
PART V - The n-body problem

Objectives

• Problem formulation

• Program development OpenMP

• Program development MPI

1

Problem Formulation

The n-body problem is one of the most famous
problems in mathematical physics, with its first
complete mathematical formulation dating back to
Newton’s Principia.

Classically, it refers to the problem of predicting
the motion of n celestial bodies that interact
gravitationally.

Nowadays, other problems, such as those from
molecular dynamics, are also often referred to as n-
body problems.

For n = 2, the problem was completely solved by
Johann Bernoulli.

For n = 3, solutions exist in special cases.

In general, numerical methods must be used to simulate
such systems.

2

Problem Formulation

We will specialize the discussion in terms of the
gravitational problem, so we treat as inputs the mass,
position, and velocity of each particle.

The output is typically the positions and velocities of
all the particles at some final time or sequence of times.

We assume Newtonian physics to describe the motion.

Suppose we have n particles with masses mi and
positions ri(t).

Then particle i has a (gravitational) force exerted on
it by particle j given by

fi,j(t) = − Gmimj

||ri(t)− rj(t)||3
(ri(t)− rj(t)),

where G = 6.673× 10−11 m/(kg · s2).

3

Problem Formulation

The total force on particle i is thus given by

Fi(t) =

n−1∑
j=0

j 6=i

fi,j(t)

= −Gmi

n−1∑
j=0

j 6=i

mj

||ri(t)− rj(t)||3
(ri(t)− rj(t)).

Now using Newton’s second law F = ma translated
to our notation, we have

Fi(t) = mir̈i(t),

for i = 0, 1, . . . , n− 1.

4

Problem Formulation

From this, we obtain a system of second-order ordinary
differential equations (ODEs)

r̈i(t) = −G
n−1∑
j=0

j 6=i

mj

||ri(t)− rj(t)||3
(ri(t)− rj(t)),

for i = 0, 1, . . . , n− 1.

To make life slightly simpler, we assume ri(t) ∈ R2.

We also assume that we will integrate the ODEs with
an explicit numerical method and constant stepsize ∆t.

(More details on exactly what this means in a moment.)

The output is to be given at a future time T = N∆t.

5

Algorithm Formulation

A serial n-body solver consists of the following steps:

Require: input data
1: for each (constant) timestep do
2: for each particle i do
3: Compute Fi(t).
4: Update ri(t) (and ṙi(t) := vi(t)).
5: end for
6: end for
7: return ri(T) for each particle i.

Pseudocode to compute the Fi(t) might look like

1: for each particle j 6= i do
2: dx = r[i][x] - r[j][x];

3: dy = r[i][y] - r[j][y];

4: d = sqrt(dx*dx+dy*dy);

5: d3 = d*d*d;

6: F[i][x] -= G*m[i]*m[j]/d3*(r[i][x]-r[j][x]);

7: F[i][y] -= G*m[i]*m[j]/d3*(r[i][y]-r[j][y]);

8: end for

6

Algorithm Formulation

Of course, there is a symmetry that we can exploit.

By Newton’s third law, fi,j(t) = −fj,i(t).

We can reduce the number of force calculations by half
if we are careful about the sign of each force.

We can see how to do this from the force matrix:
0 f0,1 f0,2 · · · f0,n−1
−f0,1 0 f1,2 · · · f1,n−1

...
−f0,n−1 −f1,n−1 −f2,n−1 · · · 0



Now we can perform a (truncated) nested loop over the
upper (lower) triangle of the force matrix and update
the contribution of fi,j to both particles i and j.

7

Algorithm Formulation

1: for each particle i do
2: Fi(t) = 0;
3: end for
4: for each particle i do
5: for each particle j > i do
6: Fi(t) += fi,j(t);
7: Fj(t) -= fi,j(t);
8: end for
9: end for

We must not forget of course that

ai(t) = r̈i(t) = Fi(t)/mi.

Ultimately, we integrate the ODEs for the ri(t) to
simulate their evolution over time.

8

Algorithm Formulation

We are given the initial conditions

ri(0) = r0, ṙi(0) = v0, i = 0, 1, . . . , n− 1.

Thus we have a so-called initial-value problem.

Another type of problem, known as a boundary-value
problem, might have conditions that look like

ri(0) = r0, ri(T) = rT , i = 0, 1, . . . , n− 1.

Boundary-value problems are sufficiently more general
than initial-value problems that the numerical
algorithms for their solution are distinctly different.

The question we now face is how do we advance the
ri(t) from t = 0 to t = T .

There are many different strategies to do so; we focus
on a simple one: Euler’s method (or forward Euler).

9

Algorithm Formulation

Euler’s method is designed to solve IVPs for systems
of first-order ODEs

ẏ(t) = f(t,y), y(0) = y0, t > 0.

Geometrically, the idea behind the method is to
“freeze” the vector field at the point (tk,yk), where the
solution is, and have the system follow this (constant)
vector field for length ∆t.

This leads to the algorithm

yk = yk−1 + ∆t f(tk−1,yk−1), k = 1, 2, . . . , N,

where yk ≈ y(tk).

Alternatively, it can be interpreted as using the zeroth-
order Taylor-series approximation of the vector field
f(t,y) at the point (tk,yk).

10

Algorithm Formulation

Often mathematical models involve second- or higher-
order derivatives.

Any model based on Newton’s second law F = ma
corresponds to r̈(t) = F/m.

As mentioned, the n-body problem that we are
considering is an example of this.

These problems are not of the form ẏ = f(t,y), so it
is not possible to directly apply a standard integrator
such as Euler’s method for their solution.

Fortunately, they can be converted to first-order form
using a standard change of variables.

In such cases, the unknowns are the function and its
derivatives up to one order less than the given ODE.

This means that an mth-order ODE is converted to m
first-order ODEs.

11

Algorithm Formulation

For example, consider the second-order differential
equation describing a simple harmonic oscillator:

ẍ(t) = −x(t).

In this case, we create the vector of unknown functions
to be

y1(t) = x(t), y2(t) = ẋ(t).

Then the second-order ODE is converted into two
first-order ODEs:

ẏ(t) =

[
ẏ1(t)
ẏ2(t)

]
=

[
y2(t)
−y1(t)

]
.

12

Algorithm Formulation

Similarly, the n-body problem can be written as the
system of 2n first-order ODEs

ṙi(t) = vi(t),

v̇i(t) = Fi(t)/mi, i = 0, 1, 2, . . . , n− 1,

subject to the initial conditions

ri(0) = ri,0, vi(0) = vi,0, i = 0, 1, 2, . . . , n− 1.

Thus the positions (and velocities) may be updated via

1: r[i][x] += dt*v[i][x];

2: r[i][y] += dt*v[i][y];

3: v[i][x] += dt*f[i][x]/m[i];

4: v[i][y] += dt*f[i][y]/m[i];

13

Data Structures

Before moving on to parallelization, we review the
assumptions about the data structures involved.

We have been using arrays to store vectors.

A good way to define their size is via a macro DIM.

Then if we wish to change dimensions, in principle we
would only change the definition of DIM.

For example,

#define DIM 2

typedef double vect_t[DIM];

14

Data Structures

To advance the solution at each time step, we need
the values of each particle’s

• mass,

• position,

• velocity,

• total force acting on it, and

• acceleration.

To advance the system, it suffices to store the masses
and current positions, velocities, and forces.

Note that the predominant nature of numerical
methods for initial-value problems is to only store a
limited history of the solution.

15

Data Structures

For the purposes of this example, we group the mass,
position, and velocity of each particle into a single
struct and store the forces in a separate array.

Because the forces are thus stored in a contiguous
block of memory, we can initialize them (to 0) quickly
using memset.

#include <string.h> /* for memset */

...

vect_t* f = malloc(n*sizeof(vect_t));

...

for (step = 1; step <= n_steps; step++) {
...

/* Assign 0 to each element of f */

f = memset(f,0,n*sizeof(vect_t));

for (i = 0; i < n-1; i++

Compute_force(i,f,...);

...

}

If the total force on each particle were a member of
a struct, the force members would not be contiguous
in memory, and we would have to use a relatively slow
for loop to zero the entries.

16

Applying Foster’s methodology

1. Partitioning. Compute the Fi(tk−1), vi(tk), and
ri(tk) for each particle i and time step k.

2. Communication. Computation of vi(tk) requires
vi(tk−1) and Fi(tk−1) (and hence ri(tk−1) and
rj(tk−1)); computation of ri(tk) requires ri(tk−1)
and vi(tk−1).

3. Aggregation. Most communication between tasks
can be organized on a per-particle basis, so it makes
sense to agglomerate computations associated with
a single particle into a composite task.

4. Mapping. There are nN tasks with both n, N � p,
the number of processes.

So, there are two “dimensions” to this mapping.

However, assigning tasks for one particle at different
time steps to different cores will not work well
because of the sequential nature of Euler’s method.

17

Applying Foster’s methodology

Hence, the map of tasks to cores reduces to mapping
particles to cores.

Assuming the work done per step is roughly equal, a
block partitioning that assigns roughly n/p particles
per core should provide a well-balanced load.

This assumption is valid for the case where symmetry
is not taken advantage of when computing fi,j(t).

When symmetry is taken advantage of, the loops for
lower i will more expensive than those for larger i.

In this case, a cyclic partition is more effective.

However, in a shared-memory framework, a cyclic
partition is almost certain to lead to a higher number
of cache misses than a block partition.

In a distributed-memory framework, the communication
overhead involved with a cyclic partition will probably
be greater than that for a block partition.

18

Applying Foster’s methodology

This leads us to the following summary of how best to
map tasks to cores in a basic implementation of the
n-body problem.

• A block distribution should give the best
performance for the algorithm that does not take
advantage of symmetry in the force calculations.

• In principle, a cyclic distribution should give the
best performance for the algorithm that does take
advantage of symmetry in the force calculations.
However, additional cache misses in the shared-
memory context and additional communication
overhead in the distributed-memory context may
render a block distribution superior in practice.

In order to make the final decision as to the optimal
mapping of tasks to cores, we will need to appeal to
some experimentation.

19

Parallelization with OpenMP

In order to see how to write a parallel n-body solver
using OpenMP, we first recall the basic structure:

1: for each (constant) timestep do
2: for each particle i do
3: Compute Fi(t).

4: end for
5: for each particle i do
6: Update ri(t) (and ṙi(t) := vi(t)).

7: end for
8: end for

The two inner loops are both iterating over particles.
So, it might suffice to put in a parallel for

construct:
1: # pragma omp parallel for

2: for each particle i do
3: Compute Fi(t).

4: end for
5: # pragma omp parallel for

6: for each particle i do
7: Update ri(t) (and ṙi(t) := vi(t)).

8: end for

20

Parallelization with OpenMP

We might not like all the forking and joining that such
a program might do, but before we worry about that,
we should ensure the program actually works.

In particular, we need to check for race conditions
resulting from loop-carried dependencies.

Recall the inner workings of the first loop:

1: for each particle j 6= i do
2: dx = r[i][x] - r[j][x];

3: dy = r[i][y] - r[j][y];

4: d = sqrt(dx*dx+dy*dy);

5: d3 = d*d*d;

6: F[i][x] -= G*m[i]*m[j]/d3*(r[i][x]-r[j][x]);

7: F[i][y] -= G*m[i]*m[j]/d3*(r[i][y]-r[j][y]);

8: end for

21

Parallelization with OpenMP

The parallel for construct ensures only one thread
will access F[i] for any i.

It is true that thread i will access m[j] and r[j], but
these values are only read.

As long as they are not written to, there is no risk of
a race condition being established.

All other variables are temporary in nature, so they can
be private.

So, this first loop does not introduce race conditions.

22

Parallelization with OpenMP

Recall the inner workings of the second loop:

1: r[i][x] += dt*v[i][x];

2: r[i][y] += dt*v[i][y];

3: v[i][x] += dt*f[i][x]/m[i];

4: v[i][y] += dt*f[i][y]/m[i];

In this case, it is straightforward to see that thread i

only accesses quantities associated with particle i.

The only other variable referenced is the scalar dt and
that is only read.

So this second loop does not introduce race conditions.

Recall that there is an implicit barrier at the end of
each parallel for construct, so no race conditions
are set up when going from one loop to the next.

Finally, we may wish to add a schedule clause to the
for directives to ensure a block partition is used:

pragma omp for schedule(static, n/p)

23

Parallelization with OpenMP

Things are a little trickier when trying to take
advantage of symmetry in the force calculations.

Recall the algorithm:

1: for each particle i do
2: Fi(t) = 0;
3: end for
4: for each particle i do
5: for each particle j > i do
6: Fi(t) += fi,j(t);
7: Fj(t) -= fi,j(t);
8: end for
9: end for

The additional loop to initialize the forces to 0 can be
easily parallelized using a parallel for construct.

All iterations are independent, and so there is no risk
of introducing any race conditions.

24

Parallelization with OpenMP

However, a simple insertion of parallel for

constructs does introduce a race condition for the
fi,j computations.

Suppose we have 4 particles and 2 threads with a block
partition of the particles.

The total force on say particle 3 is

F3 = −f0,3 − f1,3 − f2,3.

Thread 0 computes f0,3 and f1,3 and Thread 1
computes f2,3.

Thus, the threads are racing to update the forces.

25

Parallelization with OpenMP

The knee-jerk solution to resolve race conditions is via
critical directives.

For example, a critical directive could be put before
all the force updates:

1: for each particle i do
2: for each particle j > i do
3: # pragma omp critical {
4: Fi(t) += fi,j(t);
5: Fj(t) -= fi,j(t);
6: }
7: end for
8: end for

Of course, this effectively serializes the code, and the
performance of the code is likely to degrade accordingly.

26

Parallelization with OpenMP

An alternative would be to have one critical section for
each particle by using a lock for each particle:

1: for each particle i do
2: for each particle j > i do
3: omp set lock(& locks[i])

4: Fi(t) += fi,j(t).
5: omp unset lock(& locks[i])

6: omp set lock(& locks[j])

7: Fj(t) -= fi,j(t).
8: omp unset lock(& locks[j])

9: end for
10: end for

The master thread creates a shared array of locks (one
for each particle), and the locks are set according to
which particle is going to have its force updated.

This approach does perform much better than having
a single critical section, but it is still not competitive
with the serial code.

27

Parallelization with OpenMP

A more effective way to proceed is to separate the
computation of the forces into two phases and use
local temporary storage.

Specifically, phase one is the previous computation
(with the race condition) but using local storage.

The second phase then gathers the local values and
puts them into the shared vector for the forces.

Thus, for 2 threads, 4 particles, and block partitioning,
Thread 0 computes and locally stores −f0,3− f1,3, and
Thread 1 computes and locally stores −f2,3.

Then Thread 1, which has been assigned particle 3,
computes F3 by adding these two values.

28

Parallelization with OpenMP

To understand potential impacts of scheduling, we now
consider a larger example: 3 threads and 6 particles.

With a block partition, the computations are as follows:

i / p 0 1 2

0 f0,1 + f0,2 + f0,3 + f0,4 + f0,5 — —

1 −f0,1 + f1,2 + f1,3 + f1,4 + f1,5 — —

2 −f0,2 − f1,2 f2,3 + f2,4 + f2,5 —

3 −f0,3 − f1,3 −f2,3 + f2,4 + f2,5 —

4 −f0,4 − f1,4 −f2,4 − f3,4 f4,5
5 −f0,5 − f1,5 −f2,5 − f3,5 −f4,5

Then in phase 2, Thread 0 collects the contributions for
particles 0 and 1, Thread 1 collects the contributions
for particles 1 and 2, etc.

However, we notice the load is not well balanced.

The load is equivalent to the number of contributions
of one sign of fi,j.

So Thread 0 has 9 units of work, Thread 1 has 5 units
of work, and Thread 2 only has 1 unit of work.

29

Parallelization with OpenMP

If we use a cyclic partition, the computations are:

i / p 0 1 2

0 f0,1 + f0,2 + f0,3 + f0,4 + f0,5 — —

1 −f0,1 f1,2 + f1,3 + f1,4 + f1,5 —

2 −f0,2 −f1,2 f2,3 + f2,4 + f2,5
3 −f0,3 + f3,4 + f3,5 −f1,3 −f2,3
4 −f0,4 − f3,4 −f1,4 + f4,5 −f2,4
5 −f0,5 − f3,5 −f1,5 − f4,5 −f2,5

Now, Thread 0 has 7 units of work, Thread 1 has 5
units of work, and Thread 2 only 3 units of work.

Not perfect, but better, and the improvements increase
as the problem size and the number of threads increase.

30

Parallelization with OpenMP

The code for phase 1 would look something like

1: # pragma omp for

2: for each particle i do
3: Fi(t) = 0.
4: for each particle j > i do
5: Floc,i(t) += fi,j(t);
6: Floc,j(t) -= fi,j(t);
7: end for
8: end for

The code for phase 2 would look something like

1: # pragma omp for

2: for each particle i do
3: for each thread p do
4: Fi(t) += Floc,p(t);
5: end for
6: end for

31

Parallelization with OpenMP

Finally, of course, we should double-check to ensure
this new approach does not introduce any race
conditions.

In phase 1, each thread writes to its own local array,
so no race condition is created there.

Similarly, during phase 2, only the thread that owns
particle i writes to Fi(t), so there is no race condition
created there either.

Finally, we check to ensure no race condition is created
in the transition between the loops.

Again, the implicit barrier at the end of each parallel

for construct prevents threads from racing ahead and
using variables that have not been properly initialized.

32

Parallelization with OpenMP

We now quote some results from the text as to the
performance of the OpenMP code.

We would like to compare the performance of the codes
depending on whether symmetry is taken advantage of.

When symmetry is not taken advantage of, we have
seen that any schedule that divides the iterations
equally among the threads (assuming one thread per
core) should do a good job of load balancing.

We also argued a block partition would result in fewer
cache misses than a cyclic partition.

Thus, the block partition is likely to be the best option
for this implementation.

33

Parallelization with OpenMP

When taking advantage of symmetry, we recall that
the amount of work done in phase 1 decreases as the
for loop proceeds.

A cyclic schedule should do the best job of load
balancing in this case.

However, in the remainder of the code (initializing
Floc(t), phase 2, and updating r(t) and v(t)), the
work per iteration is roughly equal.

Unfortunately, the schedule of one loop can affect the
performance of another, so it may be that choosing a
cyclic partition for one loop and block partitions for
the others may degrade the performance.

34

Parallelization with OpenMP

We consider the performance of the n-body solver when
run with no I/O, n = 400 particles, and N = 1000
time steps; times are given in seconds.

Differences between serial code and codes with p = 1
are less than 1%.

p ns/block s/block s/F cyclic s/all cyclic

1 7.71 3.90 3.90 3.90
2 3.87 2.94 1.98 2.01
4 1.95 1.73 1.01 1.08
8 0.99 0.95 0.54 0.61

35

Parallelization with OpenMP

Observations:

• For p > 1, cyclic outperforms block partitioning;
i.e., cache misses are more than made up for by
improved load balancing.

• For p = 2, there is little difference in performance
between the cyclic partitions, but applying a cyclic
partition only to the force calculations outperforms
as p increases; i.e., the overhead in changing
partitions is less than that from false sharing.

• Not taking advantage of symmetry leads to
execution times of about twice those where a cyclic
partition is used for the force calculations. However,
the latter implementation requires more p times
more memory. So if enough memory is available,
the partially cyclic solver is the method of choice.

36

Parallelization with MPI

With composite tasks grouped according to particles,
it is fairly straightforward to parallelize the version that
does not take advantage of symmetry with MPI.

The “only” communication between processes occurs
when computing the fi,j.

Unfortunately, each particle needs the position of every
other particle (and at every time step).

Fortunately, the MPI Allgather function is designed
for exactly this type of communication.

We expect that a block partition will have the best
performance, so the mapping of particles to processes
will be done this way.

37

Parallelization with MPI

In the OpenMP version of the program, we used a
single struct to collect most of the data for a given
particle (mi, ri, and vi but not Fi).

The equivalent in MPI would require a derived data
type, and communication with derived data types is
generally slower than with native MPI data types.

So, we will just use arrays for these quantities.

In fact, if there is enough memory, each process can
store its own array for the mi because they are always
needed but never changed.

38

Parallelization with MPI

We make the following design decisions regarding the
data structures to be used.

Suppose that the array pos stores the positions of all
n particles.

Further, suppose that vect mpi t is an MPI data type
that stores two contiguous doubles.

Finally, suppose that n is evenly divisible by p and
define loc n = n/p.

• Each process stores all the mi.

• Each process uses a single array for the ri(t).

• Each process uses a pointer loc pos to the start of
its block of r.

So on process p, loc pos = pos + ploc n.

39

Parallelization with MPI

With these choices, the MPI code to perform an n-
body simulation without using symmetry might look
something like

1: Get (and broadcast) input data.
2: for each timestep do
3: for each local particle iloc do
4: Compute Filoc

(t).
5: end for
6: for each local particle iloc do
7: Compute riloc

and viloc
.

8: end for
9: Allgather riloc

to global array pos.
10: end for

Note that the mi and pos are broadcast because they
are needed everywhere to compute the forces.

On the other hand, the velocities are only ever needed
locally, so the array vel is scattered.

40

Parallelization with MPI

Trying to take advantage of symmetry in the force
calculations looks at first to be extremely complicated.

In order to compute the forces, each process would
have to gather a subset of the positions.

Then it would have to scatter some of these forces
and receive others in order to update the forces on the
particles of which it is in charge.

As usual, complicated strategies can work well but only
if great care is exercised.

In such situations, it is one challenge just to get the
correct answer.

It is quite another to get the correct answer in an
efficient (scalable) manner.

41

Parallelization with MPI

Fortunately, we can take advantage of symmetry in our
problem using a well-known communication construct
called the ring pass.

As the name implies, in a ring pass, we imagine the
processes to be connected in a ring.

Process p communicates only with processes p± 1.

Communication takes place in phases, with, e.g.,
process p sending data to process p − 1 and receiving
data from process p + 1.

In general, process p sends data to process (p − 1 +
comm sz) % comm sz and receives data from process
(p + 1)% comm sz.

After comm sz−1 phases, all the processes have
received all the data.

This will be our plan for communicating the positions.

42

Parallelization with MPI

We still need to figure out how to exploit symmetry in
the force calculation, i.e., the fact that fi,j = −fj,i.

The first thing to notice is that some interparticle
forces are added whereas others are subtracted.

In the ring pass computation of the interparticle
forces, the forces computed by the owning task/particle
are added, whereas those computed by other
tasks/particles are subtracted.

For example, with 6 particles,

F3 = −f0,3 − f1,3 − f2,3 + f3,4 + f3,5

and the first sub-index indicates which task/particle
carries out the computation.

43

Parallelization with MPI

So in our ring pass, we can pass loc n forces along
with the loc n positions in each phase.

Thus in each phase, each process can

1. compute the fi,j between the particles it owns and
those whose positions it receives;

2. add the fi,j to the particles it owns and subtract
them from the force array it receives.

Let’s see what this looks like for n = 4, p = 2, and a
cyclic distribution of particles among the processes.

44

Parallelization with MPI

45

Parallelization with MPI

Before the ring pass begins, the arrays storing the
positions are initialized and forces set to 0.

Each process also computes the fi,j associated with
the particles it owns.

These values are added into the appropriate locations
in loc forces and subtracted in tmp forces.

Then tmp pos and tmp forces are exchanged.

The fi,j between the local and received particles
are computed; the lower-ranked process does the
computation.

As before, the newly computed forces are added
into the appropriate locations in loc forces and
subtracted in tmp forces.

The algorithm completes with a final exchange of
tmp forces and an update

loc_forces += tmp_forces.

46

Parallelization with MPI

A few final notes on implementation:

• Because we can use the same memory for
outgoing and incoming data, we can (should) use
MPI Sendrecv replace.

• A single array to store tmp pos and tmp forces

would reduce communication overhead.

• The use of global indices, as opposed to local ones
as might be tempting, makes life much easier. For
example, it is clear that the mi are most easily
accessed with global indices. Global indices simplify
the determination of whether a given process should
compute the fi,j for a particle whose position it has
just received. A function Global to local can
convert global indices to local ones where this is
logistically advantageous.

47

Performance of the MPI solvers

We quote results from the text on the performance of
the MPI solvers that may or may not take advantage
of symmetry in the force calculation.

The results (in s) are for 800 particles run for 1000 time
steps run on a cluster with an Infiniband interconnect,
i.e., a tightly coupled system (like plato, but not like
socrates).

Differences between serial code and codes with p = 1
are less than 1%.

p no symm. symm.

1 17.30 8.68
2 8.65 4.45
4 4.35 2.30
8 2.20 1.26

16 1.13 0.78

48

Performance of the MPI solvers

Observations:

• Exploiting symmetry improves performance.

• Exploiting symmetry results in lower efficiencies;
e.g., for p = 16 the efficiency with exploiting
symmetry is about 0.70 versus 0.95 without.

Efficiency is not always a good measure of
performance!

• Exploiting symmetry results in much more efficient
memory use; more precisely p/2 times less storage
is required.

When n and p are large, this can easily make the
difference between being able to run the program
within a node’s main memory and not.

49

Comparison of the OpenMP and

MPI solvers

In terms of execution time, we quote results from the
text from running the OpenMP and MPI programs for
the n-body problem on a quad-core node.

The results (in s) again are (presumably) for 800
particles run for 1000 time steps.

OpenMP MPI
p no symm. symm. no symm. symm.

1 15.13 8.77 17.30 8.68
2 7.62 4.42 8.65 4.45
4 3.85 2.26 4.35 2.30

50

Comparison of the OpenMP and

MPI solvers

Observations:

• When symmetry is not exploited, the OpenMP
program outperforms the MPI program. This is not
surprising because MPI Allgather is expensive.

• The MPI solver that takes advantage of symmetry
is competitive with its OpenMP counterpart. This
should not be surprising given the commentary that
we have made throughout this course that MPI can
be made to outperform OpenMP even in shared-
memory environments.

• The execution times of MPI solvers are identical
whether run in a shared-memory environment or a
tightly coupled distributed-memory environment.

51

Comparison of the OpenMP and

MPI solvers

In terms of memory, each solver allocates the same
amount of storage for the rloc,i and the vloc,i.

The OpenMP solver allocates 2pn + 2n doubles for
the forces and n doubles for the mi, so in addition to
the rloc,i and the vloc,i, it stores

3
n

p
+ 2n doubles per thread.

The MPI solver allocates n doubles per process
for the mi and 4n/p doubles for the tmp pos and
tmp forces arrays.

So in addition to the rloc,i and the vloc,i, the MPI
solver stores

n + 4
n

p
doubles per process.

52

Comparison of the OpenMP and

MPI solvers

The difference in storage is thus

n− n

p
more doubles for the OpenMP solver.

In other words, if n is large, the local storage required
for the MPI solver is substantially less than for the
OpenMP solver.

So for fixed p, we should be able to run much larger
simulations with the MPI solver.

We are also likely to be able to make p much larger in
an MPI setting than an OpenMP setting.

So, the size of the largest possible MPI simulation may
well be much larger than with OpenMP.

53

n-body solvers: final word

Although we have described a fairly intuitive and
reasonably efficient method for solving the n-body
problem, the method of choice today is easily the fast
multipole method (FMM).

The FMM was introduced by Greengard and Rokhlin
in 1987.

It was named as one of the top 10 algorithms of the
20th century by the Society for Industrial and Applied
Mathematics (others on this list include the Monte
Carlo method, the QR algorithm, the fast Fourier
transform, and the Quicksort algorithm).

The FMM reduces the intuitive O(n2) complexity of
the standard n-body algorithm to O(n) in a fully
parallelizable way and with rigorous error estimates.

54

n-body solvers: final word

The basic idea is to use multipole expansions (net
mass, dipole moment, quadrupole moment, etc. —
think Green’s functions) to approximate the effects of
distant groups of particles on local groups.

Space is basically divided into a hierarchy of “panels”
or clusters of sources.

Expansions are used to capture the effect of far-away
particles while the standard O(n2) algorithm is used
for particles deemed “close”.

There are a number of non-trivial concepts that would
go into a general-purpose code, but it has been done,
and in practice, if you needed to solve a serious n-body
problem, the FMM would be the way to go.

55

Summary

• Problem formulation

• Program development OpenMP

• Program development MPI

56

