
Objectives

• Paradigms of parallel hardware

• Flynn’s taxonomy

• Interconnect topologies

• Cache coherence

1

Paradigms of parallel hardware

As mentioned, in this course we are not concerned with
the design and implementation of an interconnection
network for the processors and the memory modules
nor the system software.

Nonetheless, how you program a parallel algorithm
does depend on the target architecture; so before we
can take full advantage of parallelism, we must consider
how a parallel computer operates.

It is easy to write parallel programs if you don’t care
about performance!

Parallel hardware and software have grown out of
conventional serial hardware and software, so we begin
with a brief review of how serial systems function.

2

The classical von Neumann machine

The classical von Neumann machine is divided into a
central processing unit (CPU) (also called processor or
core) and main memory, connected in some manner.

The CPU is further divided into a control unit and an
arithmetic-logic unit (ALU).

 CPU

 ALU Control Unit

 registers registers

 Interconnect

 Main Memory

 Address Contents

3

The classical von Neumann machine

The control unit directs the execution of programs; the
ALU does the calculations called for in the program.

The memory stores both instructions and data.

When being used by the program, they are stored in
very fast memory locations, called registers.

Naturally the cost of memory goes up with speed, so
there are relatively few registers.

Data and program instructions move between memory
and registers via what is called a bus.

The von Neumann machine executes exactly one
instruction at a time and typically operates on only
a few pieces of data.

4

The classical von Neumann machine

It is important to note that no matter how fast the CPU
is, the speed of execution of programs is limited by the
rate at which the (inherently sequential) instruction
sequence and data between memory and CPU.

This is called the von Neumann bottleneck.

Not surprisingly, a lot of effort has gone into modifying
the von Neumann machine to alleviate the bottleneck.

But before discussing these efforts, we quickly review
and define a few other basic concepts from modern
computer systems, namely,

1. processes,

2. multitasking, and

3. threads.

5

Processes, multitasking, and threads

All computers have an operating system (OS), which
is software to manage the hardware and software.

The OS controls which programs run and when,
memory allocation, and access to peripheral devices.

To run a program, the OS creates a process (an
instance of the program), consisting of

• The executable program (in machine language).

• A block of memory for the executable (and some
other things).

• Descriptors of the resources that the OS has
allocated to the process.

• Security information.

• Information on the state of the process.

6

Processes, multitasking, and threads

Nowadays, OSs are multitasking (even on serial cores).

They give the appearance of simultaneous execution
of multiple programs by frequently switching between
processes (every few ms).

Many programs can do useful things even though parts
of it are blocked, e.g., waiting for a resource.

Programmers can help the OS with multitasking by
means of dividing their programs into (more or less)
independent tasks known as threads such that when
one is blocked, another can be run.

Threads are contained within processes and normally
share most of the same resources.

So it is normally faster to switch between them than
processes (they are lightweight compared to processes).

The process acts as a master thread from which other
threads are spawned and terminated; the threads are
said to fork off and rejoin the master thread.

7

Modifying the von Neumann model

The three most common modifications of the von
Neumann model in order to reduce the bottleneck are
through the use of

• caching,

• virtual memory, and

• low-level parallelism.

We now examine each of these in some detail.

8

Caching

Most modern machines alleviate von Neumann
bottleneck by having a hierarchical memory: in between
registers and main memory is an intermediate memory
(faster than main memory but slower than registers)
called cache.

This idea works because programs tend to access both
instructions and data sequentially.

So if we store a small block of instructions and a small
block of data in cache, most of the accesses will use
this faster memory.

These blocks are called cache blocks or cache lines.

A typical cache line stores 8–16 times as much as a
single memory location; e.g., 16 floating-point numbers
instead of just 1.

9

Caching

Taking advantage of what is in cache (i.e., minimizing
cache misses or equivalently maximizing cache hits)
can have a dramatic effect on program execution time.

For example, if the first 16 elements of an array are in
the cache, a block of code that orders its operations
such that it accesses these elements sequentially
(instead of say elements 1, 17, 33, etc.) will execute
10–100 times faster.

In practice, caches are divided into levels.

The first level (L1) is the smallest and the fastest (and
most expensive); higher-level caches (L2, L3, etc.) are
successively larger and slower (and cheaper).

Information stored in caches is also stored in main
memory; information in higher-level caches may or
may not be stored in lower-level ones.

10

Caching

There are two subtle yet potentially important issues
that we now mention but do not treat in great detail.

First, there may be inconsistencies between what is
stored in cache and main memory.

When something is newly written to cache, it must still
be written to main memory.

Some systems write the cache values out immediately;
others simply mark the data as dirty and only write to
main memory when the whole cache line is replaced.

Second, there needs to be a mechanism to replace or
evict cache lines.

The most commonly used scheme is based on evicting
the least recently used data in a given cache.

11

Caching: an example

The cache is controlled by hardware, but the
programmer can take advantage of knowing how caches
work to write more efficient code.

An important fact is that although we think about
two-dimensional arrays as rectangular blocks, they are
effectively stored linearly (as one-dimensional vectors).

C stores arrays in row-major order, i.e., the one-
dimensional storage vector is created by concatenating
the rows of the matrix.

Thus the (1, 1) element is stored next to the (1, 2)
element in memory, but it will generally be far away
from the (2, 1) element.

Fortran, on the other hand, stores arrays in column-
major order.

This means a program that minimizes cache misses in
one language will almost certainly maximize them in
the other!

12

Caching: an example

To see this, we consider two methods for computing a
matrix-vector product.

double A[MAX][MAX], x[MAX], y[MAX]

...

/* initialize A, x; set y = 0 */

...

/* Method 1 */

for (i=0; i < MAX; i++)

for (j=0; j < MAX; j++)

y[i] += A[i][j]*x[j];

...

/* reset y = 0 */

...

/* Method 2 */

for (j=0; j < MAX; j++)

for (i=0; i < MAX; i++)

y[i] += A[i][j]*x[j];

13

Caching: an example

Suppose MAX=4 and A is stored as follows; assume x

and y are always in cache.

Cache line Elements of A
0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

3 A[3][0] A[3][1] A[3][2] A[3][3]

If the cache otherwise starts off empty, both methods
suffer a cache miss when trying to access A[0][0].

Method 1 scores hits on A[0][1], A[0][2], and
A[0][3], and does not suffer a miss until it tries
to access A[1][0].

Method 2, however, misses on A[1][0], then misses
again on A[2][0], etc.

For example, with MAX = 1000, Method 1 might be a
few times faster than Method 2.

14

Virtual memory

Caching is great but only if the program can fit into
main memory!

When it cannot, the main memory can be made to
function as a cache for (an even larger) secondary
storage through the concept of virtual memory.

Only the active parts of any running programs are kept
in main memory; those that are idle are kept in a block
of secondary storage called swap space.

Virtual memory operates on blocks of data and
instructions called pages.

Access can be hundreds of thousands of times slower
than that to main memory (and hence page sizes are
large, 4–16 kB).

There are analogous concepts for page hits and misses.

Because access is so slow, updates to main memory are
never written out immediately; they are flagged and
written only when new pages are imported.

15

Instruction-level parallelism

Instruction-level parallelism tries to reduce the von
Neumann bottleneck by having multiple functional
units simultaneously executing instructions.

There are two main approaches to instruction-level
parallelism:

• pipelining, in which functional units are arranged in
stages (or in serial), and

• multiple issue, in which multiple (or vector)
instructions can be issued simultaneously.

Both of these strategies are used in virtually all CPUs
nowadays.

16

Pipeline and vector architectures

The first widely used extension to the von Neumann
model was pipelining.

The idea is to split the CPU into functional sub-units,
and these sub-units are then organized into a pipeline.

If it is long enough, a full pipeline can produce a
result for each instruction cycle, instead of requiring a
number of cycles equal to the length of the instruction.

Consider the following Fortran 77 code for adding two
vectors of size N = 100:

N = 100

DO 10 I=1,N

Z(I) = X(I) + Y(I)

10 CONTINUE

17

Pipeline and vector architectures

Suppose a single addition consists of the following
sequence of operations:

1. Get the operands from memory.

2. Compare exponents.

3. Shift one operand.

4. Add.

5. Normalize the result.

6. Round the result.

7. Store the result in memory.

Now suppose we have functional units that perform
each of these basic operations.

We can arrange them in a pipeline such that the output
of one functional unit is the input for the next.

18

Pipeline and vector architectures

So for example while X(1) and Y(1) are being added,
one of X(2) and Y(2) can be shifted, X(3) and Y(3)

can have their exponents compared, etc.

When the pipeline is full, the result can be produced 7
times faster with pipelining than without.

Further improvement can be obtained if vector
instructions are available.

Without vector instructions in the above example of
adding two vectors of size N, the basic instructions for
addition must be fetched and decoded N times.

With vector instructions, it only has to be done once1,
analogous to the Fortran 90 code

Z(1:N) = X(1:N) + Y(1:N)

or the Fortran 95 code

Z = X + Y
1assuming sufficient hardware, in this case, at least N floating-point adders

19

Pipeline and vector architectures

The great advantages of vector processors are that
they are well understood and there are extremely good
compilers for them.

There are several disadvantages, however.

The key to good performance is to keep the pipeline
full, and this does not work well for problems with
irregular structures or many branches.

The greatest disadvantage seems to be that pipelining
and vectorization do not seem to scale well; i.e., they
are not amenable to massive parallelization.

Even if we add several pipelines and are able to keep
them full, the upper limit on the speedup will be some
small multiple of the CPU speed, no matter how many
CPUs are available.

20

Flynn’s taxonomy

The original classification of parallel computers is
known as Flynn’s taxonomy2.

Flynn classified systems according to the number of
instruction streams and the number of data streams.

The classical von Neumann machine has a single
instruction stream and a single data stream; hence
it is a single-instruction single-data (SISD) machine.

At the other extreme is the multiple-instruction
multiple-data (MIMD) machine, where a number of
autonomous processors operate on their own data
streams. This is the most general architecture in
Flynn’s taxonomy.

Intermediate to these two extremes are single-
instruction multiple-data (SIMD) and multiple-
instruction single-data (MISD) systems.

2Michael Flynn, Very high-speed computing systems, Proceedings of the
IEEE, 54:1901–1909, December, 1966.

21

SIMD systems

A pure SIMD system has one control unit dedicated
exclusively to control a large number of subordinate
ALUs, each with its own small amount of memory.

During each instruction cycle, the control processor
broadcasts an instruction to all the ALUs, each of
which either executes the instruction or is idle.

For example, suppose we have 3 arrays X, Y, and
Z distributed such that each processor contains one
element of each array, and we want to execute the
following code:

N = 1000

DO 10 I=1,N

IF (Y(I).NE.0.0) THEN

Z(I) = X(I)/Y(I)

ELSE

Z(I) = X(I)

ENDIF

10 CONTINUE

22

SIMD systems

Each ALU would execute something like

• Cycle 1: Test yLocal 6= 0.

• Cycle 2:

– If yLocal 6= 0, Z(I) = X(I)/Y(I).
– If yLocal = 0, do nothing.

• Cycle 3:

– If yLocal 6= 0, do nothing.
– If yLocal = 0, Z(I) = X(I).

Note the synchronous execution of statements.

This example also illustrates the disadvantages of
SIMD systems: many conditionals or long branches
may cause many processes to be idle.

But SIMD is easy to program, and communication is
essentially no more expensive than computation (unlike
in MIMD systems).

23

SIMD systems

The role of SIMD systems has morphed over time.

In the early 1990s, Thinking Machines made SIMD
systems and was also the largest manufacturer of
parallel supercomputers.

However, by the late 1990s, the only widely produced
SIMD systems were vector processors.

Nowadays, graphics processing units (GPUs) and
common CPUs use aspects of SIMD computing.

We have discussed several pertinent aspects of vector
processors, including vector registers, vectorized and
pipelined functional units, and vector instructions.

Due to their increasing popularity, it is worthwhile
to say a few words about GPUs and general-purpose
computing on GPUs (GPGPU).

24

GPUs and GPGPU

GPUs are specialized chips that were traditionally
designed to efficiently prepare graphics data (e.g.,
points, lines, triangles, etc.) for visual display.

Their special structure makes them more effective than
general-purpose CPUs for certain types of calculations,
particularly ones that involve independent manipulation
of large amounts of data.

GPUs are not pure SIMD systems; they excel at SIMD
parallelism, but they can do more.

The use of GPUs is becoming increasingly popular: as
of November 2013, the top two supercomputers use
GPUs to achieve their performance figures.

This strategy of GPGPU (accelerated computing) is
seen as a likely path to achieve exascale performance
in the near future due to its cost effectiveness in terms
of manufacturing and energy consumption.

25

General MIMD systems

The key difference between MIMD and SIMD
systems is that the processors in MIMD systems are
autonomous; i.e., each processor has its own CPU.

So, each processor executes its own program
asynchronously (at its own pace).

There is generally no relationship between what each
processor is doing, even when running the same code.

The processors can be forced to synchronize with each
other, but this is generally inefficient.

There are two main ways in which MIMD computers
can be organized:

• shared memory

• distributed memory

The common standard today is that these two ways
are combined to form a hybrid third way.

26

Shared-memory paradigm

Shared-memory computers have multiple processors
that share access to a global memory space via a
high-speed memory bus.

This global memory space allows the processors to
efficiently exchange or share access to data.

The number of processors used in shared-memory
architectures is usually limited because the amount of
data that can be processed is limited by the bandwidth
of the memory bus connecting the processors.

 CPU CPU CPU

 Cache Cache Cache

 High−speed Interconnect

 Shared Memory

27

Shared-memory paradigm

Most shared-memory systems use one or more
multicore processors (multiple CPUs on one chip).

Typically, each core has its own private level-1 cache;
other caches may or may not be shared between cores.

The interconnect can work in two ways. Each processor
is connected directly to a block of main memory.

1. When processors can access all memory at the same
rate, this is called uniform memory access (UMA).

2. When processors can access their own memory
fastest, this is called nonuniform memory access
(NUMA).

UMA systems are generally easier to program because
there are no issues with accessing stale data.

However, CPUs on NUMA systems can access their
own memory faster than on UMA systems, and NUMA
systems can support more memory than UMA systems.

28

Distributed-memory paradigms

Distributed-memory computers are essentially a
collection (or cluster) of serial computers (nodes)
working together to solve a problem.

Each node has rapid access to its own local memory
and access to the memory of other nodes via some
sort of communications network, usually a high-speed
communications network (or “interconnect”).

Data are exchanged between nodes as messages over
the network.

 CPU CPU CPU

 Cache Cache Cache

 High−speed Interconnect

 Memory Memory Memory

29

Hybrid memory paradigm

Parallel computers now use a mixed shared/distributed
memory architecture.

Each node typically consists of a group of 4 to 16
processors connected via local shared memory, and
the multiprocessor nodes are, in turn, connected via a
high-speed interconnect.

Geographically distributed computers are connected by
a grid infrastructure and are typically heterogeneous.

 CPU CPU CPU CPU

 Cache Cache Cache Cache

 High−speed Interconnect

 Shared
 Memory

 Shared
 Memory

30

Interconnect topologies

The way in which nodes are connected plays a critical
role in the performance of both shared- and distributed-
memory systems.

Even if the processors and memory have unlimited
performance, programs that are ill-suited to the
precise nature of the interconnect will suffer dramatic
performance hits.

Interconnect technologies have a great tdeal in
common, but the impact of the differences between
shared- and distributed-memory systems is significant
enough to warrant a separate treatment of each.

31

Shared-memory interconnects

There are two common interconnects on shared-
memory systems: buses and crossbars.

A bus is simply a collection of parallel communication
wires and some hardware to control access; i.e., the
wires are shared by the devices connected to them.

Advantages: low cost and adaptable (multiple devices
can be connected at low cost).

Disadvantages: Contention for resources as number of
devices increases.

32

Shared-memory interconnects

The alternative for large shared-memory interconnects
is to use switches, mainly in the form of crossbars.

A crossbar or matrix switch takes the form of a set of
bidirectional links from cores to memory modules.

They can be thought of as + signs with two allowed
paths E-W and N-S.

 P1 P2 P3 P4

 M1

 M2

 M3

 M4

33

Shared-memory interconnects

Advantages: If there are at least as many memory
modules as cores, there can only be conflict between
two cores attempting to access the same memory
module simultaneously.

This lack of contention makes for better performance
compared to buses.

Disadvantages: The cost is high compared to buses.
A small bus-based system will be much less expensive
than the corresponding crossbar-based system.

34

Distributed-memory interconnects

Distributed-memory interconnects are usually classified
as direct and indirect.

As the name implies, in a direct interconnect, each
switch connects a processor-memory pair, and all the
switches are connected to each other.

Rings and toroidal meshes are examples of direct
distributed-memory interconnects.

For example, a ring is superior to a simple bus because
it allows multiple simultaneous communications.

 P1 P2 P3 P4

35

Distributed-memory interconnects

The ideal direct interconnect is a fully connected
network, in which each switch is directly connected
to every other switch.

Unfortunately, it is impractical to construct such a
network for more than a few nodes because, for p
processors, not only would it require

(
p
2

)
= p(p− 1)/2

links, each switch would also have to be capable of
connecting to p links.

36

Distributed-memory interconnects

The hypercube is a highly connected yet practical direct
interconnect for distributed-memory systems.

Hypercubes are built inductively:

A 1D hypercube is two fully connected nodes.

A 2D hypercube is built from two 1D hypercubes by
connecting “corresponding” switches.

A 3D hypercube is built from two 2D hypercubes by
connecting “corresponding” switches, etc.

In general, a d-dimensional hypercube has p = 2d

nodes, and each switch connects a node to d switches.

 1D 2D

37

Distributed-memory interconnects

Indirect interconnects are an alternative to direct
interconnects.

As the name implies, the switches may not be directly
connected to a processor.

Rather, they are depicted as unidirectional links from
the processors to a switching network and then back
to the processors.

Two simple examples of indirect interconnects are
crossbar and omega networks.

38

Distributed-memory interconnects

We have seen the crossbar network in the context
of shared-memory systems; there the links were
bidirectional.

The configuration for the distributed-memory crossbar
network is slightly different; now as long as two
processors do not try to communicate with the
same processor, any processor can communicate
simultaneously with any other processor.

 P1

 P2

 P3

 P4

39

Distributed-memory interconnects

In an omega network, the switches are 2× 2 crossbars.

That is, the switches only connect two processors or
switches to two other processors or switches.

So unlike the crossbar interconnect, there are many
communications that cannot occur simultaneously in
an omega network.

For example, two processors that input to the same
switch cannot communicate simultaneously with two
processors that receive output from the same switch.

40

Distributed-memory interconnects

The main advantage of omega networks is that they are
relatively inexpensive compared to crossbar networks.

The omega network requires only 1/2 p log2 p crossbar
switches of size 2 × 2, i.e., 2p log2 p total switches,
whereas the crossbar uses p2 switches.

41

Latency and bandwidth

A key to the success of effective parallel programming
is an understanding of how long it takes a piece of
data to reach its destination.

This applies irrespective of whether we are considering
data going from hard disk to main memory to cache
to register or from one compute node to another.

The two metrics used to describe the performance of
an(y) interconnect are the latency and the bandwidth.

The latency is the time between the beginning of
the source transmission and the beginning of the
destination reception.

The bandwidth is rate at which the destination receives
the data.

42

Latency and bandwidth

If the latency of an interconnect is ` s and the
bandwidth is b bytes per s, then time τ it takes to
fully transmit and receive a message of size n bytes is

τ = `+ n/b.

Note that these terms are used differently!

Sometimes people to refer to τ as latency.

Sometimes latency is used to describe any fixed
overhead costs associated with sending messages.

For example, a message on a distributed-memory
system consists of more than just the raw data; it
may also contain the destination address, the message
size, etc.

In this situation, latency would include the time it takes
to assemble the message on the sending side and the
time to disassemble the message on the receiving side.

43

Cache coherence

Recall that CPU caches are controlled by the system
hardware and software, not the programmer.

This might sound like a good thing, but it has
implications on shared-memory systems.

For example, consider a shared-memory system with
two cores (0 and 1), each with a private data cache.

Suppose x = 2 is shared, y0 is local to Core 0, and
y1, z1 are local to Core 1.

If cores only read shared data, there is no problem.

44

Cache coherence

But consider the following sequence of events:

Time Core 0 Core 1

0 y0 = x; y1 = 3*x;

1 x = 7; Code not involving x

2 Code not involving x z1 = 4*x;

It is clear that (eventually) y0 will get the value 2.

We can safely assume y1 will get the value 6.

But what about z1?

We might like to think z1 should get the value 28.

However, for this to happen, the value of x will have
to be updated on Core 1 based on the change made at
time 1 on Core 0.

This takes time! There is no guarantee it will be done
by time 2, so z1 might get the value 8!

This is the dreaded cache coherence problem.

45

Cache coherence

There are two main ways to ensure cache coherence:
snooping and directory-based cache coherence.

Snooping originated in bus-based systems: when cores
share a bus, they can see all the signals sent on it.

In terms of our example, basically when Core 0 updates
its value of x, it broadcasts the fact that is has done
so.

If Core 1 snoops the bus, it can know x has been
updated and mark its local value as invalid.

Of course, this idea is not limited to buses; it requires
only the ability of a core to broadcast to all other cores.

Unfortunately, however, broadcasts are expensive,
especially in large networks; so snooping is not scalable.

46

Cache coherence

Directory-based cache coherence attempts to remedy
this problem by using a data structure called a directory.

The directory stores the status of each cache line.

It is typically distributed; e.g., each core/memory pair
might store the part of the structure associated with
its own local memory.

For example, if a line is read into the cache of Core 0,
the directory entry is updated to indicate Core 0 has
an updated copy of the line.

When a variable is updated, the directory is examined,
and the cache controllers of the cores that have the
cache line of that variable in their caches mark their
lines as invalid.

This solution requires substantial additional storage,
but when a cache variable is updated, only the cores
storing that variable need to be contacted.

47

Cache coherence

A key point is that CPU caches are implemented in
hardware; they work with cache lines, not variables.

This can have disastrous effects on performance.

Consider the following program to compute a function
f(i,j) and add its value to a vector y:

int i, j, m, n;

double y[m];

/* assume y = 0 */

for (i=0; i < m, i++)

for (j=0; j < n, j++)

y[i] += f(i,j);

48

Cache coherence

We can parallelize this by distributing the outer loop
among p cores, e.g., the first m/p iterations are assigned
to the first core, etc.

/* private variables */

int i, j, iter;

/* shared variables */

int m, n, p;

double y[m];

/* assume y = 0 */

iter = m/p;

/* Core 0 does this */

for (i=0; i < iter, i++)

for (j=0; j < n, j++)

y[i] += f(i,j);

/* Core 1 does this */

for (i=iter; i < 2*iter, i++)

for (j=0; j < n, j++)

y[i] += f(i,j);

/* etc. */

49

Cache coherence

Let p = 2, m = 8. Then if doubles are 8 bytes, cache
lines are 64 bytes, and y[0] is stored at the beginning
of a cache line, y can be stored in one cache line.

What happens when the cores simultaneously execute
their codes?

Because y is completely contained in one cache
line, every time the statement y[i] += f(i,j) is
executed, the cache line is invalidated, and the other
core will have to re-read the entire line before execution
even though the cores are always writing to separate
array entries.

In general, if n is large, the values may have to be
brought into cache from main memory!

This will kill the performance of the parallel program,
possibly making it even slower than serial execution.

50

Cache coherence

This phenomenon is known as false sharing because
the system behaves like y was being shared by the
cores (when in fact it does not have to be).

The problem is not with the correctness of the results
(the results will be correct); it is poor performance.

Later we will see that a simple but effective remedy is
to use temporary local storage and only copy results to
the shared storage at the end of the computation.

51

Shared or distributed?

Given the seemingly added complication of using
distributed-memory systems, it may be reasonable to
ask why all MIMD systems are not shared memory.

The main reason is the scalability of interconnect cost.

Buses are cheap, but they are not efficient as the
number of cores and memory modules increases.

Switching over to crossbars is expensive.

On the other hand, hypercube and toroidal
interconnects are relatively cheap; systems with
thousands of cores have been successfully built using
these interconnects.

In practice, distributed-memory systems are often
better suited to solve problems with vast amounts
of data or computation.

52

Summary

• Flynn’s taxonomy

• Shared, distributed, and hybrid parallel architectures

• Interconnect topologies

• Cache coherence

53

