
Objectives

• Overview of parallel programming

• Types of parallel decomposition

1

Introduction

The state of parallel programming is not at the same
level that of parallel hardware.

There is plenty of commodity parallel hardware but
relatively little commodity parallel software.

As mentioned, we cannot rely only on hardware
improvements for increased application performance.

Before discussing some of the broad issues involved in
parallel programming, we establish some terminology.

When executing shared-memory programs, we start a
single process, from which we fork multiple threads to
carry out tasks.

When executing distributed-memory programs, we
start multiple processes to carry out tasks.

It may be possible to interchange these words according
to the context; i.e., processes in the context of a
distributed-memory program correspond to threads in
the context of a shared-memory program.

2

Introduction

Thus, the concept of a process/thread is a fundamental
building block in parallel programming.

A process/thread is an instance of a program (or sub-
program) that is executing autonomously (more or less)
on a physical processor.

A program is said to be parallel if at any time it consists
of more than one process/thread.

In order to have useful parallel programs, there must be
ways to create, specify, and destroy processes/threads
as well as ways for processes/threads to interact.

We now give a brief overview of the three main parallel
programming paradigms used in this course:

• shared-memory programming (OpenMP)

• message passing (MPI)

• hybrid model (Matlab)

3

SPMD

From this point on, we will only discuss the
programming of MIMD systems.

Our focus will be on single-program, multiple-data
(SPMD) programs.

Instead of running a different program on each core, we
imagine one program run on each core but each core is
made to do different things via conditional statements.

For example,

if (I am process/thread 0)

do this;

else

do that;

This is an example of so-called functional (or task)
decomposition.

4

SPMD

On the other hand, the code

if (I am process/thread 0)

work on first part of data

else /* I am process/thread 1 */

work on second part of data

is an example of data parallelism (or domain
decomposition).

SIMD is a special case of data parallelism.

These are the two main kinds of decompositions for
the purposes of parallelization.

In practice, most parallel programs use both
decompositions to achieve parallelism.

Typically, the first step in designing a parallel algorithm
is to decompose the problem into smaller problems
that can be assigned to different processors to work on
simultaneously.

5

Domain decomposition

(or data parallelism)

A data-parallel algorithm is a sequence of elementary
instructions applied to (different) data.

In other words, a new instruction is initiated only after
the previous instruction terminates.

The advantage is that there is a single flow of control.

Data are divided into pieces of approximately the same
size and mapped to different processors.

Each processor works only on the portion of the data
that it is assigned.

Of course, the processes may need to communicate
periodically in order to exchange data.

6

Domain decomposition

(or data parallelism)

SPMD strategies are commonly employed in finite-
difference / finite-element algorithms where processors
can operate independently on large blocks of data and
exchange only the much smaller shared border data at
each iteration.

However, they are only really effective when working
with regular structures such as dense matrices (or
analogously, rectangular domains and Cartesian grids).

In other words, domain decomposition does not work
as well (or is significantly more complicated) when
dealing with unstructured (e.g., triangular) meshes or
irregular geometries.

This may bias the choice of algorithms to solve a given
problem towards those that use regular data structures.

Unless the data structure is static and highly regular
(e.g., a dense matrix), the general problem of mapping
data to processors is difficult!

7

Co-ordinating processes/threads

On rare occasions, obtaining excellent parallel
performance is easy.

For example, suppose we want to add two arrays:

double x[n], y[n];

...

for (int i=0; i < n; i++)

x[i] += y[i];

To parallelize, we map the array elements to
the processes/threads; e.g., if we have P
processes/threads, we could assign elements 0 to
n/P−1 to process/thread 0, elements n/P to 2n/P−1
to process/thread 1, etc.

The two issues in general are only to ensure that each
process/thread gets the same amount of work and the
amount of communication is minimized.

Both of these issues are trivially addressed in this
example, so much so that you may see the problem
called embarrassingly parallel.

8

Co-ordinating processes/threads

The concept of data locality is critical in data-parallel
programming in any environment where processor
communication is not instantaneous.

In these situations, communication is much more
expensive than computation, and the difference can
be dramatic.

Thus, considerable research has gone into optimal
data mapping, i.e., how to assign data to processors
to minimize communication.

Of course the trivial (and likely optimally inefficient)
solution is to map all the data to one node.

So the concept of load balancing is a competing goal
to data locality: we would like all the processors to be
fully utilized all the time.

Any effective mapping must take into account both
data locality and load balancing.

9

Functional decomposition

(or task parallelism)

When the data assigned to the different processors
require greatly different lengths of time to process,
domain decomposition will not be effective.

The performance of the code will be limited by the
speed of the slowest process; i.e., this becomes a
bottleneck for the computation.

Also, the remaining idle processes do no useful work.

In this case, functional decomposition (or task
parallelism) may make more sense.

In task parallelism, the problem is decomposed into
smaller tasks, and the tasks are assigned to the
processors as they become available.

This way processors that finish quickly can be assigned
more tasks.

10

Client-server paradigm

Task parallelism is typically implemented in a client-
server paradigm.

A master process (the server) is in charge of allocating
tasks to a number of worker processes (the clients).

 Client 1 Client 2 Client 3

 Server

Figure 1: The client-server paradigm

The master process may also assign tasks to itself.

The client-server paradigm can be implemented at
virtually any level in a program.

There are a few different ways for the server to assign
(or schedule) jobs; some are more efficient than others
depending on the problem.

11

Suppose there are J jobs and P processors.

If each job is (approximately) the same amount of
work, then any (approximately) J/P jobs can be
assigned to each server a priori (static scheduling),
resulting in (approximately) optimal load balancing
and communication.

If each job has a different but predictable amount of
work, it may be possible to order the jobs differently
and still achieve reasonable load balancing.

For example, if the work per job decreases as a function
of job number, then jobs 1 to P can be assigned to
processors 1 to P , but jobs P+1 to 2P can be assigned
to processors P to 1, etc.

Static scheduling will not work well if the jobs have
very different or relatively unpredictable workloads.

In dynamic scheduling, any P jobs are assigned to the
P processors; then once a processor finishes its task, it
can be assigned a new one until all J jobs are done.

It also helps if a client processor could become the
server if it was assigned a particularly tough job.

12

Shared-memory programming

A shared-memory system is usually thought of as one in
which the processors have (more or less) equal access
to all the memory.

However, shared memory can be emulated with
physically distributed memory if we have a global
address space.

In such cases, it is usually possible to program
a distributed-memory system using shared-memory
programming constructs.

Variables in shared-memory programs can be shared
(accessed by any thread) or private (accessed by only
one thread).

Communication is done implicitly via shared variables.

This is in contrast to distributed-memory programming,
in which communication is done explicitly via message
passing, i.e., sending and receiving messages.

13

Shared-memory programming

Shared-memory systems typically have both static as
well as dynamic thread creation; i.e., threads can be
created at the beginning of a program by an OS
directive or they can be created as the program runs.

With dynamic threads, the master thread forks worker
threads as required; each worker thread carries out its
tasks and joins the master thread upon completion.

This is efficient because only the resources required by
a thread are used.

With static threads, all threads are forked at the
beginning and run to completion, rejoining the master
thread upon completion.

This may be less efficient because the resources of idle
threads cannot be freed (and used elsewhere).

However, thread creation/destruction is expensive. So,
static threads may perform well; their use is closer to
the mindset of distributed-memory programming.

14

Shared-memory programming

Co-ordination among processes in shared-memory
programs is typically managed by three constructs:

• a way to specify that data can be accessed by all
the processes

• a way to prevent processes from improperly
accessing shared data

• a way to synchronize processes

We now illustrate these concepts by means of the
following simple examples.

15

Shared-memory programming

Because the processors in MIMD systems execute
autonomously, it is easy to experience non-
determinism; i.e., executing the same program with
the same inputs leads to different outputs.

This happens because the relative rates of how threads
are executed differ from run to run.

Suppose we have two threads (with ranks 0 and 1),
each storing a variable my x with values 7 and 19,
respectively, and execute the code

printf("Thread %d > my val = %d \n", my rank, my x)’

16

Shared-memory programming

One time you might see

Thread 0 > my val = 7

Thread 1 > my val = 19

but another time it might be

Thread 1 > my val = 19

Thread 0 > my val = 7

or the two outputs may even be interspersed!

Non-determinism is often harmless, but not always!

17

Shared-memory programming

Suppose that we have two threads (with ranks 0 and
1), and each thread has a private integer iPrivate.

We want to compute the sum of the private integers
and print it.

One way to do this is to declare a shared variable SUM:

INTEGER :: SUM = 0

Now, we can add up all the local values of iPrivate:

SUM = SUM + iPrivate

What’s wrong with this idea?

18

Shared-memory programming

Recall, an add consists of something like the following
sequence of machine instructions:

Fetch SUM into register A, iPrivate into register B.
Add contents of register A to contents of register B.
Copy result into SUM.

Suppose iPrivate= 7 on thread 0 and iPrivate= 19
on the thread with rank 1.

Then SUM could come out to 7, 19, or 26 depending
on the way in which the threads executed.

This is non-determinism, but it is not harmless!

The cause of the error is the attempt to simultaneously
write to the same variable.

This is called a race condition: the output depends on
which process/thread wins the race to update SUM.

For the code to work, we must ensure only one
iPrivate is added to SUM before it is re-stored.

19

Shared-memory programming

This concept that only one process should execute a
certain sequence of statements at one time is called
mutual exclusion, and the sequence of statements is
called a critical section.

The most commonly used mechanism for imposing
mutual exclusion is called a mutual exclusion lock or
mutex or simply lock.

Locks are supported in hardware.

Basically, each critical section is protected by a lock.

Before a thread can execute the statements in a critical
section, it must obtain the lock.

The thread is then said to own the lock.

When it is done, it unlocks the critical section.

20

Shared-memory programming

Modified code to implement this might look like:

my val = Compute val(my rank);

Lock(&add my val lock);

x += my val;

Unlock(&add my val lock)

Note that no order is imposed on the threads!

Also note, locks enforce serialization on the program.

Thus to maximize parallel efficiency, critical sections
should be made as few and as short as possible.

21

Shared-memory programming

Now to print the correct (final) value of SUM.

For this, we use a barrier function.

Once a process/thread has called the barrier function,
it will not proceed until all the other processes/threads
have called it.

So, if we put a barrier after the addition statement, a
certain process/thread (usually 0) can then print the
value of SUM with the confidence that it reflects the
contributions of all the processes/threads.

CRITICAL

SUM = SUM + iPrivate

END CRITICAL

BARRIER

IF (RANK.EQ.0) PRINT*, "I AM PROCESS", PROC, "AND SUM=", SUM

This is an example of synchronization.

Synchronization is expensive because at some point all
processes/threads are waiting for the last one to arrive.

Therefore its use should be limited!

22

Shared-memory programming

Almost always, parallel programs can call functions
designed for serial execution without any problems.

The most important exception in C is when functions
use static local variables.

Ordinarily, local variables in C a function are private.

But a variable declared as static in a function persists
from one call to the next.

Thus, static local variables are effectively shared
variables and need to be treated as such!

A function with static local variables is said to not be
thread safe.

We will return to this concept in more detail later.

23

Distributed-memory programming

The most common method of parallel programming
(in particular for distributed-memory MIMD systems)
is through the use of message-passing libraries.

These libraries manage data transfer between instances
of a parallel program that is (usually) running on
multiple processors.

The central construct is that one process packs up
information into a message and sends it to another
process, which then receives and unpacks it.

Processes co-ordinate their activities by explicitly
sending and receiving messages.

It should be noted that this paradigm works just fine
on shared-memory hardware.

However, we now use the terminology of processes
instead of threads.

There may in fact be no mechanism for forking worker
threads on any node.

24

Message passing

A message-passing library must contain (at least) a
send and a receive function.

Processes are identified by their rank.

For example, process 1 could send a message to process
0 as follows:

char message[100];

...

my rank = Get rank();

if (my rank == 1) {
sprintf(message, "Greetings from process 1");

Send(message, MSG CHAR, 100, 0);

} else if (my rank == 0) {
Receive(message, MSG CHAR, 100, 1);

printf("Process 0 > Received: %s\n, message);

}

25

Message passing

Note the arguments to Send() are: the message,
the type of elements in the message, the number
of elements in the message, and the rank of the
destination process.

The arguments to Receive() are: the variable into
which the message is to be received, the type of
elements in the message, the number of elements
assigned to store the message, and the rank of the
sending process.

Process 0 also prints the message after it is received.

26

Message passing

Notes:

• This is SPMD: both processes execute the same
program but do different things, in this case,
depending on their ranks.

• The variable message refers to different blocks of
memory on different processors. A better naming
of the receiving variable might be my message or
local message.

• We assume processor 0 can write to stdout.
Normally, all processes have access to both stdout

and stderr.

27

Message passing

Although this seems simple and intuitive, the details
can become much more complicated. In particular,

• How are messages actually sent? (How are they
buffered within the system?)

• Can a process do other useful work while sending or
receiving messages?

• How can sends and receives be paired to ensure the
proper transfer of information?

28

Blocking and non-blocking

communication

There are usually various flavours of the Send and
Receive functions.

The simplest for Send is the so-called blocking mode,
in which the sending process does not return from the
Send call until it finds out that the matching call to
Receive (on the other processor) has started.

Alternatively, in the non-blocking mode, the sending
processor may copy the contents of the message to one
of its buffers and return from the Send call as soon as
the copy has been completed.

The advantage is that the process can continue to do
useful work instead of waiting for the return message.

The default behaviour for Receive is for the receiving
process to block until the message has been completely
received, i.e., stored somewhere in its memory.

29

Collective communication

There are also a number of additional functions to
perform common tasks.

For example, one process can broadcast (all) data (or
scatter certain data) to all (or certain) processes.

(One might contemplate doing this from scratch via
Send and Receive calls, but the result is more work
and generally inferior to using built-in functions.)

Another common task is to reduce (or gather) data
from all processes and combine them into one result
on one process.

Many more details about message passing to come!

30

One-sided communication

So far, we have assumed inter-process communication
requires the participation of two processes.

In one-sided communication, a single process either
updates its local memory with a value from another
process or it updates the (remote) memory on another
process with a value from the local process.

For this reason, one-sided communication is also called
remote memory access.

Clearly, communication is simplified and it can
significantly reduce the overhead of synchronizing two
processes as well as eliminating half the function calls.

But there is the expense of processes needing to know
when it is safe to transfer data from one’s memory to
the other; this can be done by either synchronizing the
processes or by polling to see when it is safe.

Moreover, there is a certain amount of risk that can
introduce bugs that are very hard to detect.

31

Programming hybrid systems

A note on programming hybrid systems:

Recall that hybrid systems can be thought of
several small shared-memory systems connected into
a distributed-memory system.

It is possible to finely tune code to essentially program
the cores on a processor to take advantage of the
shared-memory paradigm while at the same time
program the overall system to take advantage of the
distributed-memory paradigm.

This can absolutely maximize performance!

However, such programming is generally not for the
faint of heart.

For the purposes of this course, such systems will
normally be programmed as if they were purely
distributed-memory systems.

32

Input and Output

Parallel input and output (I/O) are by no means trivial
subjects, but our interests do not entail serious I/O; we
generally assume in this course that our programs do
not need read and write significant amounts of data.

In terms of C, we can get by with the standard functions
printf, fprintf, scanf, and fscanf.

Nonetheless, these are functions designed for a serial
language, so the behaviour when they are called by
different processes is unpredictable.

For example, we might like the output from printf to
appear on the console of a single system (the one on
which we started the program).

This is what most systems do, but some may not!

It is possible for some specific process (or no process!)
to have access to stdout or stderr.

33

Input and Output

What should happen with parallel calls to scanf?

The vast majority of systems only allow one process
(usually process 0) to call scanf; some allow more;
some none.

Threads that are forked by a single process do share
stdin, stdout, and stderr.

In such cases, I/O is generally non-deterministic.

To address I/O issues, we assume henceforth that

• Only process/thread 0 can access stdin.

• All processes/threads can access stdout, stderr,
but (except for debugging) only process/thread 0
will output.

• Only a single process/thread can access a given file.

• Debug output gives the generating process/thread.

34

Performance

The fundamental point of parallel programming is to
increase performance; so we need ways to measure it.

We begin with some comments on serial performance.

Ideally, we would like to have a function T (n) that
gives the execution time of a program in terms of the
input (or problem size) n.

In theory, T (n) can be constructed by counting
statements and summing their individual costs.

35

Serial Program Performance

Of course, T (n) will depend (perhaps strongly) on

1. the hardware being used

2. the programming language and compiler

3. other details of the input besides size

Because these details are so specific, we usually use
asymptotic estimates of T (n); e.g., T (n) = O(n3).

Strictly speaking, this means T (n) ∼ Cn3 for n
sufficiently large.

However, perhaps a more useful interpretation is that
the program run with input size 2n will take roughly
23 = 8 times as long as the program run with input
size n, provided n is sufficiently large.

36

Serial Program Performance

For serial programs in scientific computing, the
standard metric is floating-point operations.

In a serial world, minimizing floating-point operations
essentially implies minimizing execution time.

(The significant exception we are ignoring relates to
programs that are better able to take advantage of a
given computer’s memory hierarchy when accessing
their data. In such cases, better memory access
patterns can trump fewer floating-point operations.)

In a parallel world, the goal remains to minimize
execution time, but the correspondence with
minimizing operation count no longer holds.

Here, the mitigating factor (in some sense analogous
to what happens in a serial world but much more
common) is the cost of communication: better
communication patterns easily trump fewer floating-
point operations.

37

Parallel Program Performance

An obvious difference between serial and parallel
performance estimation is that the run time of a parallel
program depends on the number of processes P as well
as the input size n.

So, we now denote program execution time by T (n, P),
where P is the number of processes, with T (n, 1)
representing the parallel program run in serial.

One of the obvious issues that arises when assessing
parallel program performance is how does the parallel
program compare to the serial one.

The two most common measures of comparison are
speedup and efficiency.

38

Parallel Program Performance

The speedup S(n, P) of a parallel program is defined
to be

S(n, P) =
T (n, 1)

T (n, P)
;

i.e., it is the ratio of the serial and parallel run times.

There is a modicum of ambiguity in this definition.

Some authors take T (n, 1) to be of the fastest serial
program known; some take it to be the parallel program
run with one process.

(We will use the second approach in this course.)

There is even room to argue whether the codes are run
on the same machine!

What one uses for T (n, 1) is context-dependent.

For example, it may make more sense to compare with
the “fastest” serial program if the serial algorithm is
different than the parallel one.

39

Parallel Program Performance

For fixed P , we normally have

0 < S(n, P) ≤ P.

Ideally, S = P , and we have linear speedup.

This is the best we can hope for: equally dividing the
work among the processes/threads while introducing
no additional work.

In practice, of course, this is not realistic because
there will be time lost to, e.g., critical sections (shared
memory) and communication (distributed memory).

Sadly, a common occurrence is slowdown; i.e., S < 1.

In distributed-memory programs, this is generally
the result of excessive communication among the
processors; a different communication pattern (perhaps
involving a different underlying solution algorithm) may
be the only remedy.

40

Parallel Program Performance

An alternative to the speedup metric is efficiency.

The efficiency E(n, P) of a parallel program is defined
to be

E(n, P) =
S(n, P)

P
;

i.e., it is the relative process utilization as compared to
the serial program.

Because 0 < S(n, P) ≤ P , we have

0 < E(n, P) ≤ 1.

Hence, E(n, P) = 1 corresponds to linear speedup,
whereas E(n, P) < 1/P corresponds to slowdown.

41

Parallel Program Performance

E(n, P) generally decreases as P increases and
increases as n increases.

This is because normally

T (n, P) =
T (n, 1)

P
+ TO,

where TO is the time required for overhead.

TO generally increases much more slowly as n increases
than T (n, 1) does.

42

Amdahl’s law

Consider a single instance of a program running in
serial, i.e., a certain program with a given input running
with one process/thread on one processor.

Suppose the time it takes for the serial program to
complete is T (n, 1).

Suppose further that some fraction r of its statements
(0 ≤ r ≤ 1) is perfectly parallelizable; i.e., this part of
the code has linear speedup, independent of P .

Hence, the run time for this part of the code with P
processes/threads is rT (n, 1)/P .

If the remaining (1− r) part of the code is inherently
serial, then its run time will be (1 − r)T (n, 1),
independent of P .

43

Amdahl’s law

With these assumptions, the speedup of the parallelized
program running with P processes is

S(n, P) =
T (n, 1)

(1− r)T (n, 1) + rT (n,1)
P

=
1

(1− r) + r
P

.

Now as P →∞,

S(n, P)→ 1

1− r

−
.

That is, S(n, P) is bounded above by 1
1−r and it

approaches this limit from below as P →∞.

This observation was first made by Gene Amdahl in
the 1960s.

44

Amdahl’s law

This is generally bad news.

For example, if r = 0.5, S(n, P) ≤ 2.

But even if r = 0.99, S(n, P) ≤ 100, independent of
the number of processes P !

If P = 100, 000, E(n, P) = 0.01.

This paints a bleak picture because it implies there is
no hope for massive parallelism.

Indeed, from 1967 to 1988, Amdahl’s law dampened
the enthusiasm for parallel computing generally.

That was until 1988 when researchers at Sandia
National Labs reported speedups of over 1000 on an
nCUBE computer with 1024 processors.

This led to a re-examination of what Amdahl’s law
really says.

45

Amdahl’s law

Given the assumptions, there is nothing wrong with
the analysis.

And for a given instance of a problem and program for
solving it, it is reasonable to assume some fraction of
the statements in that program cannot be parallelized.

It is unrealistic to assume that part of the program
is perfectly parallelizable, but one can imagine this is
probably not a bad approximation in some cases.

What may not be reasonable is the assumption of using
an infinite number of processes to solve a problem of
a given size.

If we have a problem that required only say 500
calculations, then clearly it would be wasteful to use
more than 500 processes to solve it!

46

Amdahl’s law

The key idea is to use more processes to solve larger
instances of the problem.

In this way, the serial fraction of the program becomes
less significant, allowing us to make more optimistic
predictions than those afforded by Amdahl’s law.

An inherently serial program segment can be
parallelized in essentially two ways:

1. One process executes the serial statements while
the other processes remain idle.

2. All processes execute the serial statements.

Either way, these solutions are sources of parallel
overhead, which can be defined as the amount of
work done by the parallel program that is not done by
the serial program.

47

Sources of overhead

There are 3 main sources of overhead:

1. communication,

2. idle time,

3. extra computation.

The ordering given generally corresponds to order of
impact as well; i.e., communication time tends to
dominate idle time as a source of overhead, which in
turn dominates overhead due to extra computation.

In other words, this is the roughly order in which you
need to worry about introducing inefficiencies into your
parallel program.

In practice, only the effect of overhead on increased
computation time (or decreased efficiency) is relevant;
i.e., the fact that more computation is done by a
parallel program matters less if it is faster than serial.

48

Sources of overhead

Clearly, serial programs do not communicate, so any
communication costs directly make a program take
longer to complete.

Idle time may or may not make a program take longer,
e.g., a parallel program could be run as if it were serial,
but efficiency generally decreases with increased idling.

Extra computation again may or may not make a
program take longer to complete; e.g., an algorithm
that lends itself well to parallelization may do more
work (e.g., floating-point operations) than another
algorithm that does not, but it may nonetheless
complete in less time.

The main point is that all overhead is not created equal,
and it is relatively easy to give too much importance
to certain kinds of overhead and be distracted from
the true goal of minimizing run time.

49

Scalability

Amdahl’s law gives us a definite upper bound on the
attainable speedup of a parallel program.

If a fraction r of a parallel program is perfectly
parallelizable, then

S(n, P) ≤ 1

1− r
.

In terms of efficiency,

E(n, P) ≤ 1

P (1− r) + r
.

So, the equivalent statement of Amdahl’s law in terms
of efficiency is that the efficiency of a parallel program
on a given instance of a problem approaches 0 as the
number of processes goes to infinity.

Neither of these is surprising after some thought.

50

Scalability

However, another way to express efficiency is

E(n, P) =
T (n, 1)

P T (n, P)

=
T (n, 1)

P TO(n, P) + T (n, 1)

=
1

P TO(n,P)
T (n,1) + 1

,

where TO(n, P) is the extra compute time incurred by
the overhead of parallelization.

So the behaviour of E(n, P) as P →∞ is completely
determined by TO(n, P)!

If we fix P and let n→∞, E(n, P)→ 1.

Again, another unsurprising result after some thought.

51

Scalability

So in some sense the real insight comes in the situation
when n and P are increased simultaneously.

A parallel program is said to be scalable if there exist
rates of increases of problem size n and processes P
such that E(n, P) is constant.

Note this does not say n must increase like P ; so it
allows the possibility of different degrees of scalability.

If E(n, P) remains fixed for increasing P (but not n),
then we say the program is strongly scalable.

If E(n, P) remains fixed when n and P increase at the
same rate, then we say the program is weakly scalable.

52

Scalability

As an example, suppose we run a program on a problem
of size n using P processes/threads.

Let T (n, 1) = n and T (n, P) = n/P + 1.

Then
E(n, P) =

n

n+ P
.

To test for scalability, we let P → λP and n→ µn and
solve for µ under the assumption of constant efficiency;
i.e.,

µn

µn+ λP
=

n

n+ P
.

Solving for µ leads to

µ = λ.

That is, our example program is weakly scalable.

53

Timing is everything

We have discussed the importance of timing programs
to test their performance and scalability.

However, during development, we may also want to
time programs to see if their behaviour is as expected,
e.g., how much time is spent waiting for messages, etc.

The second kind of timing is known as profiling.

This will be discussed further when we develop our
own programs.

In this case, we are interested in detailed measurements
of how long a specific part of a program takes to run;
so, the Unix shell command time, which measures the
time taken to run an entire program, is not useful.

54

Timing is everything

To assess performance of parallel programs, we are also
generally not interested in “CPU time”, the time spent
executing code, as measured, e.g., by the standard C
function clock.

This is mainly because idle time, e.g., waiting
for communication, is a crucial aspect of assessing
performance of parallel programs but is not included in
CPU time.

What we are interested in reporting is normally “wall
clock” time, i.e., the amount of (real) time that elapsed
while the code was running.

Source code that would enable such a timing might be

double start, finish;

...

start = Get current time();

/* Code to be timed */

...

finish = Get current time();

printf("Time elapsed = %e s.\n", finish-start);

55

Timing is everything

A subtle issue that cannot be safely ignored is the
resolution of the timer function, i.e., the shortest event
that will give a non-zero measurement.

This information is usually given with the timer
function used; e.g., the resolution may be 1 ms.

It is important for the programmer to know the
resolution of any timer functions used to account for
any difference in scale between it and the things that
are to be measured.

For example, if instructions are executed on the order
of ns but the resolution is ms, only groups on the order
of a million instructions will be measurable.

Or conversely, measurements on the order of less than
a million instructions will give 0.

56

Timing is everything

When timing parallel codes, we are usually interested
in the elapsed time from when the first process/thread
executed its first instruction to the time when the last
processor/thread executed its last instruction.

This is usually not measurable because there is no
correspondence between processor clocks.

In practice, we settle for a compromise like this:

shared double global elapsed;

private double local start, local finish, local elapsed;

...

/* synchronize

Barrier();

local start = Get current time();

/* Code to be timed */

...

local finish = Get current time();

local elapsed = local finish - local start;

/* Find max elapsed time over all processes/threads */

global elapsed = Global max(local elapsed);

if (local rank == 0)

printf("Time elapsed = %e s.\n", global elapsed);

57

Timing is everything

We first execute a barrier function to (approximately)
synchronize all the processes/threads.

We would like for all the processes to return from the
call to the barrier function simultaneously; i.e., they all
start executing the code to be timed at the same time.

Normally, however, barriers can only guarantee that all
the processes/threads have entered the call when the
first process/thread is allowed to exit.

Each process/thread then measures its own (local)
execution time.

The maximum of these times is then determined, and
process 0 prints out the result.

This is the value taken to represent the execution time
of the entire program.

58

Timing is everything

Finally, we must also be aware of variability in timings.

Even in serial, executing a program with a given input
on the same system does not produce identical timings.

It might seem natural to therefore report a mean or
median run time.

This may be a good measure of what a user might
experience; but we rarely watch our programs run.

Outside events are not likely to make our programs run
faster; so we so we report the minimum run time.

This is closer to what is theoretically possible and more
representative of where our interests lie.

Executing more than one thread per core can increase
the timing variability due to the overhead of scheduling
cores; so we assume executing only one thread per core.

Our programs are not designed for high-performance
I/O; so, I/O will not be included in timings.

59

Parallel Program Design

Often, the single most important decision in parallel
programming is knowing when to parallelize.

Not every program needs to be parallelized in order to
provide an acceptable solution.

We recall that there are only two scenarios in which
parallelization makes sense as a way to help solve a
problem:

1. The problem is too big to fit into the memory of
one processor.

2. The problem takes too long to run on one processor.

The goal in both of these scenarios can be described
as reducing the amount of (real) time it takes to get
the solution.

60

Parallel Program Design

Both reasons often apply!

That is, programs that require a lot of memory take a
long time to run.

“Long time” may be a subjective term, but often
there are real constraints that determine what is an
acceptable time for a solution to be returned1.

Memory requirements are more objective. Assuming
good use is being made of memory allocations (and no
leaks, etc.), when a program’s memory requirements
exceed the amount available, it will either produce an
“out of memory” error or effectively grind to a halt as
memory is swapped.

1Many times this is “as soon as possible”.

61

Parallel Program Design

The starting point for designing a parallel program is
often a serial program.

At present, there is no completely automated and
universal process for parallelizing a serial program.

However, Ian Foster outlines 4 steps to do this in his
on-line book Designing and Building Parallel Programs.

1. Partitioning. Logically divide computation and data
into smaller units.

2. Communication. Determine communication needs.

3. Aggregation. Re-combine tasks, data, and
communication (if advantageous).

4. Mapping. Assign tasks to processes/threads
minimizing communication and balancing loads.

This is sometimes called Foster’s methodology.

62

http://www.mcs.anl.gov/~itf/dbpp/text/node1.html

Parallel Program Design

Before looking at an example, we make a few comments
on writing and running parallel programs.

The old-fashioned way of developing programs was to
use a text editor like vi or emacs; the program was
compiled and run (and debugged) from command line.

Today there are integrated development environments
(IDEs) like Eclipse.

Our focus is on homogeneous MIMD systems, i.e., ones
for which all the nodes have the same architecture2.

Programs run as SPMD on identical cores with at most
one process per core.

We generally use static processes/threads; i.e.,
processes/threads will be created/started at more or
less the same time, run to completion, and terminated
more or less at the same time.

2even though strictly speaking socrates is not!

63

Parallel Program Design

Some APIs for parallel programming define new
programming languages.

Most extend existing languages, either through
function libraries (e.g., functions to send messages)
or with compiler extensions for the serial language.

We focus on this second approach via parallel
extensions to C and at times Fortran and Matlab.

We mainly use the gcc compiler or some extension
(e.g., mpicc).

socrates also has the Intel compilers icc and ifort.

64

Parallel Program Design

Compiling and running the famous “hello, world”
program can be accomplished using

gcc -g -Wall -o hello hello.c

./hello

with output

hello, world

The compiler options used are

• -g. Create information for use with debugger.

• -Wall. Print all warnings.

• -o <outfile>. Name the executable outfile.

When timing programs, we usually optimize the code
using the -O2 option.

65

Summary

• Parallel programming paradigms

• Domain and functional decomposition (data and
task parallelism)

• Shared-memory programming; client-server paradigm

• Message passing

• Input and output

• Defining and measuring performance

• Parallel program design

66

