. The MPI BARRIER routine synchronizes the
processes but does not pass data. Despite this, it
is often categorized as a collective communications
routine.

5

Barrier synchronization

Sometimes you need to hold up some or all processes
until some other processes have completed a task.

For example, a root process reads data and then must
transmit these data to other processes.

The other processes must wait until they receive the
data before they can proceed.

The MPI BARRIER routine blocks the calling process
until all processes have called the function.

When MPI BARRIER returns, all processes are
synchronized at that point.

WARNING! MPI BARRIER is done in software and can
incur a substantial overhead on some machines.

In general, you should use barriers sparingly!

6

Fortran syntax:

MPI BARRIER (COMM, IERR)

Input argument COMM of type INTEGER is the
communicator defining the processes to be held up
at the barrier.

Output argument IERR of type INTEGER is the error
flag.

 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

Figure 1: The effect of MPI BARRIER.

7

Broadcast

The simplest collective operation involving the transfer
of data is the broadcast.

In a broadcast operation, a single process sends a
copy of some data to all the other processes in a
communicator.

 P3

 P2

 P1

 P0

 A

 P3

 P2

 P1

 P0

 A

 A

 A

 A

Figure 2: MPI BCAST operation.

8

Broadcast

Specifically, the MPI BCAST routine copies data from
the memory of the root process to the same memory
locations for other processes in the communicator.

Clearly, you could accomplish the same thing with
multiple calls to a send routine.

However, use of MPI BCAST makes the program

• easier to read (one line replaces loop)

• easier to maintain (only one line to modify)

• more efficient (use optimized implementations)

9

Fortran syntax:

MPI BCAST (BUF, COUNT, DTYPE, ROOT, COMM, IERR)

Input argument BUF is the array of data to be sent.

Input argument COUNT of type INTEGER gives the
number of elements in BUF.

Input argument DTYPE gives the data type of the entries
of BUF.

Input argument ROOT of type INTEGER is the rank of
the sending process.

Input argument COMM is the communicator of the
processes that are to receive the broadcasted data.

Output argument IERR is the usual error flag.

Send contents of array BUF with COUNT elements of
type DTYPE from process ROOT to all processes in
communicator COMM and return with flag IERR.

10

Reduction

In a reduction operation, a single process collects
data from the other processes in a communicator and
combines them into a single data item.

For example, reduction could be used to sum array
elements that are distributed over several processes.

Operations besides arithmetic are also possible, for
example, maximum and minimum, as well as various
logical and bitwise operations.

Before the reduction, the data, which may be arrays or
scalar values, are distributed across the processes.

After the reduction operation, the reduced data (array
or scalar) are located on the root process.

 P3

 P2

 P1

 P0

1

7

3

−2

 P3

 P2

 P1

 P0

9

Figure 3: MPI REDUCE operation with MPI SUM.

11

Reduction

Pre-defined reduction operators to be used with
MPI REDUCE are

• MPI MAX, MPI MIN: maximum and minimum

• MPI MAXLOC, MPI MINLOC: maximum and minimum
with corresponding array index

• MPI SUM, MPI PROD: sum and product

• MPI LAND, MPI LOR: logical AND and OR

• MPI BAND, MPI BOR: bitwise AND and OR

• MPI LXOR, MPI BXOR: logical, bitwise exclusive OR

12

Fortran syntax:

MPI REDUCE (SEND_BUF, RECV_BUF, COUNT, DTYPE,

OP, RANK, COMM, IERR)

Input argument SEND BUF is the array to be sent.

Output argument RECV BUF is the reduced value that
is returned.

Input argument COUNT of type INTEGER gives the
number of elements in SEND BUF and RECV BUF.

Input argument DTYPE gives the data type of the entries
of SEND BUF and RECV BUF.

Input argument OP is the reduction operation.

Input argument RANK of type INTEGER is the rank of
the sending process.

Input argument COMM is the communicator of the
processes that have the data to be reduced.

Output argument IERR is the usual error flag.

13

Gather

The gather operation collects pieces of the data
that are distributed across a group of processes and
(re)assembles them appropriately on a single process.

 P3

 P2

 P1

 P0

 A3

 A2

 A1

 A0

 P3

 P2

 P1

 P0

 A0 A1 A2 A3

Figure 4: MPI GATHER operation.

14

Gather

Similar to MPI REDUCE, the MPI GATHER routine is an
all-to-one communication routine.

When MPI GATHER is called, each process (including
the root process) sends the contents of its send buffer
to the root process.

The root process receives the messages and stores them
in contiguous memory locations and in order of rank.

The outcome is the same as each process calling
MPI SEND and the root process calling MPI RECV some
number of times to receive all of the messages.

MPI GATHER requires that all processes, including the
root, send the same amount of data, and that the data
are of the same type.

Thus, the send count equals the receive count.

15

Fortran syntax:

MPI_GATHER(SEND_BUF,SEND_COUNT,SEND_DTYPE,RECV_BUF,

RECV_COUNT,RECV_DTYPE,RANK,COMM,IERR)

Input argument SEND BUF is the array to be gathered.

Input argument SEND COUNT of type INTEGER gives
the number of elements in SEND BUF.

Input argument SEND DTYPE is the data type of the
elements of SEND BUF.

Output argument RECV BUF is the array to receive the
gathered data; it is only meaningful to process RANK.

Input arguments RECV COUNT of type INTEGER and
RECV DTYPE give the number of elements and data
type of RECV BUF expected from each process.

Input argument RANK of type INTEGER is the rank of
the gathering process.

Input argument COMM is the communicator of the
processes that have the data to be gathered.

16

MPI ALLGATHER

After the data have been gathered into the root
process, MPI BCAST could then be used to distribute
the gathered data to all of the other processes.

It is more convenient and efficient to do this via the
MPI ALLGATHER routine.

 P3

 P2

 P1

 P0

 A3

 A2

 A1

 A0

 P3

 P2

 P1

 P0

 A0

 A0

 A0

 A0

 A1

 A1

 A1

 A1

 A2

 A2

 A2

 A2

 A3

 A3

 A3

 A3

Figure 5: The effect of MPI ALLGATHER.

The syntax for MPI ALLGATHER is the same as it is for
MPI GATHER except the RANK argument is omitted.

17

Scatter

In a scatter operation, all of the data are initially
collected on a single process.

After the scatter operation, pieces of the data are
distributed on different processes.

 P3

 P2

 P1

 P0

 A0 A1 A2 A3

 P3

 P2

 P1

 P0

 A3

 A2

 A1

 A0

Figure 6: MPI SCATTER operation.

18

Scatter

The MPI SCATTER routine is a one-to-all
communication routine.

Different data are sent from the root process to each
process (in rank order).

When MPI SCATTER is called, the root process breaks
up a set of contiguous memory locations into equal
chunks and sends one chunk to each process.

The outcome is the same as root calling MPI SEND

some number of times and each process calling
MPI RECV.

19

Fortran syntax:

MPI_SCATTER(SEND_BUF,SEND_COUNT,SEND_DTYPE,RECV_BUF,

RECV_COUNT,RECV_TYPE,RANK,COMM,IERR)

Input argument SEND BUF is the array to be scattered.

Input argument SEND COUNT of type INTEGER gives
the number of elements in SEND BUF to be sent to
each process.

Input argument SEND DTYPE is the data type of the
elements of SEND BUF.

Output argument RECV BUF is the array that receives
the data.

Input arguments RECV COUNT of type INTEGER and
RECV DTYPE give the number of elements and data
type of RECV BUF expected for a single receive.

Input argument RANK of type INTEGER is the rank of
the scattering process.

Input argument COMM is the communicator of the
processes that receive the data to be scattered.

20

Other operations

• MPI ALLREDUCE acts like MPI REDUCE except the
reduced result is broadcast to all processes.

• It is possible to define your own reduction operation
using MPI OP CREATE.

• MPI GATHERV and MPI SCATTERV gather or scatter
with data items that may have different sizes.

• MPI ALLTOALL: all processes get all data (total
exchange); data items must be same size.

• MPI ALLTOALLV acts like MPI ALLTOALL with data
items that may have different sizes.

• MPI SCAN performs a reduction operation on a
subset of processes in a communicator.

• MPI REDUCE {GATHER|SCATTER} acts like
MPI REDUCE followed by MPI {GATHER|SCATTER}V.

21

Example: Dot product

The following Fortran code computes the dot product
x · y = xTy of two vectors x,y ∈ <N .

PROGRAM dotProductMPI

!

! This program computes the dot product of two vectors X,Y

! (each of size N) with component i having value i

! in parallel using P processes.

! Vectors are initialized in the code by the root process,

! then statically distributed in blocks to all processes.

! It is not assumed N is divisible by P.

!

INCLUDE ’mpif.h’

! variable declarations

INTEGER, PARAMETER :: N = 100

REAL, PARAMETER :: ROOT = 0

INTEGER :: P, NBAR

INTEGER :: RANK, I, EXTRA, INDEX, OFFSET = 0

INTEGER :: IERR

REAL :: X(N), Y(N)

REAL :: DOT, DOT_LOC = 0.0

! initialize MPI

CALL MPI_INIT(IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI not initialized."

STOP

ENDIF

22

! Get the number of processes:

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, P, IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI processes not established."

STOP

ENDIF

! Get ranks of processes:

CALL MPI_COMM_RANK(MPI_COMM_WORLD, RANK, IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI ranks not established."

STOP

ENDIF

! Root process initializes vectors X,Y and distributes them

IF (RANK.EQ.ROOT) THEN

DO 10 I=1,N

X(I) = I

Y(I) = I

10 END DO

ENDIF

! this could probably be done more efficiently by packing X and Y

! into one entity and broadcasting it

CALL MPI_BCAST(X, N, MPI_REAL, ROOT, MPI_COMM_WORLD, IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI_BCAST not successful."

STOP

ENDIF

CALL MPI_BCAST(Y, N, MPI_REAL, ROOT, MPI_COMM_WORLD, IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI_BCAST not successful."

STOP

ENDIF

! determine which block of data to work on and compute dot product

NBAR = N/P

EXTRA = MOD(N,P)

IF (RANK < EXTRA) OFFSET = 1

23

DO 20 I=1,NBAR+OFFSET

INDEX = RANK*NBAR + I + MIN(EXTRA,RANK)

DOT_LOC = DOT_LOC + X(INDEX)*Y(INDEX)

20 END DO

! gather and reduce the data and print the result

CALL MPI_REDUCE(DOT_LOC, DOT, 1, MPI_REAL, MPI_SUM, ROOT, &

MPI_COMM_WORLD, IERR)

IF (RANK.EQ.ROOT) THEN

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI_REDUCE not successful."

STOP

ENDIF

PRINT*, ’The dot product is: ’, DOT

PRINT*, ’The answer should be: ’, N*(N+1)*(2*N+1)/6

ENDIF

! Finalize MPI:

CALL MPI_FINALIZE(IERR)

IF (IERR.NE.MPI_SUCCESS) THEN

PRINT*, "ERROR: MPI not finalized."

STOP

ENDIF

END PROGRAM dotProductMPI

24

Example: Trapezoidal rule revisited

With knowledge of the collective communication
features in MPI, we can revisit the program for the
trapezoidal rule to improve its communication patterns.

To recall, the basic strategy behind the first version
of the trapezoidal rule program was to have each
process determine its region of integration, perform
the trapezoidal rule, and send its result to Process 0,
which would then accumulate and print the result.

We can improve the way Process 0 receives the result
through the use of MPI Reduce.

25

Example: Trapezoidal rule revisited

To achieve this, we can replace the code block

/* Add up the integrals calculated by each process */

if (my_rank != 0) {
MPI_Send(&local_int, 1, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD);

} else {
total_int = local_int;

for (source = 1; source < comm_sz; source++) {
MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

total_int += local_int;

}
}

with

MPI_Reduce(&local_int, &total_int, 1, MPI_DOUBLE, MPI_SUM,

0, MPI_COMM_WORLD);

To generalize this to a sum of N-dimensional vectors,
we can use

double local_x[N], sum[N];

...

MPI_Reduce(local_x, sum, N, MPI_DOUBLE, MPI_SUM,

0, MPI_COMM_WORLD);

26

Caveats of collective communication

• All processes in a communicator must call the same
collective function; if not the program will hang.

• The arguments must be consistent; e.g., the process
on which to collect results must be the same one!

• The output argument is only used on destination
process, but all processes must pass an argument to
it (even if it is NULL).

• Recall that collective communications match based
on calling order. So, e.g., if MPI Reduce is used
with operator MPI SUM and destination process 0,

t Process 0 Process 1 Process 2

0 a=1; c=2; a=1; c=2; a=1; c=2;

1 MPI Reduce(&a,&b,...) MPI Reduce(&c,&d,...) MPI Reduce(&a,&b,...)

2 MPI Reduce(&c,&d,...) MPI Reduce(&a,&b,...) MPI Reduce(&c,&d,...)

the final value of b is 1 + 2 + 1 = 4 and the final
value of d is 2 + 1 + 2 = 5.

27

Caveats of collective communication

• Trying to use the same buffer for input and output in
MPI Reduce is illegal and its result is unpredictable
— you could get anything from the right answer
to a program crash. The act of having an output
argument and an input/output argument refer to
the same memory location is called aliasing. MPI
prohibits aliasing because it is illegal in Fortran, and
the MPI Forum wanted to make the C and Fortran
versions as similar as possible1.

In other words, do not use a call such as

MPI_Reduce(&x, &x, 1, MPI_DOUBLE, 0, comm);

1Despite this, we may see a potential workaround later.

28

Data distribution

There are three usual ways to distribute data to
processes. Suppose we have n pieces of data, comm sz

processes, and that n divides evenly over comm sz.

In a block partition, we simply assign blocks of size
n local = n/comm sz in order to each process.

In a cyclic partition, we assign the components one a
time in a round-robin style.

In a block-cyclic partition the data are partitioned into
blocks and the blocks are distributed cyclically.

p Block Cyclic Block-Cyclic

0 0 1 2 3 0 3 6 9 0 1 6 7

1 4 5 6 7 1 4 7 10 2 3 8 9

2 8 9 10 11 2 5 8 11 4 5 10 11

MPI Scatter uses a block partition, so it is only
suitable when n divides evenly over comm sz.

If n does not evenly divide over comm sz, we can use
MPI Scatterv.

29

Derived data types in MPI

We have stressed the overhead of message passing
compared to (local) computation.

It also usually pays to consolidate data into fewer (but
larger) messages instead of many small messages.

We have already seen the use of the count argument to
group contiguous array elements into a single message.

In MPI, a derived data type is a way to mix and match
any collection of basic MPI data types into a single
representation.

This is achieved by storing both the types of the data
along with their relative locations in memory.

This way all the data can be collected into one message
before they are sent.

(Similarly, they can be distributed into their proper
locations by the receiving process.)

30

Derived data types in MPI

As an example, in the program for the trapezoidal
method, it is not hard to imagine that process 0 might
have to broadcast information (such as a, b, and n)
rather than have each process determine it.

In this case, we can build a derived data type consisting
of two doubles and an int and use one MPI Bcast

(instead of three) to distribute a, b, and n.

To create the derived data type, we need to specify
the basic MPI data type along with a displacement,
measured in bytes, of the address of the variable from
the beginning of the data type.

31

Derived data types in MPI

For example, suppose that on process 0, a, b, and n are
stored in memory locations 24, 40, and 48, respectively.

These data items could be represented by the derived
data type

{(MPI DOUBLE,0), (MPI DOUBLE,16), (MPI INT,24)},

where the first element is the basic MPI data type and
the second element is the displacement of the element
from the beginning of the data type.

Thus,

• a is of type MPI DOUBLE and its displacement from
the beginning of the data type is 0 (by definition).

• b is of type MPI DOUBLE and its displacement from
the beginning of the data type is 40− 24 = 16.

• n is of type MPI INT and its displacement from the
beginning of the data type is 48− 24 = 24.

32

Derived data types in MPI

Derived data types can be built using the
MPI Type create struct function with syntax

int MPI Type create struct(

int count /* in */,

int array_of_blocklengths[] /* in */,

MPI_Aint array_of_displacements[] /* in */,

MPI_Datatype array_of_types[] /* in */,

MPI_Datatype* new_type_p /* out */);

where count is the number of elements in the data
type; each array argument must have count elements.

In our example, count = 3 and we would define

int array of blocklengths[3] = {1,1,1};

It is possible for individual data items to be arrays (or
subarrays), in which case the corresponding element of
array of blocklengths would not be 1.

33

Derived data types in MPI

The argument array of displacements specifies
the displacement from the start of the data type,
so in our example we would set

array_of_displacements = {0, 16, 24};

In practice, the addresses are obtained using the
function MPI Get address with syntax

int MPI_Get_address(

void* location_p /* in */,

MPI_Aint* address_p /* out */);

where the address of the memory location referenced
by location p is returned.

The MPI type MPI Aint is a special integer type that
is large enough to store an address on the system.

34

Derived data types in MPI

For our example, we can populate the elements of
array of displacements via

MPI_Aint a_addr, b_addr, n_addr;

MPI_Get_address(&a, &a_addr);

array_of_displacements[0] = 0;

MPI_Get_address(&b, &b_addr);

array_of_displacements[0] = b_addr - a_addr;

MPI_Get_address(&n, &n_addr);

array_of_displacements[0] = n_addr - a_addr;

The MPI data types of the elements are stored in
array of types via the definition

MPI_Datatype array_of_types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT};

The new data type can now be built with the call

MPI_Datatype input_mpi_t;

...

MPI Type create struct(3, array of blocklengths,

array_of_displacements, array_of_types,

&input_mpi_t);

35

Derived data types in MPI

Finally, before using input mpi t, we commit it using

int MPI_Type_commit(MPI_Datatype*, new_mpi_t_p /* in/out */);

To now use it, we can make the following call on each
process

MPI_Bcast(&a, 1, input_mpi_t, 0, comm);

In other words, we can use it just like any of the basic
MPI data types.

Finally, constructing the new data type likely required
additional internal storage.

When we are done using the new data type, we can
free this additional storage via

int MPI_Type_free(MPI_Datatype* old_mpi_t_p /* in/out */);

36

Derived data types in MPI

/* File: mpi_trap4.c

* Purpose: Use MPI to implement a parallel version of the trapezoidal

* rule. This version uses collective communications and

* MPI derived datatypes to distribute the input data and

* compute the global sum.

*

* Input: The endpoints of the interval of integration and the number

* of trapezoids

* Output: Estimate of the integral from a to b of f(x)

* using the trapezoidal rule and n trapezoids.

*

* Compile: mpicc -g -Wall -o mpi_trap4 mpi_trap4.c

* Run: mpiexec -n <number of processes> ./mpi_trap4

*

* Algorithm:

* 1. Each process calculates "its" interval of

* integration.

* 2. Each process estimates the integral of f(x)

* over its interval using the trapezoidal rule.

* 3a. Each process != 0 sends its integral to 0.

* 3b. Process 0 sums the calculations received from

* the individual processes and prints the result.

*

* Note: f(x) is all hardwired.

* IPP: Section 3.5 (pp. 117 and ff.) */

#include <stdio.h>

/* We’ll be using MPI routines, definitions, etc. */

#include <mpi.h>

/* Build a derived datatype for distributing the input data */

void Build_mpi_type(double* a_p, double* b_p, int* n_p,

MPI_Datatype* input_mpi_t_p);

37

/* Get the input values */

void Get_input(int my_rank, int comm_sz, double* a_p, double* b_p,

int* n_p);

/* Calculate local integral */

double Trap(double left_endpt, double right_endpt, int trap_count,

double base_len);

/* Function we’re integrating */

double f(double x);

int main(void) {
int my_rank, comm_sz, n, local_n;

double a, b, dx, local_a, local_b;

double local_int, total_int;

/* Let the system do what it needs to start up MPI */

MPI_Init(NULL, NULL);

/* Get my process rank */

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

Get_input(my_rank, comm_sz, &a, &b, &n);

dx = (b-a)/n; /* dx is the same for all processes */

local_n = n/comm_sz; /* So is the number of trapezoids */

/* Length of each process’ interval of

* integration = local_n*dx. So my interval

* starts at: */

local_a = a + my_rank*local_n*dx;

local_b = local_a + local_n*dx;

local_int = Trap(local_a, local_b, local_n, dx);

38

/* Add up the integrals calculated by each process */

MPI_Reduce(&local_int, &total_int, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

/* Print the result */

if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n", n);

printf("of the integral from %f to %f = %.15e\n",
a, b, total_int);

}

/* Shut down MPI */

MPI_Finalize();

return 0;

} /* main */

/*--

* Function: Build_mpi_type

* Purpose: Build a derived datatype so that the three

* input values can be sent in a single message.

* Input args: a_p: pointer to left endpoint

* b_p: pointer to right endpoint

* n_p: pointer to number of trapezoids

* Output args: input_mpi_t_p: the new MPI datatype

*/

void Build_mpi_type(

double* a_p /* in */,

double* b_p /* in */,

int* n_p /* in */,

MPI_Datatype* input_mpi_t_p /* out */) {

int array_of_blocklengths[3] = {1, 1, 1};
MPI_Datatype array_of_types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT};
MPI_Aint a_addr, b_addr, n_addr;

MPI_Aint array_of_displacements[3] = {0};

MPI_Get_address(a_p, &a_addr);

39

MPI_Get_address(b_p, &b_addr);

MPI_Get_address(n_p, &n_addr);

array_of_displacements[1] = b_addr-a_addr;

array_of_displacements[2] = n_addr-a_addr;

MPI_Type_create_struct(3, array_of_blocklengths,

array_of_displacements, array_of_types,

input_mpi_t_p);

MPI_Type_commit(input_mpi_t_p);

} /* Build_mpi_type */

/*--

* Function: Get_input

* Purpose: Get the user input: the left and right endpoints

* and the number of trapezoids

* Input args: my_rank: process rank in MPI_COMM_WORLD

* comm_sz: number of processes in MPI_COMM_WORLD

* Output args: a_p: pointer to left endpoint

* b_p: pointer to right endpoint

* n_p: pointer to number of trapezoids

*/

void Get_input(

int my_rank /* in */,

int comm_sz /* in */,

double* a_p /* out */,

double* b_p /* out */,

int* n_p /* out */) {
MPI_Datatype input_mpi_t;

Build_mpi_type(a_p, b_p, n_p, &input_mpi_t);

if (my_rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a_p, b_p, n_p);

}
MPI_Bcast(a_p, 1, input_mpi_t, 0, MPI_COMM_WORLD);

MPI_Type_free(&input_mpi_t);

} /* Get_input */

40

/*--

* Function: Trap

* Purpose: Serial function for estimating a definite integral

* using the trapezoidal rule

* Input args: left_endpt

* right_endpt

* trap_count

* base_len

* Return val: Trapezoidal rule estimate of integral from

* left_endpt to right_endpt using trap_count

* trapezoids

*/

double Trap(

double left_endpt /* in */,

double right_endpt /* in */,

int trap_count /* in */,

double base_len /* in */) {
double estimate, x;

int i;

estimate = (f(left_endpt) + f(right_endpt))/2.0;

for (i = 1; i <= trap_count-1; i++) {
x = left_endpt + i*base_len;

estimate += f(x);

}
estimate = estimate*base_len;

return estimate;

} /* Trap */

/*--

* Function: f

* Purpose: Compute value of function to be integrated

* Input args: x

*/

double f(double x /* in */) {
return x*x;

} /* f */

41

Performance evaluation

We have stressed the importance of performance
evaluation in parallel programming.

In some sense, the whole point of parallel programming
can be understood to be completing a calculation faster
and faster as more and more processes are employed.

In order to measure this, we take timings.

We are mostly interested in the wall-clock execution
time of the functional part of the code, and we generally
report the minimum of several timings.

Recall that it is also important to know the resolution
of the timer being used in order to gauge the precision
and reliability of the timings.

42

Performance evaluation

MPI provides the MPI Wtime function that gives the
time in seconds from some arbitrary time in the past:

double MPI_Wtime(void);

So a block of MPI code can be timed using code like

double start, finish;

...

start = MPI_Wtime();

/* code to be timed */

...

finish = MPI_Wtime();

printf("Processor %d > Elapsed time = %e seconds.\n",
my_rank, finish-start);

The resolution of MPI Wtime on a given system can
be measured using MPI Wtick:

double MPI_Wtick(void);

43

Performance evaluation

Of course, we still need to extract a single run time for
the program.

To do this, we synchronize all the processes before the
timing begins with a call to MPI Barrier followed by
a call to MPI Reduce to find the maximum.

double local_start, local_finish;

...

MPI_Barrier(comm);

local_start = MPI_Wtime();

/* code to be timed */

...

local_finish = MPI_Wtime();

local_elapsed = local_finish - local_start

MPI_Reduce(&local_elapsed, &elapsed, 1, MPI_DOUBLE,

MPI_MAX, 0, comm);

if (my_rank == 0),

printf("Elapsed time = %e seconds.\n",
elapsed);

44

Example: matrix-vector

multiplication

As an example, we consider the performance of a
parallel program to compute a matrix-vector product
in the “standard” (dot-product) fashion.

Let A be an m× n matrix and x be an n-vector.

Then the common way to compute and/or interpret
Ax is via m inner products:

Ax =

 (a1,x)
...

(am,x),


where ai is row i of A.

45

Example: matrix-vector

multiplication

Let y = Ax be an m-vector.

Then algorithmically, we have

y = 0
for i = 1 to m do
for j = 1 to n do

yi = yi + aijxj

end for
end for

46

Example: matrix-vector

multiplication

Translated to serial code,

void Mat_vect_mult(

double A[] /* in */,

double x[] /* in */,

double y[] /* out */,

int m /* in */,

int n /* in */) {
int i, j;

for (i = 0; i < m; i++) {
y[i] = 0.0;

for (j = 0; j < n; j++)

y[i] += A[i*n+j]*x[j];

}
} /* Mat_vect_mult */

47

Example: matrix-vector

multiplication

A simple parallel program to compute a matrix-vector
product using this approach is given by the following.

void Mat_vect_mult(

double local_A[] /* in */,

double local_x[] /* in */,

double local_y[] /* out */,

int local_m /* in */,

int n /* in */,

int local_n /* in */,

MPI_Comm comm /* in */) {
double* x;

int local_i, j;

int local_ok = 1;

x = malloc(n*sizeof(double));

if (x == NULL) local_ok = 0;

Check_for_error(local_ok, "Mat_vect_mult",

"Can’t allocate temporary vector", comm);

MPI_Allgather(local_x, local_n, MPI_DOUBLE,

x, local_n, MPI_DOUBLE, comm);

for (local_i = 0; local_i < local_m; local_i++) {
local_y[local_i] = 0.0;

for (j = 0; j < n; j++)

local_y[local_i] += local_A[local_i*n+j]*x[j];

}
free(x);

} /* Mat_vect_mult */

48

Example: matrix-vector

multiplication

Here are some timing results taken from the text for
parallel matrix-vector multiplication:

49

Example: matrix-vector

multiplication

Some observations:

• For fixed n, run times decrease as P increases.

• For large n, doubling P halves run time.

• For small n, increasing P has less effect.

Recall

Tparallel(n, P) =
Tserial(n)

P
+ Toverhead,

where for our program Toverhead basically represents the
time to perform the MPI Allgather.

Clearly Toverhead is negligible when n is large and P is
small and dominates when n is small and P is large.

50

Example: matrix-vector

multiplication

The speedups are calculated as:

51

Example: matrix-vector

multiplication

Some observations:

• Nearly linear speedups are obtained for small P and
large n.

• Little or no (relative) speedups are obtained for large
P and small n.

• No (relative) slowdown occurred, but it was close!

• There was a steady improvement in speedup as for
fixed P (> 1) as n increased.

52

Example: matrix-vector

multiplication

The efficiencies are calculated as:

53

Example: matrix-vector

multiplication

Analogous statements hold for efficiencies:

• Nearly perfect efficiencies are obtained for small P
and large n.

• Efficiency is poor for large P and small n.

• There was a steady improvement in efficiency as for
fixed P (> 1) as n increased.

54

Example: matrix-vector

multiplication

Finally, considering scalability, recall that there are two
flavours of scalability:

1. Strong scalability: efficiency remains (essentially)
constant for constant problem size as number of
processes increases.

2. Weak scalability: efficiency remains (essentially)
constant as the problem size and number of
processes increase proportionately.

Based on the observations provided, the matrix-vector
multiplication program appears to be weakly scalable
for n sufficiently large.

Specifically, this can be seen by looking at the values
along the super-diagonals in Table 3.7 on efficiencies
(or equivalently along the super-diagonals in Table 3.6
on speedups).

55

Summary

• Collective communication

• Barrier, broadcast, reduction, gather, and scatter
operations

• Example: Dot product

• MPI derived data types

• Performance evaluation

56

