
Parallel Matlab

Objectives

• Parallel computing in Matlab

• Functional parallelism; data parallelism

• Inter-worker communication

1

Overview of Matlab

Matlab stands for “Matrix Laboratory”.

It is a problem-solving (software) environment (PSE)
for numerical computing.

It was developed in the late 1970s by Cleve Moler
while teaching at Stanford University with the goal of
enabling students to perform numerical computations
without having to learn a “low-level” programming
language (Fortran).

The Matlab PSE comes equipped with a fourth-
generation programming language with the same name.

2

Vector operations in Matlab

The ordinary (serial) version of Matlab has some
important vectorization capabilities.

Matlab was designed to perform matrix (or vector1)
operations with high efficiency.

So, any operation(s) that can be converted to matrix
operation(s) stand to see an increase in performance.

The main constructs that are most amenable to matrix
operations are loops.

The basic distinction is that vectorization results in one
function call in total, as opposed to one per iteration,
thus greatly reducing the overhead.

Multi-threaded vectorization has been available in
Matlab since version R2008a and is a built-in way to
reduce the overhead associated with function calls.

1In Matlab, all numerical variables are treated as matrices of the
appropriate size; e.g., scalars are 1× 1 matrices, etc.

3

Vector operations in Matlab

So, for example, the statement

C = A*B;

is much more efficient than

for i=1:m,

for j=1:n,

C(i,j) = C(i,j) + A(i,j)*B(i,j);

end

end

For this example, of course C would have to be
initialized to an appropriately sized matrix of zeros.

There are other functions (often within other
toolboxes) that have been written to take advantage
of parallelization “automatically” (as options); see

http://www.mathworks.com/builtin-parallel-support.html

4

http://www.mathworks.com/builtin-parallel-support.html

Before parallelization

Often, a good starting point for developing a good
parallel program is from a good serial program.

In some cases, writing a good serial code may be
sufficient for your short-term needs.

In general, pre-allocation of arrays (rather than growing
them dynamically) is also an important part of writing
efficient Matlab code.

Pre-allocating arrays is an example of best coding
practices, which you are strongly encouraged to use
regardless of language, platform, etc.

Profiling the code to know whether parallelization may
help is another good coding practice.

See also

http://www.mathworks.com/videos/speeding-up-matlab-applications-81729.html

5

http://www.mathworks.com/videos/speeding-up-matlab-applications-81729.html

Multiple processors, one computer

In order to take advantage of multiple processors (or
cores) on one computer, in addition to the standard
version of Matlab, access is required to the Parallel
Computing Toolbox (PCT).

The PCT supports usage of up to 8 processes/threads
(called workers in Matlab parlance) on socrates (2
quad-core processors per node).

The availability of this toolbox can be determined by
typing ver at the Matlab prompt.

If available, the output to this command should have
a line that looks something like

Parallel Computing Toolbox Version 6.2 (R2013a)

You could also specifically search for the distributed
computing license by typing

ver distcomp

6

GPU

Matlab has good support for GPU computations
built in to the PCT.

Over 200 Matlab functions have been GPU-enabled.

Many toolboxes (e.g., Optimization, Signal Processing)
also have GPU-enabled functions.

Specific support for CUDA is available.

The programming paradigm is a little different in that
one issues commands to the GPU (as opposed to
starting workers).

Computing with clusters of GPUs requires the
Distributed Computing Server.

zeno has Matlab installed.

More information is available at

http://www.mathworks.com/gpu

7

http://www.mathworks.com/gpu

Multiple processors, multiple

computers

In order to take advantage of multiple computers,
access is also required to the Matlab Distributed
Computing Server (DCS).

In Matlab parlance, computers that request jobs are
called clients.

The DCS will have a number of licenses associated
with the installation being accessed.

One available license per requested worker is required!

The licenses themselves are checked out dynamically.

A scheduler distributes tasks to workers and ensures
each has any licenses required; this requires sufficient
available licenses on the client for each additional
toolbox (i.e., not the PCT) used.

The scheduler also aggregates the results from the
workers into a single result on the client.

8

Multiple processors, multiple

computers

The default profile is called local and comes with the
PCT.

It starts up additional Matlab sessions on the local
machine and is typically used for prototyping or for
only mutli-core parallelization.

To utilize a cluster, the Matlab DCS is required, and
a profile for this must be created separately.

Perhaps the easiest way to do this is done by selecting
Parallel then Discover Clusters ... from the
menu bar.

Further information is available at

http://www.mathworks.ca/distconfig

It is also possible to use third-party schedulers, but we
will not delve into the details of this.

9

http://www.mathworks.com/distconfig

Validating a profile

To ensure a profile has been properly initialized, we
“validate” it.

Click on Parallel in the menu bar, then select Manage
Cluster Profiles

For example, to test the local configuration, select
local, then click Validate.

All of the tests should return as Passed.

This configuration should work with up to 8 workers
on (one node of) socrates.

The properties of the profile can be viewed and edited
by clicking on the Properties tab.

Note: If the validation fails, it may be because there
are insufficient licenses.

You may wish to reduce the number of workers and
try again, but the problem is not necessarily with the
configuration file per se.

10

Creating a new profile

To take advantage of more than one node, we need to
create another profile.

We can Discover Clusters either from the
Parallel menu or from the Manage Cluster

Profiles ... window.

A scheduler called Torque.mat will be provided.

After typing load(’Torque.mat’), it is possible to
discover the cluster on socrates using the built-in
Discover Clusters tool.

There is only one discoverable cluster on socrates; it
is called MJSProfile12.

After selecting it, you can Verify it.

The situation on moneta is similar for the local profile,
but it is not a distributed cluster, so there is no scope
for discoverable clusters.

2MJS stands for MathWorks Job Scheduler.

11

Checking license availability

To check for the availability of licenses, the following
commands can be used to query the license manager
and check for the relevant information.

On socrates, we use

/export/apps/MATLAB/R2013a/etc/glnxa64/lmutil lmstat -a

-c /export/apps/MATLAB/R2013a/licenses/network.lic | grep Dist

The output from this command would ideally look
something like

Users of Distrib_Computing_Toolbox:

(Total of 6 licenses issued; Total of 3 licenses in use)

"Distrib_Computing_Toolbox" v29, vendor: MLM

Users of MATLAB_Distrib_Comp_Engine:

(Total of 32 licenses issued; Total of 0 licenses in use)

On moneta, we use

/opt/matlab.R2013a/etc/glnxa64/lmutil lmstat -a

-c /opt/matlab.R2013a/licenses/network.lic | grep Dist

12

Built-in support for parallelization

The PCT was designed so that all of Matlab’s
functionality could be seamlessly parallelized.

So there are a lot of useful functions whose
parallelization is supported; perhaps the most notable
ones for us are the toolboxes for Optimization, Global
Optimization, Image Processing, and Statistics.

The full list of supported packages can be found at

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html.

The list of Matlab functions that are not
parallelizable is relatively short; perhaps the most
notable one for us is the Matlab compiler.

The full list of unsupported packages can be found at

http://www.mathworks.com/products/ineligible programs/.

13

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/ineligible_programs/

Matlab parallel constructs

Before doing any parallel computation in Matlab, a
pool of workers must be opened (reserved); e.g.,

matlabpool(’open’, ’local’, N)

opens N Matlab workers according to the profile
local.

Matlab will open the worker pool automatically when
certain commands are encountered, e.g., parfor, but
this usage is not recommended.

The size of the available worker pool can be determined
using

matlabpool(’size’)

After the program is completed, the worker pool should
be closed (to free up the workers/licenses) via

matlabpool(’close’)

The matlabpool size command returns 0 if the pool
is closed.

14

Matlab parallel constructs

There are a few basic constructs used by Matlab for
parallel computing:

• parfor loops

• batch

• labSend

• createJob / createTask

• spmd

• createCommunicatingJob / createTask

The most appropriate option depends on the specific
situation, e.g., assigning tasks to workers, distributing
data between workers, etc.

15

parfor

The parfor construct can only be used for parallel
execution of independent iterations of a for-loop.

The good news is that it is optimized for such
computations and thus performs better than the
equivalent createJob / createTask construct, which
we will see later.

Also, code conversion from serial is trivial.

However, this also means its use is restricted.

For example, one cannot execute calls to different
functions in parallel nor retrieve intermediate results.

Furthermore, the failure of one iteration will cause the
entire loop to fail.

The principle to remember is that iterations of a
parfor loop are executed autonomously.

16

parfor

Things to note about the use of parfor:

• Scalar variables defined outside a parfor loop but
used inside are broadcasted to all workers.

• Only the relevant parts of array variables defined
outside a parfor loop but used inside are
broadcasted to all workers.

• The parfor loop index can be used inside the
parfor loop.

• The parfor loop index must take on integer values.

• parfor loops cannot be nested.

• All iteration-dependent behaviour is prohibited.

• Load-balancing is not accounted for.

Some of these issues can be obviated, but not others.

17

parfor

For example, in order to parallelize the following serial
Matlab code to loop over a non-integer counter,

for x = 0:0.1:1,

% iterations depending on x

end

we can write

X = 0:0.1:1;

parfor i = 1:length(X),

x = X(i);

% iterations depending on x

end

18

parfor

For example, in order to parallelize the following serial
Matlab code with a double-nested loop that uses
rows of a matrix A

m = 10;

A = rand(m);

for i = 1:m,

for j = 1:m,

% iterations depending on A(i,j)

end

end

we can write

m = 10;

A = rand(m);

parfor i = 1:m,

X = A(i,:); % extract row

for j = 1:m,

% iterations depending on X(j)

end

end

19

parfor

Although strictly speaking, parfor loops cannot be
nested . . .

% the following code will not work

parfor i = 1:m,

parfor j = 1:n,

...

end

end

. . . another program can be called, and that program
can have a parfor loop in it:

parfor i = 1:m,

parfor function(i)

end

function parfor function(i)

parfor j = 1:n,

...

end

20

createJob / createTask

The createJob / createTask construct is much more
flexible than parfor for creating independent (non-
communicating) jobs.

It does not suffer from the aforementioned drawbacks
of the parfor construct.

You can generally parallelize non-for-loop constructs.

Of course, this comes at the cost of making the
code conversion less trivial as well as a performance
hit associated with going through the scheduler, i.e.,
starting up the workers, etc.

The (obvious) rule of thumb is that one will not see
the performance advantage of parallelism in practice
unless the computation takes (much) longer than it
does to start up the workers, etc.

21

createJob / createTask

The procedure for using the createJob / createTask

construct is a bit more involved than for parfor.

An overview of the steps are as follows:

• Connect to a scheduler.

• Create a job.

• Create tasks.

• Submit the job.

• When the job completes, collect the output data.

• Destroy the job.

22

createJob / createTask

An independent job on a cluster with a local profile
can be created via

job = createJob(’local’)

or we can first create a cluster object

c = parcluster(’local’)

job = createJob(c)

Tasks are then added to the job via

task = createTask(job, functionHandle, numOutputs, inputCell)

For example,

task = createTask(job, @rand, 1, {3,2})

creates a 3× 2 random matrix.

Tasks may be created in a for-loop or vectorized.

23

createJob / createTask

The job is sent from the client to the scheduler via

submit(job)

The job is run immediately if sufficient workers are
available for it.

If not, it will be queued until there are.

If you do not plan to shut down the client computer,
you can use

wait(job, ’finished’)

Your Matlab session is blocked until the job finishes.

Other options include ’queued’ and ’running’.

The default (no options) is ’finished’.

(Pressing Ctrl-C will return control to the command
window but will not kill the job!)

24

createJob / createTask

Alternatively, the state of a job can be checked
manually using, e.g.,

[pending queued running completed] = findJob(c);

returns an array of all job objects in cluster object c

according to their states.

The output is ordered in a meaningful way: according
to creation or position in queue.

The list of completed jobs includes those that failed
but does not include those that were deleted (or whose
status was otherwise unavailable).

25

createJob / createTask

When the job has finished, output arguments can be
collected via

results = fetchOutputs(job);

results is a cell array that will be empty if the job
has not finished.

Tasks that finished with an error return [].

Now all that remains is to destroy the job to free up
the resources:

delete(job)

This command will terminate job whether it has
completed or not!

Note that clearing a job does not destroy the job.

26

Example

We determine the largest eigenvalue of a number of
random matrices.

Here is what a serial code might look like:

function a = example1_serial()

% find the largest eigenvalue of N random matrices of size m

N = 2000; % number of trials

m = 50; % size of random matrices

a = zeros(N,1); % pre-allocate vector of zeros to store results

seeds = (1:N);

tic; % serial for-loop

for I = 1:N

a(I) = largestEigenvalue(m,seeds(I));

end

t = toc;

disp([’Time for serial calculation: ’, num2str(t), ’ seconds.’])

27

Example

The largestEigenvalue function is straightforward:

function lambdaMax = largestEigenvalue(m, seed)

RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,seed));

lambdaMax = max(eig(rand(m)));

The function selects and seeds the random number
generator, then creates a matrix with random elements
between 0 and 1, finds its eigenvalues, and takes the
maximum of them (as measured by their modulus for
complex numbers).

The output from this code run on socrates is

Time for serial calculation: 3.9776 seconds.

28

Example

A quick analysis of this code according to Foster’s
methodology yields the following results:

1. Partitioning. The essential tasks are to generate the
seeds, generate the random matrices, compute the
eigenvalues, and take the maximum.

2. Communication. Send seeds; receive result.

3. Aggregation. It makes sense to aggregate the tasks
of generating the random matrices, computing the
eigenvalues, and taking the maximum of them and
perform them locally.

4. Mapping. Each iteration to a worker.

This is an ideal example for using the parfor construct.

29

Memory and performance profiling

To verify our analysis of the parallelization process, we
determine where the serial code spends its time.

In order to do this, we profile the code; i.e., we use
a tool that gives us the times spent in the different
function calls within the code.

To profile the code, we type profile viewer at the
Matlab prompt.

In the profiler window, type example1 serial in the
field after “Run this code:”.

The profiler displays a window listing the times taken by
the functions called in executing example1 serial.m,
including example1 serial.m itself.

The output is given in the following figure.

30

Memory and performance profiling

This shows that the majority of the work is done by
largestEigenvalue and not some external function.

31

Memory and performance profiling

After clicking on largestEigenvalue, the profiling of
the code itself is performed.

This tells us which line dominates the CPU
requirements, i.e., line 3, max(eig(rand(m))).

32

Memory and performance profiling

To profile the memory, we can type

whos

at the Matlab command prompt.

This gives output

Name Size Bytes Class Attributes

ans 2000x1 16000 double

There is not much to this because only the output
array is returned.

All other temporary variables have been recycled.

33

Memory and performance profiling

A more detailed study of memory allocation could be
achieved by declaring persistent variables.

persistent variables are variables that are known only
in the function in which they are declared, but their
values are stored in memory between function calls.

This is similar to but a more elegant solution than
declaring global variables, which would be known to
(and hence could be changed by) all other functions.

However, permanent storage of the variables occurs in
either case.

34

Back to the example

If we recall the serial code for this example, we quickly
see that only 3 lines3 need to be changed:

function a = example1_parallel()

% find the largest eigenvalue of N random matrices of size m

N = 2000; % number of trials

m = 50; % size of random matrices

p = 2; % number of workers

a = zeros(N,1); % pre-allocate vector of zeros to store results

seeds = (1:N);

matlabpool(’open’, ’local’, p)

tic; % parfor-loop

parfor I = 1:N

a(I) = largestEigenvalue(m,seeds(I));

end

t = toc;

matlabpool(’close’)

disp([’Time for serial calculation: ’, num2str(t), ’ seconds.’])

3In fact it is only 1 line if you open and close the Matlab pool from the
command line. But this is not recommended!

35

Back to the example

Although there should be little doubt in this case, it is
usually a good idea to verify that the results produced
by the serial and parallel codes are “equivalent”.

We can execute a simple script to do this:

a1 = example1_serial();

a2 = example1_parallel();

% Compare results

if isequal(a1, a2)

disp(’The results are the same.’)

end

Output from this script run on socrates is

>> example1_compare

Time for serial calculation: 3.5154 seconds.

Starting matlabpool using the ’local’ profile ... connected to 2 workers.

Sending a stop signal to all the workers ... stopped.

Time for parallel calculation: 2.3152 seconds.

The results are the same.

36

Batch jobs in Matlab

One drawback of the interactive mode of parallel
computing in Matlab is the requirement of having an
active session while the computation runs.

The technical reason for this is the requirement of
having an open matlabpool.

As with classical HPC environments, it is possible to
submit a script to be run via a batch command.

If the following script is called example1 batch.m,

N = 2000;

m = 50;

a = zeros(N,1);

seeds = (1:N);

parfor I = 1:N

a(I) = largestEigenvalue(m,seeds(I));

end

the it can be batched using the command

job = batch(’example1_batch’);

37

Batch jobs in Matlab

The job will then (eventually) be run in the
“background” using the default scheduler, but control
is returned to the command window in the meantime.

The state of the job can be monitored, e.g., to see
when it completes.

done = findJob(job,’State’,’completed’)

There is also a Job Monitor GUI, which can be started
from the Matlab desktop by clicking Parallel then
Monitor Jobs.

When a job is completed, the variables can be extracted
and used in post-processing.

vars = load(job, ’a’);

hist(vars.a) % plot histogram of results

38

A note on paths

The workers must have access to all the files necessary
to perform their tasks; this includes the driver code.

Files (or entire directories containing the files) that
must be sent from the client to the workers can be
specified via

batch(job, ’AttachedFiles’, {’file1.m’, ’file2.m’})

Adding directories to the path for workers can be
specified via, e.g.,

batch(job, ’AdditionalPaths’, ’/home/nsid/’)

39

Matlab parallel constructs: spmd

We have seen the Matlab parallel constructs parfor,
CreateJob, and CreateTask.

The remaining Matlab parallel constructs are spmd,
CreateCommunicatingJob, and CreateTask.

Not surprisingly, spmd in this context also stands for
single program multiple data.

The default way to use spmd is via

spmd

<statements>

end

Perhaps more accurately, spmd defines a block of
statements to be executed in SPMD style.

Naturally, in order for this to work, a matlabpool must
be open before entering the spmd block and remain
open until exiting it.

This form of the command executes the statements in
parallel on all workers in the matlabpool.

40

spmd

A precise number of workers to be used is specified via

spmd (n)

<statements>

end

where n cannot exceed the number of open workers in
the matlabpool.

If the pool is large enough but there are insufficient
available workers, the statements will not execute until
sufficiently many are available.

It is possible to set n = 0, in which case the statements
execute on the local client (in serial), i.e., as if there
was no open matlabpool.

A range of workers on which to execute a block of
statements can be specified via

spmd (m,n)

<statements>

end

where m is the minimum number of workers required
and n is the maximum number of workers to be used.

41

spmd

Each worker used in an spmd block has a unique
identifier called its labindex, equivalent to the concept
of rank.

So, standard SPMD techniques can be used to
customize program execution, e.g., to create differently
sized random matrices on different workers, we can use

spmd (3)

if (labindex == 1),

R = rand(1);

else

R = rand(2);

end

end

42

spmd

with output (something like)

Lab 1:

R =

0.9173

Lab 2:

R =

0.2951 0.3277

0.0990 0.6902

Lab 3:

R =

0.3527 0.3007

0.9411 0.4783

43

spmd

The workers that are executing an spmd block operate
simultaneously and are aware of each other.

As on a normal distributed-memory system, the
programmer can directly control communications
between the workers, transfer data between them, and
use co-distributed arrays among them.

Within an spmd block, all command-line (textual)
worker output displays in the client Command Window.

The workers are Matlab sessions initiated without
graphical display; hence graphical output from workers
is not displayed.

44

Matlab interlab communication

We have seen labindex with the spmd construct.

Other constructs for interlab communication include

• numlabs. Number of labs working on current job.

• psave. Save data from each lab workspace to file.

• pload. Load data from a previous psave.

• labBarrier. Pause until all labs reach this call.

• labBroadcast. Send/receive data from all labs.

• labSend. Send data to another lab.

• labReceive. Receive data from another lab.

• labSendReceive. Simultaneous data exchange.

• labProbe. Test if other lab is ready to receive.

45

Matlab interlab communication

There is also a series of global operators:

• gplus.

S = gplus(X)

adds up the local values of the array X, returns the
result in S, and then broadcasts S to all labs.

The variant S = gplus(X,targetLab) stores S

only on targetLab; other labs receive [].

For example, with four labs, S = gplus(labindex)

returns S=10 on all workers.

46

Matlab interlab communication

• gcat.

XX = gcat(X)

concatenates the local values of the array X (by
default along the second dimension (“columns”)),
returns the result in the array XX, and then
broadcasts XX to all workers.

The variants XX = gcat(X, dim) performs the
concatenation over dimension dim and XX =

gcat(X, dim, targetLab) stores XX only on
targetLab; other workers receive [].

For example, with four workers, XX =

gcat(labindex) returns XX=[1 2 3 4] on all
workers.

47

Matlab interlab communication

• gop. This is the general command for distributing
a global operation across workers:

result = gop(@f, x)

reduces the local value x on each lab via the function
f, returns the result in result, and then broadcasts
result to all workers.

The function f must accept exactly two arguments
and return one argument, with all three arguments
being of the same type.

This is because the function is used iteratively as

f(f(x1,x2),f(x3,x4))

The function f must also be associative, i.e.,

f(f(x1,x2),x3) = f(x1,f(x2,fx3))

48

The variant result = gop(@f,x,targetLab)

stores result only on targetLab; other workers
receive [].

For example, with four workers, the command

result = gop(@plus,x)

sums all lab values of x and the command

result = gop(@max,x)

returns the maximum value of x from all the workers.

The command

result = gop(@(a1,a2)norm([a1 a2]),x)

returns the 2-norm of x from all the workers.

49

Summary

• Parallel computing in Matlab

• Functional parallelism; data parallelism

• Inter-worker communication

50

