
OpenMP

Objectives

• Overview of OpenMP

• Structured blocks

• Variable scope, work-sharing

• Scheduling, synchronization

1

Overview of OpenMP

OpenMP is a collection of compiler directives and
library functions that are used to create parallel
programs for shared-memory computers.

The “MP” in OpenMP stands for “multi-processing”,
another term for shared-memory parallel computing.

OpenMP is combined with C, C++, or Fortran to
create a multithreading programming language, in
which all processes are assumed to share a single
address space.

OpenMP is based on the fork / join programming
model: all programs start as a single (master) thread,
fork additional threads where parallelism is desired (the
parallel region), then join back together.

This sequence of events is repeated until all the parallel
regions have been executed.

Note: The threads must synchronize before joining.

2

Overview of OpenMP

The philosophy of OpenMP is to not sacrifice ease of
coding and maintenance in the name of performance.

Accordingly, OpenMP was designed based on two
principles: sequential equivalence and incremental
parallelism.

A program is said to be sequentially equivalent if it
returns the same results whether it executes on one
thread or many threads.

Such programs are generally easier to understand,
write, and hence maintain.

Incremental parallelism is the process of taking working
serial code and converting pieces to execute in parallel.

At each increment, the code can be re-tested to ensure
its correctness, thus enhancing the likelihood of success
for the overall project.

Note that although this process sounds appealing, it is
not universally applicable.

3

Core concepts

Recall the “hello, world!” program in Fortran90:

PROGRAM helloWorld

PRINT *, "hello, world"

END PROGRAM helloWorld

We have hinted that OpenMP is explicitly parallel:

Any parallelism in the code has to be put there explicitly
by the programmer.

The good news is that the low-level details of how the
parallelism is executed is done automatically.

In Fortran, it is easy to denote that the PRINT

statement should be executed on each thread by
enclosing it in a block governed by a compiler directive.

4

Core concepts

PROGRAM HelloWorldOpenMP

!$OMP PARALLEL

PRINT*, "hello, world"

!$OMP END PARALLEL

END PROGRAM HelloWorldOpenMP

The program can be compiled on a shared-memory
machine (like moneta.usask.ca) via

gfortran -fopenmp helloWorldOMP.f90 -o helloWorldOMP

and executed with

./helloWorldOMP

5

Core concepts

On moneta this produces the output

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

hello, world

6

Core concepts

Notes:

1. We can conclude that the default number of threads
on moneta is 16.

2. It is possible to specify the number of threads (e.g.,
4) by setting an environment variable via

setenv OMP_NUM_THREADS 4

or from within the program via the statement

CALL OMP_SET_NUM_THREADS(4)

3. OpenMP requires that I/O be thread safe; i.e.,
output from one thread is handled without
interference from any other threads.

However, as usual, the threads can print out in any
order, depending on the order in which they reach
the print command.

7

4. This program can be compiled and run on a
serial machine (with one thread) using a serial
compiler because the compiler directives are treated
as comments.

5. Compiler directives using a fixed format (as per
Fortran 77) can be specified as

!$OMP

*$OMP

They must start in column 1; continuation lines
must have a non-blank or non-zero character in
column 6; comments may appear after column 6
starting with !.

Only !$OMP is available for free format. The
directive must start the line, but it may start at
any column; & is the continuation marker at the end
of the line; comments may appear after column 6
starting with !.

8

Core concepts

Things are slightly different in C.

The compiler directives are called pragmas, with syntax

pragma

where the # appears in column 1 and the remainder of
the directive is aligned with the rest of the code.

pragmas are only allowed to be one line long; so if one
happens to require more than one line, the line can be
continued using \ at the end of intermediate lines.

9

Core concepts

The code looks like:

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

void Hello(void); /* Thread function */

/*--*/

int main(int argc, char* argv[])

int thread_count = strtol(argv[1], NULL, 10);

pragma omp parallel num_threads(thread_count)

Hello();

return 0;

/* main */

/*---

* Function: Hello

* Purpose: Thread function that prints message

*/

void Hello(void)

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

/* Hello */

10

Core concepts

This code can be compiled and run using

gcc -g -Wall -fopenmp -o omp_hello omp_hello.c

To run, we specify the number of threads on the
command line; e.g., to run with 4 threads, we use

./omp_hello 4

Output might look like

Hello from thread 3 of 4

Hello from thread 0 of 4

Hello from thread 1 of 4

Hello from thread 2 of 4

Note that for this program if you forget to specify the
number of threads, you will see the dreaded

Segmentation fault: 11

To be able to run without specifying the number of
threads (as we did in Fortran), all code pertaining to
strtol should be removed.

11

Core concepts

Things to note from the code:

• OpenMP is a library of functions and macros, so we
need to include a header file with prototypes and
macro definitions.

• The strtol function from stdlib.h gets the
number of threads from the command line.

The syntax is

long strtol(

const char* number p /* in */

char** end p /* out */

int base /* in */);

The first argument is the command-line argument;
the last is the numeric base in which the string is
represented — in this case 10. We do not make use
of the second argument so we pass NULL.

12

Core concepts

The pragma then says the program should start a
number of threads equal to what was passed in via the
command line.

Each thread then executes the function Hello.

The threads rejoin the main thread when they return
from Hello, at which point they are terminated.

The main thread is then itself terminated.

That is quite a bit of action for relatively little code!

OpenMP pragmas start with

pragma omp

The directive

pragma omp parallel

specifies that the structured block of code that follows
is to be executed by multiple threads.

13

Structured Blocks

An OpenMP construct is defined to be a compiler
directive plus a block of code.

The block of code must be structured in the sense that
it must have a single point of entry at the top and a
single point of exit at the bottom; i.e., branching in
or out of a structured block is not allowed!

This usually leads to a (fatal) compile-time error.

Similarly, a structured block cannot contain a RETURN

statement.

Only STOP statements (in Fortran) or calls to the
function exit (in C) prevent the program from exiting
a valid structured block.

The END directive in Fortran is not necessary if the
structured block only contains one statement.

14

Structured Blocks

In C, we prefer to specify the number of threads via the
command line, so we modify our parallel directive
with a num threads clause; i.e., in OpenMP, a clause
is something that modifies a directive.

There may be system limitations that preclude running
a given number of threads.

In fact, OpenMP does not guarantee it will start
num threads threads in case, but the limit in practice
on available threads can be thousands or even millions,
so it is uncommon to not get all the threads requested.

15

Structured Blocks

Prior to the parallel directive, the program used a
single thread.

Upon reaching the parallel directive, the original
thread continues and (num threads−1) new threads
are spawned.

In OpenMP parlance, the original thread is called the
master, the new threads are called the slaves, and
collectively the threads are called a team.

Each thread in the team executes the block following
the directive; in this case, the call to function Hello.

When the block is completed, there is an implicit
barrier, at which threads wait for all to reach before
completing the block.

When the block is completed, all the slave threads
are terminated and only the master thread continues;
in our case, to execute the return statement and
terminate the program.

16

Structured Blocks

Each thread has its own stack, so it will have its own
private (local) variables.

In particular, each thread gets its own rank from calling

omp_get_thread_num

with syntax

int omp_get_thread_num(void);

and the number of threads in the team from calling

omp_get_num_threads

with syntax

int omp_get_num_threads(void);

In OpenMP, stdout is shared among the threads, so
each thread can execute the printf statement.

There is no scheduling of access to stdout, so output
is non-deterministic.

17

Error checking

In the name of compactness, we rarely include any error
checking; however, in general it is an exceptionally
good idea to check for errors while writing code.

The obvious one for the example is to check for the
presence of a command-line argument (and whether it
is positive!) and handle it more elegantly than allowing
a segmentation fault.

Another source of potential problems is the compiler.

OpenMP is designed so that if the compiler does
not support it, the parallel directive is ignored;
however, the attempts to include omp.h and call
omp get thread num and omp get num threads

will cause errors.

To handle these issues, we can check for the definition
of the preprocessor macro OPENMP.

If it is defined, we can include omp.h and make calls
to OpenMP functions.

18

Error checking

Code to check for including omp.h might look like

ifdef _OPENMP

include <omp.h>

endif

Similarly, code to check for using the other OpenMP
functions used in the example might look like

ifdef _OPENMP

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

else

int my_rank = 0;

int thread_count = 1;

endif

In other words, we specify explicitly that if OpenMP
is not available, then the code will execute with one
thread having rank 0.

19

Example: Trapezoidal Rule

We consider again the example of computing a definite
integral by means of the trapezoidal rule.

To refresh our memories of the pertinent facts, we are
computing

∫ b

a

f(x) dx ≈ ∆x

[
f(x0)/2 +

n−1∑
i=1

f(xi) + f(xn)/2

]

by means of n trapezoids of width ∆x.

Serial code to accomplish this might look like

/* input a, b, n */

dx = (b-a)/n;

approx = (f(a)+f(b))/2;

for (i = 1; i <= n-1; i++){
x_i = a + i*dx;

approx += f(x_i);

}
approx = dx*approx;

20

Example: Trapezoidal Rule

Foster’s parallel program design methodology yields

1. find the area of a single trapezoid; add areas up

2. no communication between tasks computing single
trapezoid areas, but all answers are communicated

3. assuming more trapezoids than threads, split [a, b]
into num threads subintervals

4. map tasks to threads (subintervals to threads;
results back to thread 0)

21

Example: Trapezoidal Rule

Care must be exercised in accumulating the results in
thread 0.

If we simply use a shared variable to accumulate the
individual results, the end result will be unpredictable
(and hence likely erroneous).

For example, a statement such as

total_area += local_area;

will lead to an erroneous result if more than one thread
attempts to simultaneously execute it; i.e., threads may
be adding to an old (incorrect) value of total area

instead of the current (correct) one.

Recall this is called a race condition.

We need a way to ensure that once one thread begins
executing the statement, other threads must wait until
it is finished before they can execute the statement.

22

Example: Trapezoidal Rule

In OpenMP, we define a critical section by means of
the critical directive:

pragma omp critical

total_area += local_area;

This directive explicitly says that only one thread can
execute this block of code at a time; i.e., each thread
has mutually exclusive access to the block of code.

The following is a listing of a code that accomplishes
this as well as some basic error checking (albeit with a
cryptic error message) that a command-line argument
must be supplied to the code in order for it to run and
that the number of trapezoids must be evenly divisible
by the number of threads assigned.

The code also assumes the compiler can handle
OpenMP programs and hence does not check for the
existence of OPENMP.

23

Example: Trapezoidal Rule

/* File: omp_trap1.c

* Purpose: Estimate definite integral (or area under curve)

* using the trapezoidal rule.

*

* Input: a, b, n

* Output: estimate of integral from a to b of f(x)

* using n trapezoids.

*

* Compile: gcc -g -Wall -fopenmp -o omp_trap1 omp_trap1.c

* Usage: ./omp_trap1 <number of threads>

*

* Notes:

* 1. The function f(x) is hardwired.

* 2. In this version, each thread explicitly computes the integral

* over its assigned subinterval, a critical directive is used

* for the global sum.

* 3. This version assumes that n is evenly divisible by the

* number of threads

*

* IPP: Section 5.2.1 (pp. 216 and ff.)

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <omp.h>

void Usage(char* prog_name);

double f(double x); /* Function we’re integrating */

void Trap(double a, double b, int n, double* global_result_p);

int main(int argc, char* argv[])

double global_result = 0.0; /* Store result in global_result */

24

double a, b; /* Left and right endpoints */

int n; /* Total number of trapezoids */

int thread_count;

if (argc != 2) Usage(argv[0]);

thread_count = strtol(argv[1], NULL, 10);

printf("Enter a, b, and n\n");
scanf("%lf %lf %d", &a, &b, &n);

if (n % thread_count != 0) Usage(argv[0]);

pragma omp parallel num_threads(thread_count)

Trap(a, b, n, &global_result);

printf("With n = %d trapezoids, our estimate\n", n);

printf("of the integral from %f to %f = %.14e\n",
a, b, global_result);

return 0;

/* main */

/*--

* Function: Usage

* Purpose: Print command line for function and terminate

* In arg: prog_name

*/

void Usage(char* prog_name)

fprintf(stderr, "usage: %s <number of threads>\n", prog_name);

fprintf(stderr, " number of trapezoids must be evenly divisible by\n");
fprintf(stderr, " number of threads\n");
exit(0);

/* Usage */

/*--

* Function: f

* Purpose: Compute value of function to be integrated

* Input arg: x

* Return val: f(x)

*/

double f(double x)

25

double return_val;

return_val = x*x;

return return_val;

/* f */

/*--

* Function: Trap

* Purpose: Use trapezoidal rule to estimate definite integral

* Input args:

* a: left endpoint

* b: right endpoint

* n: number of trapezoids

* Output arg:

* integral: estimate of integral from a to b of f(x)

*/

void Trap(double a, double b, int n, double* global_result_p)

double dx, x, my_result;

double local_a, local_b;

int i, local_n;

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

dx = (b-a)/n;

local_n = n/thread_count;

local_a = a + my_rank*local_n*dx;

local_b = local_a + local_n*dx;

my_result = (f(local_a) + f(local_b))/2.0;

for (i = 1; i <= local_n-1; i++)

x = local_a + i*dx;

my_result += f(x);

my_result = my_result*dx;

pragma omp critical

*global_result_p += my_result;

/* Trap */

26

Variable Scope

The scope of a variable refers to the parts of a program
in which the variable can be“seen” (accessed).

For example, in C, variables declared at the beginning
of a function can only be seen within the function;
variables declared at the beginning of a file can be seen
by any function in the file that declares the variable.

In OpenMP, scope refers to the set of threads that can
see a variable in a parallel block.

When a variable can be seen by all threads in a team,
it is said to have shared scope; a variable that can be
seen by only one thread is said to have private scope.

OpenMP is a shared-memory programming model.

A general rule is that any variable declared outside of
a parallel region has a shared scope.

In some sense, the “default” variable scope is shared.

27

Variable Scope

So the output from

PROGRAM HelloWorld2OpenMP

INTEGER :: I=57

!$OMP PARALLEL

PRINT*, "hello, world", I

!$OMP END PARALLEL

END PROGRAM HelloWorld2OpenMP

is not surprisingly

hello, world 57

hello, world 57
...

hello, world 57

hello, world 57

(The variable I has shared scope.)

28

Variable Scope

If a variable is declared inside a parallel region, it has
private (or local) scope to that thread.

Because in Fortran, variable declarations can only occur
at the beginning of a (sub)program, we need to specify
which variables are local to a given block:

PROGRAM HelloWorld2OpenMP

INTEGER :: threadNUM, OMP_GET_THREAD_NUM

!$OMP PARALLEL PRIVATE(threadNUM)

threadNUM = OMP_GET_THREAD_NUM()

PRINT*, "hello, world!", threadNUM

!$OMP END PARALLEL

END PROGRAM HelloWorld2OpenMP

hello, world! 1

hello, world! 3
...

hello, world! 6

29

Variable Scope

Similarly in omp hello.c, the variables my rank and
thread count were declared in the function Hello,
which is itself called from inside the parallel block.

These variables are all allocated from each thread’s
(private) stack and hence have private scope.

In omp trap1.c, the variables declared in main (a, b,
n, global result, and thread count) are all shared
(and the code makes implicit use of this in Trap).

The general rule is that variables declared before a
parallel directive have a shared scope and start
off on all threads with the values they have at the
beginning of the parallel block.

After completion of the block, the variables retain
whatever last values they have after the last thread
has updated them.

Variables declared within the parallel block have
private scope.

30

Reduction Clauses

OpenMP also has reduction clauses, i.e., operations
that combine a set of values into a single value by
means of a binary, associative operator.

The Fortran syntax is

REDUCTION(operator|intrinsic: list)

where operator can be +, -, *, .AND., .OR., etc.;
intrinsic can be MAX, MIN, etc; - can be problematic.

For each name in list, a private variable is created
and initialized with the identity element of the operator
(e.g., for +, it would be 0).

Each thread carries out the reduction into its copy of
the local variable associated with the name in list.

At the end of the construct with the REDUCTION clause,
the local values are combined to define a single value.

This value is assigned to the variable with the same
name in the region after the construct.

31

Example: Dot Product

! OpenMP program to compute dot product of vectors X and Y

PROGRAM dotProduct

INTEGER, PARAMETER :: N=100, CHUNKSIZE=7

REAL :: X(N), Y(N), XdotY = 0.0

INTEGER I

! initialize the vectors; parallelize just for fun

!OMP PARALLEL DO LASTPRIVATE(X,Y)

DO I=1,N

X(I) = I

Y(I) = I**2

END DO

!OMP END PARALLEL DO

!OMP PARALLEL DO &

!OMP SCHEDULE(STATIC,CHUNKSIZE) &

!OMP REDUCTION(+:XdotY)

DO I=1,N

XdotY = XdotY + X(I)*Y(I)

END DO

!OMP END PARALLEL DO

PRINT*, ’X.Y = ’, XdotY

PRINT*, ’Exact answer = ’, (N*(N+1)/2)**2

END PROGRAM dotProduct

32

Reduction Clauses

Defining a critical section allowed the trapezoidal rule
program to get the correct answer, but it serialized the
code in order to do so.

Arguably, this is not a serious drawback for the
trapezoidal rule program, but in general such
serialization could be, especially if it is avoidable (as it
is in this case).

We can use a reduction operator to improve the
performance of the trapezoidal rule program.

The syntax in C for the reduction clause is

reduction(<operator>: <variable list>)

where operator can be +, *, &, |, etc.

33

Reduction Clauses

To allow the trapezoidal rule code to take advantage
of a reduction clause, it can be modified as follows.

In the function Trap,

pragma omp parallel num_threads(thread_count) \
reduction(+: global_result)

global_result += Local_trap(double a, double b, int n);

where the function Local trap has been created to
return local integrations that can then be reduced into
the shared variable global result.

Note that the parallel directive is spread over two
lines using the \ character.

34

Reduction Clauses

Variables included in a reduction clause are shared.

However, a private variable is created for each thread.

This private variable is updated in the parallel block;
when the parallel block ends, the private variables
are reduced into the shared variable.

Finally, the private variables are initialized to the
identity member of the reduction operator.

For example, if the reduction operator is +, the private
variables are initialized to 0; if the reduction operator
is *, they are initialized to 1.

35

PARALLEL DO / parallel for

Because the construct PARALLEL followed by a loop is
so common, OpenMP has equivalent shortcut syntax.

In Fortran, it is

!$OMP PARALLEL DO

...

!$OMP END PARALLEL DO

In C, it is invoked as in

pragma omp parallel for num_threads(thread_count)

It is very similar to the parallel directive; i.e.,

A team of threads is forked to execute the subsequent
structured block; however, this structured block must
be a DO/for loop.

36

PARALLEL DO / parallel for

The loop is parallelized by dividing the iterations among
the threads.

Thus, parallel for is actually quite different from
parallel because the work in a parallel block is
divided among the threads by the threads themselves.

The actual partitioning of a parallel for loop is
determined by the system, but the default is usually
a rough block partition; i.e., if there are m iterations
and p threads, then roughly the first m/p iterations are
assigned to thread 0, etc.

The trapezoidal rule code can be modified to

pragma omp parallel for num_threads(thread_count) \
reduction(+: approx)

for (i=1; i<= n-1; i++)

approx += f(a+i*dx);

approx = dx*approx;

37

PARALLEL DO / parallel for

Notes on scope:

• It is essential that approx be a reduction variable.
Otherwise, it would default to being a shared
variable and hence the loop body would be an
unprotected critical section.

• Similarly, the scope of loop variable i defaults to
private; it is clear that having a shared loop variable
would create a race condition (and likely a huge
mess in the code).

In other words, each thread has its own local copy
of i.

38

PARALLEL DO / parallel for

Although it may seem idyllic that for loops can be
parallelized by adding a single parallel for directive
in front of them, there are some caveats associated
with its use.

The first one is that while or do-while loops cannot
be parallelized in this way.

In principle, it is possible to convert such loops to for

loops anyway, so this may not appear to be much of a
restriction in practice.

However, in the spirit of this, OpenMP will only
parallelize for loops for which the number of iterations
can be determined

• from the for statement itself, or

• prior to execution of the loop.

39

PARALLEL DO / parallel for

So, we cannot parallelize the infinite loop

for (; ;) {
...

}

nor can we parallelize the loop

for (i=0; i<n; i++) {
if (...) break;

...

}

because the precise number of iterations cannot be
determined from the for statement alone.

Indeed, this for loop is not a structured block because
the break statement adds another point of exit from
the loop.

40

PARALLEL DO / parallel for

In fact, OpenMP will only parallelize for loops that
are in canonical form:

for (index = start; \
index <,<=,>=,> end; \
±±index±±, index ±= incr)

subject to the usual restrictions

• index must have type integer or pointer (not float)

• start, end, incr must have compatible types

• start, end, incr must not change during the loop

• index can only change via incr during the loop

All these things ensure the number of iterations can be
determined before the loop is executed.

The only allowable exception is that a call to exit

may be made in the body of the loop.

41

Data dependencies

Programs that do not satisfy the preceding rules will
not compile.

For example, an attempt with gcc to compile the code

int Linear search(int key, int A[], int n) {
int i;

/* thread count is global */

pragma omp parallel for num_threads(thread _count)

for (i = 0; i < n; i++)

if (A[i] == key) return i;

return 1; /* key not in list */

}

should return with an error like

Line 6: error: invalid exit from OpenMP structured block

Errors like this are most usefully interpreted as good
news in the sense that they are obvious, and the
compiler will not allow you to execute erroneous code.

42

Data dependencies

A more subtle problem occurs in loops where the
computation in one iteration depends on the results of
previous iterations.

Recall the Fibonacci sequence {Fn}∞n=0 defined

F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2, n = 2, 3,

Consider the following attempt to parallelize a loop to
calculate the first n Fibonacci numbers.

fibo[0] = fibo[1] = 1;

pragma omp parallel for num_threads(thread_count)

for (i = 2; i < n; i++)

fibo[i] = fibo[i-1] + fibo[i-2];

This code will compile, but if it is run with more than
one thread, the result is (at best) unpredictable.

43

Data dependencies

For example, with one thread (and mostly even two
threads) we obtain the correct answer

1 1 2 3 5 8 13 21 34 55

but with three threads, we obtain

1 1 2 3 5 0 0 0 0 0

It appears that the computation of fibo[2], fibo[3],
and fibo[4] went to one thread whereas the rest went
to the others.

Then the other threads started before the first thread
finished and were working with initialized values of 0.

Hence, the remaining values were computed to be 0.

Note that the correct output can be obtained using
more than one thread if the threads complete in
order; however the chances of this happening grow
increasingly unlikely as the number of threads increases.

44

Data dependencies

The two take-away messages from this exercise are:

1. It is the programmer’s responsibility to check for
dependencies within iterations in a parallel for

loop; OpenMP compilers will not do it.

2. It is unlikely that OpenMP will correctly parallelize
loops for which iterations are not independent.

The dependence of fibo[i] on fibo[i-1], etc.,
is called a data dependency; in the context of this
example, it may be called a loop-carried dependency.

Fortunately, we need only worry about loop-carried
dependencies (and not more general ones) in a
parallel for loop.

45

Data dependencies

For example, strictly speaking, in the loop

for (i=0; i < n; i++) {
x[i] = a + i*dx;

y[i] = exp(x[i]);

}

there is a data dependency between y[i] and x[i].

However, there is no problem parallelizing it as a
parallel for loop because the dependency remains
within an iteration.

The key to recognizing (and hence avoiding) loop-
carried dependencies is to look for variables that are
read (or written) in one iteration but written (or re-
written) in another.

46

Data dependencies

For example, consider the following (poor) method for
approximating π:

π = 4

∞∑
k=0

(−1)k

2k + 1
= 4

[
1− 1

3
+

1

5
− . . .

]
.

A naive parallel implementation of this method might
look like

double factor = 1.0; sum = 0.0;

pragma omp parallel for num_threads(thread_count) \
reduction(+:sum)

for (k=0; k<n; k++) {
sum += factor/(2*k+1);

factor = -factor;

}
pi_approx = 4.0*sum;

It should be clear that factor is updated in a manner
that introduces a loop-carried dependency.

47

Data dependencies

It is straightforward to define factor only in terms of
the iteration counter k by using

factor = (k % 2 == 0) ? 1.0 : -1.0;

before the line that increments sum.

Unfortunately, that change alone does not lead to
correct parallel code.

The problem is that (by default) factor is still shared
among the threads; it was declared outside of the
parallel for directive.

Thus, factor can be modified by one thread between
the time another thread computes it and uses it!

So, we need to ensure factor has private scope.

That is easily achieved via

pragma omp parallel for num_threads(thread_count) \
reduction(+:sum) private(factor)

48

Data dependencies

A final fact to keep in mind is that the value of a
variable with private scope is unspecified before the
beginning and after the completion of the parallel

(or parallel for) block.

Put differently, a private variable only has scope within
the parallel block, even if a variable with the same
name is declared outside the block (and the scope of
which is hence is shared), they are distinct copies!

So, e.g., if we declare and initialize the variable factor
outside the parallel block, when we print it, we will
see its value as if the parallel block did not exist.

Similarly, if we print its value from within the parallel
block, we will see its value independent of whether it
existed outside the block.

49

Data dependencies

Rather than let OpenMP decide on the scope of a
variable, it is better programming practice to specify
variable scope explicitly.

This is accomplished via the default clause.

We would modify our pragma to read

pragma omp parallel for num_threads(thread_count) \
default(none) reduction(+:sum) private(k,factor) \
shared(n)

We note that sum is a reduction variable, so it has
properties of both private and shared scope.

We have discussed the reasons to make factor private.

The loop counter k would have defaulted to private as
well, but now we have to declare it explicitly.

Variables such as n that are not updated by the loop
are safely shared.

Such variables keep their final values upon exiting the
block, so changes made within the block matter.

50

Data dependencies

As a final example (in Fortran), we consider the
following program, in which an expensive function
BIG COMP must be called many times:

PROGRAM bigComp

DOUBLE PRECISION :: ANSWER = 0.0D0, RES, BIG_COMP

INTEGER :: I, N = 1000

DO I=1,N

RES = BIG_COMP(I)

CALL COMBINE(ANSWER, RES)

END DO

PRINT*, ANSWER

END PROGRAM bigComp

We assume the COMBINE subroutine must be called
in sequential order.

51

Data dependencies

To make the iterations independent, we put the call to
COMBINE into its own loop.

This should be acceptable if it is not expensive
compared with BIG COMP.

The cost is that RES is now an array of size N.

PROGRAM bigComp2

INTEGER, PARAMETER :: N = 1000

DOUBLE PRECISION :: ANSWER = 0.0D0, RES(N), BIG_COMP

INTEGER :: I

DO I=1,N

RES(I) = BIG_COMP(I)

END DO

DO I=1,N

CALL COMBINE(ANSWER, RES(I))

END DO

PRINT*, ANSWER

END PROGRAM bigComp2

52

Data dependencies

Now, no two threads update the same variable and
thus can be safely executed in parallel.

The OpenMP work-sharing construct PARALLEL now
assigns loop iterations to multiple threads.

PROGRAM bigComp3

INTEGER, PARAMETER :: N = 1000

DOUBLE PRECISION :: ANSWER = 0.0D0, RES(N), BIG_COMP

INTEGER :: I

!$OMP PARALLEL

!$OMP DO

DO I=1,N

RES(I) = BIG_COMP(I)

END DO

!$OMP END DO

!$OMP END PARALLEL

DO I=1,N

CALL COMBINE(ANSWER, RES(I))

END DO

PRINT*, ANSWER

END PROGRAM bigComp3

53

Work-sharing constructs

The parallel for is known as a work-sharing
construct because the work involved in executing a
loop is distributed (shared) among the threads.

Different threads are doing different things.

This is in contrast to the parallel construct, where
(ostensibly) each thread executes the same statements.

By default, there is an implicit barrier at the end of
any OpenMP work-sharing construct.

This barrier can be removed via the NOWAIT clause:

!$OMP END DO NOWAIT

You should be careful when using NOWAIT because in
most cases these barriers are needed to prevent race
conditions, i.e., the situation in which an error in a
parallel program occurs because the result depends on
the relative scheduling / execution of the threads.

54

Work-sharing constructs

There are two other common types of work-sharing
constructs in OpenMP:

• SINGLE, which defines a block of code that only the
first thread executes (all others skip to the end and
wait at the implicit barrier). This may be useful for
sections of code that are not thread safe (e.g., I/O).

• SECTIONS, which sets up blocks of code specifically
for different threads; it is a non-iterative work-
sharing construct.

There is also a PARALLEL variant of the SECTIONS.

Its behaviour is pretty much as expected, allowing
threads to execute their sections in parallel and giving
the programmer finer control over how threads are
scheduled to do so.

55

Work-sharing constructs

PROGRAM VEC_ADD_SECTIONS

INTEGER N, I

PARAMETER (N=1000)

REAL A(N), B(N), C(N), D(N)

! Some initializations

DO I = 1, N

A(I) = I * 1.5

B(I) = I + 22.35

ENDDO

!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)

!$OMP SECTIONS

!$OMP SECTION

DO I = 1, N

C(I) = A(I) + B(I)

ENDDO

!$OMP SECTION

DO I = 1, N

D(I) = A(I) * B(I)

ENDDO

!$OMP END SECTIONS NOWAIT

!$OMP END PARALLEL

END PROGRAM VEC_ADD_SECTIONS

56

More on variable scope

OpenMP has other clauses that can change how
variables are shared between threads.

The most common ones are:

• FIRSTPRIVATE(LIST), in which new private
variables for each thread are created for each name
in LIST, but instead of being undefined, the newly
created variables take on the values that were bound
to the name in the region before this clause.

• LASTPRIVATE(LIST), in which new private
variables for each thread are created for each name
in LIST, but instead of being undefined, the value
of the private variables from the sequentially last
loop iteration are copied into the variable bound to
the name in the region after this clause.

Both the FIRSTPRIVATE and LASTPRIVATE clauses
can be used in one construct.

57

Scheduling

One key to achieving maximum performance from a
parallel program is to ensure the load is balanced
between the threads as much as possible.

OpenMP tries to do this for the programmer, but the
best results are achieved only when the programmer
gets dirty hands by telling the compiler precisely how
to divide loop iterations among threads.

This is accomplished via a SCHEDULE clause added to
the DO work-sharing construct.

The Fortran syntax is

!$OMP DO SCHEDULE(SCHED[, chunk])

where SCHED is one of STATIC, DYNAMIC, GUIDED, or
RUNTIME, and chunk is an optional integer argument.

58

Scheduling

When we first introduced the parallel for directive,
we noted that the precise assignment (or scheduling)
of loop iterations to threads was system dependent;
typically it was (approximately) a block partition.

We have also noted that it is not hard to imagine when
such a schedule would be decidedly sub-optimal; e.g.,
if iterations became significantly more expensive with
iteration number.

An alternative method of scheduling threads is cyclic,
i.e., in a round-robin fashion.

A good schedule can have a dramatic effect on
performance!

In OpenMP, finer control over how loop iterations are
assigned to threads in a parallel for or for directive
is achieved via the schedule clause.

59

Scheduling

If we do nothing special, the default schedule is used:

sum = 0.0;

pragma omp parallel num_threads(thread_count) \
reduction(+: sum)

for (i = 0; i <= n; i++)

sum += f(i);

To get a cyclic schedule, we add a schedule clause to
the parallel for directive:

sum = 0.0;

pragma omp parallel num_threads(thread_count) \
reduction(+: sum) schedule(static,1)

for (i = 0; i <= n; i++)

sum += f(i);

60

Scheduling

The general syntax of the schedule clause is

schedule(<type> [, <chunksize>])

where type can be any one of

• static. Iterations assigned to threads before loop
is executed.

• dynamic or guided. Iterations assigned to threads
while loop is executed; e.g., after thread completes
its current assignment, it can request another.

• auto. Schedule determined by compiler and/or
run-time system.

• runtime. Schedule determined at run time.

61

Scheduling

The (optional) variable chunksize is a positive integer.

In OpenMP parlance, a chunk of iterations is a block
of iterations that would be executed consecutively in
the corresponding serial loop.

The number of iterations in such a block is known as
the chunksize.

Only static, dynamic, and guided schedules accept
a chunksize.

This specifies the details of schedule, but the exact
interpretation depends on the type of schedule.

62

Scheduling

The static schedule type assigns chunksize

iterations to each thread in a round-robin fashion.

For example, if we have total iterations = 12

and thread count = 3, then schedule(static,1)

produces the assignment

Thread 0: Iterations 0, 3, 6, 9

Thread 1: Iterations 1, 4, 7, 10

Thread 2: Iterations 2, 5, 8, 11

and schedule(static,2) produces the assignment

Thread 0: Iterations 0, 1, 6, 7

Thread 1: Iterations 2, 3, 8, 9

Thread 2: Iterations 4, 5, 10, 11

etc.

When chunksize is not specified, it (approximately)
defaults to total iterations/thread count.

63

Scheduling

In a dynamic schedule, each thread executes a chunk
chunksize (consecutive) iterations, but when a thread
finishes with a given chunk, it requests another from
the run-time system.

This thread repeats until all iterations are completed.

When chunksize is not specified, it defaults to 1.

In a guided schedule, chunks are executed and
requests for new ones are made as with a dynamic

schedule; however, the chunksize decreases as chunks
are completed, roughly according to the formula
(unassigned iterations) / (number of threads).

When chunksize is specified, chunk sizes decrease to
it (except for possibly the last one, of course).

When chunksize is not specified, the chunk sizes
decrease to 1.

64

Scheduling

The runtime schedule uses the environment variable
OMP SCHEDULE to determine how to schedule the
iterations in a loop.

It can be set to any allowable value for a static,
dynamic, or guided schedule; e.g., if we execute

export OMP_SCHEDULE="static,1"

then a parallel for directive modified by
schedule(runtime) will be equivalent to the
modification schedule(static,1).

65

Scheduling: Which one to choose?

There is overhead associated with the various
schedule clauses, so some care must be taken in
choosing one.

Generally, the overhead for the static schedule is the
least, followed by dynamic, and then guided.

A good rule of thumb is not to alter the default
schedule if you are content with the performance.

If you suspect substantial improvements can be made
by altering it, some experimentation may uncover a
better schedule.

The optimal schedule may depend on the specific
number of both the threads and the total iterations.

It may also be the case that the loop simply does not
parallelize very well.

66

Scheduling: Which one to choose?

Some guidelines when exploring for optimal schedules
are as follows.

• If each iteration has roughly the same computational
cost, the default schedule will likely be hard to beat.

• If the cost of each iteration changes linearly, then
a static schedule with small chunk sizes should
perform well.

• If the cost of a given iteration is unknown or highly
variable, a good dose of broad experimentation
might be necessary. This process can be facilitated
through the use of the runtime schedule so that
different schedules can be implemented without
having to alter (and recompile, etc.) the code.

67

Runtime Library Functions

The syntax of OpenMP is expressed through compiler
directives as much as possible.

Despite this, some features are handled via runtime
library functions (accessed via #include <omp.h>).

• OMP SET NUM THREADS(), which takes an INTEGER

and requests that number of threads in subsequent
parallel regions. It can only be called from serial
portions of the code, and it has precedence over the
OMP NUM THREADS environment variable.

• OMP GET NUM THREADS(), which returns an
INTEGER equal to the actual number of threads
in the current team of threads.

• OMP GET THREAD NUM(), which returns an
INTEGER equal to the ID of the current thread.
The master thread has an ID of 0. Threads are
numbered from 0 to OMP GET NUM THREADS()−1.

68

Runtime Library Functions

• OMP GET MAX THREADS() returns the maximum
value that can be returned by OMP GET NUM THREADS().

• OMP GET THREAD LIMIT() returns the maximum
number of OpenMP threads available to a program.

• OMP GET NUM THREADS() returns the number of
threads that are available to the program.

• OMP GET WTIME() returns a double-precision value
equal to the number of elapsed seconds since some
point in the past; usually used in ”pairs” with
differences in values used to obtain the elapsed time
for a block of code; designed to be per thread times,
and so may be different across threads.

• OMP GET WTICK() returns a double-precision value
equal to the number of seconds between successive
clock ticks (the timer resolution).

69

Runtime Library Functions

PROGRAM whoAmI

IMPLICIT NONE

INTEGER, PARAMETER :: P=3

INTEGER :: RANK, THREADS

INTEGER :: OMP_GET_THREAD_NUM, OMP_GET_NUM_THREADS

CALL OMP_SET_NUM_THREADS(P)

!$OMP PARALLEL PRIVATE (RANK, THREADS)

RANK = OMP_GET_THREAD_NUM()

THREADS = OMP_GET_NUM_THREADS()

PRINT*, "I am thread", RANK, "out of", THREADS

!$OMP END PARALLEL

END PROGRAM whoAmI

Output:

I am thread 0 out of 3

I am thread 1 out of 3

I am thread 2 out of 3

Note that any valid interleaving of the output records
can occur, so just because this one happened to come
out “in order” does not imply they always will.

70

Synchronization

Many OpenMP programs can be written using only the
PARALLEL and PARALLEL DO constructs.

However, sometimes the programmer needs finer
control over how variables are shared.

The programmer must ensure that threads do not
interfere with each other so that the output does not
depend on how the individual threads are scheduled.

In particular, the programmer must manage threads so
that they read the correct values of a variable and that
multiple threads do not try to write to a variable at
the same time.

The major synchronization constructs in OpenMP
include the following.

71

Synchronization

• MASTER specifies a region to be executed only by the
master thread. All other threads skip this region.
There is no implied barrier. The Fortran syntax is

!$OMP MASTER

...

!$OMP END MASTER

• CRITICAL defines a section for mutual exclusion.
The Fortran syntax is

!$OMP CRITICAL [name]

...

!$OMP END CRITICAL [name]

where [name] is an optional identifier that enables
different CRITICAL regions to exist. The identifiers
are global; different CRITICAL regions with the
same name are treated as the same section, as are
CRITICAL sections with no name.

72

Synchronization

• FLUSH defines a point at which memory consistency
is enforced. This can be a tricky concept. Basically,
values for variables can be held in registers or buffers
before they are written to main memory, and hence
different threads may see different values of a given
variable. The FLUSH command ensures all threads
see the same value. The Fortran syntax is

!$OMP FLUSH [(list)]

where (list) is a comma-separated list of variables
to be flushed. In the absence of a list, all variables
visible to the calling thread are flushed. It is rare that
programmers need to explicitly call FLUSH because
OpenMP does it automatically when it makes sense,
e.g., upon entry to and exit from parallel and
critical sections, etc.

73

Synchronization

• BARRIER defines a synchronization point at which
all threads wait for each thread in the team to arrive
before continuing. The Fortran syntax is

!$OMP BARRIER

...

!$OMP END BARRIER

A BARRIER can be added explicitly, but sometimes
one is implied, e.g., at the end of work-sharing
constructs. A BARRIER implies a FLUSH.

• ORDERED specifies that iterations of the DO / for

loop enclosed are to be executed in the same order as
if they were executed in serial. Threads wait before
executing their chunk of iterations until previous
iterations have completed.

74

Synchronization

In the bigComp program, it was necessary to store
the results from BIG COMP in an array RES because it
mattered in which order RES was calculated.

However, this is not usually the case in practice.

We can safely keep them in one loop if we enforce
mutual exclusion, e.g., using the CRITICAL construct.

PROGRAM bigComp4

INTEGER, PARAMETER :: N = 1000

DOUBLE PRECISION :: ANSWER = 0.0D0, BIG_COMP

INTEGER :: I

!$OMP PARALLEL DO PRIVATE(RES)

DO I=1,N

RES = BIG_COMP(I)

!$OMP CRITICAL

COMBINE(ANSWER, RES)

!$OMP END CRITICAL

END DO

!$OMP END PARALLEL DO

PRINT*, ANSWER

END PROGRAM bigComp4

Note the declaration of RES as a PRIVATE variable.

75

Summary

• Philosophy: sequential equivalence, incremental
parallelism

• Compiler directives

• Data scope, data dependencies, work-sharing

• Scheduling, load-balancing, synchronization

76

