
PART I - Fundamentals of
Parallel Computing



Objectives

• What is scientific computing?

• The need for more computing power

• The need for parallel computing and parallel
programs

1



What is scientific computing?

The concepts of numerical analysis, scientific
computing, and simulation are related but distinct.

Numerical analysis is the study of the
design and analysis of algorithms that use
numerical approximations (as opposed to symbolic
manipulations) for solving problems in mathematical
analysis (as opposed to discrete mathematics).

Examples of the types of problems popular in numerical
analysis are special function evaluation, interpolation,
root-finding, numerical linear algebra (linear systems
of equations, eigenvalue problems, etc.), differential
equations, optimization, and quadrature problems.

Numerical analysis does not assume or require the
existence of a computer to perform calculations.

Approximation errors due to rounding, truncation, or
discretization would still exist, and the study of their
propagation through stability of the problem and the
algorithm would remain important.

2



Scientific computing generally refers to the solution of
a mathematical model by means of a computer.

Naturally, numerical analysis is fundamentally
important to scientific computing.

Scientific computing is often used synonymously with
computational science.

Computational science is about using computation, as
opposed to theory and experiment, to do science.

I view computational science as a superset of scientific
computing and would use it more synonymously with
a holistic (as opposed to literal) interpretation of
simulation, i.e., constructing a mathematical model
of a system of interest, simulating it (i.e., solving the
model using a computer), and interpreting or otherwise
quantitatively analyzing its output.

Regardless of the nuances, all three concepts are
distinct from computer science, which is more about
the study of computers, how computations are
performed, and information processing.

3



The need for more computing

Historically, science has been based on the paradigms
of theory and experiment.

However, with the extraordinary and relatively recent
increase in computing power, a third scientific
paradigm has emerged: simulation.

Simulation allows scientists to test theories without the
need for experiments.

This is especially important when experiments are
expensive, dangerous, or simply impossible.

Simulation can also reduce the number of experiments
needed to validate a theory.

Similar to experiment, simulation can generate data
that can inform theory.

Industry uses simulation to make informed decisions in
the absence of complete theory or observational data
but also to reduce the time required to go from design
to prototype to product.

4



The need for more computing

The natural progression of scientific discovery and
industrial research is to continually seek out harder
and harder problems to study.

We have already reached a stage where computing is
all around us: robots, cars, weather prediction, GPS,
google, . . . , all require significant amounts of high-
level computation to function.

As of November 2013, the fastest1 supercomputer (the
Tianhe-2 (MilkyWay-2) computer, based on Intel Xeon
E5-2692 12C 2.2000 GHz / Intel Xeon Phi 31S1P
with 3,120,000 cores developed by China’s National
University of Defense Technology) was clocked at
about 34 PFlops (“sustained”); its theoretical peak
is about 55 PFlops.

This may sound like a lot of flops per second, but it
may not be as much as you think.

1according to the maximal LINPACK performance achieved

5



The need for more computing

Example: A virtual human heart.

The human heart has approximately 1010 muscle cells.

A model of the human heart will require approximately
100 variables per cell.

Suppose it takes 1000 flops to advance the state of
each variable by 1 microsecond of simulated time.

Then a microsecond of simulated time needs 1015 flops.

The bad news: The fastest supercomputer can only do
about 1010 flops per microsecond of real time.

The good news: This is a bit of a worst-case analysis
(total flop count for a microsecond of a useful virtual
heart might be closer to 1011), and computers are still
getting “faster” (exaflop computing).

We might see a useful virtual heart this decade.

6



Projected Performance Development

Source: www.top500.org

7



The need for more computing

Other examples:

• Climate modelling

• Natural disaster prediction / mitigation

• Protein folding; drug discovery

• Energy research

• Data analysis (genomics, particle physics,
astronomy, ocean research, search engines)

8



The economics of CPU technology

Technology is governed by economics.

The rate at which a computer processor can
execute instructions (e.g., floating-point operations)
is proportional to the frequency of its clock.

However,

power ∼ (voltage)2 × (frequency),

voltage ∼ frequency,

=⇒ power ∼ (frequency)3

e.g., a 50% increase in performance by increasing
frequency requires 3.4 times more power.

By going to 2 cores, this performance increase can be
achieved with 16% less power2.

2This assumes you can make 100% use of each core.

9



Physical limits of CPU technology

Suppose we wanted to build a single CPU capable of 1
TFlop (= 1012 flops) per second; e.g., add vectors x,
y with 1012 elements and store in vector z.

This requires 3 × 1012 copies between memory and
registers per second.

If data can travel at the speed of light (3× 108 m/s),
then the average distance of a word of memory to the
CPU must be 10−4 m.

Suppose we have a square grid with the CPU at the
centre. The size of the square can be 2× 10−4 m.

A row of memory contains
√
3× 1012 =

√
3 × 106

words. So each word must fit into

2× 10−4

√
3× 106

≈ 10−10 m.

This is the size of a relatively small atom!

10



Physical limits of CPU technology

In other words, unless we can figure out how to
represent a 32- (or 64-) bit word with a single atom, it
will be impossible to build such a computer.

Transistors are already getting so small that
(undesirable) quantum effects (such as electron
tunnelling) are becoming non-negligible.

No matter which way you look at it,

increasing frequency is no longer an option!

When increasing frequency was possible, software got
faster because hardware got faster.

Hardware is in some sense still getting better, but
increases in performance are only possible nowadays by
exploiting parallelism.

The only software that will survive will be that which
takes advantage of parallel processing.

11



When to parallelize

Not every problem needs to be parallelized in order to
find its solution.

There are only two scenarios in which parallelization
makes sense as a way to help solve a problem:

1. The problem is too big to fit into the memory of
one computer.

2. The problem takes too long to run.

The goal in both of these scenarios can be described
as reducing the amount of (real) time it takes to get
the solution3.

Note that this is not the same as reducing the overall
amount of computation.

3In the first scenario, the original time required can be viewed as infinite (no
such single computer exists) or indefinite (until you acquire a new computer).

12



The challenge of parallel computing

Even if we had an unlimited processors and memory,
there are still many critical issues to deal with.

• Designing and implementing suitable interconnection
networks for processors and memory modules.

• Designing and implementing system software.

• Devising algorithms and data structures.

• Usefully dividing algorithms and data structures into
sub-problems.

• Identifying how the sub-problems will communicate
with each other.

• Assigning sub-problems to processors and memory
modules.

In this course, we will be mostly concerned with the
last 4 items.

13



The need for parallel computing

Parallel programming and parallel computers allow us
to take better advantage of computing resources to
solve larger and more memory-intensive problems in
less time than is possible on a single serial computer.

Trends in computer architecture towards multi-core
and accelerated systems make parallel programming
and HPC a necessary practice going forward.

It is already difficult to do leading-edge computational
science without parallel computing, and this situation
can only get worse in the future.

Computational scientists who ignore parallel computing
do so at their own risk!

14



Summary

• Parallel computing is here to stay.

• Parallel programming will become the prevalent
mode of programming in the very near future.

• Leading-edge computational science and technology
must take advantage of parallel computers and
parallel programs.

15


