
Numerical Stability

Raymond J. Spiteri

Lecture Notes for CMPT 898:
Numerical Software

University of Saskatchewan

January 11, 2013

Objectives

• Problem conditioning and numerical stability

•

•

1

Problem Conditioning

In a very abstract sense, solving a problem is like
evaluating a function

y = f(x).

Here, x represents the input to the problem (the data),
f represents the “problem” itself, and y represents its
solution.

We are interested in studying the effect on y when a
given x is perturbed slightly.

If small changes in x lead to small changes in y, we
say the problem is well-conditioned.

If small changes in x lead to large changes in y, we say
the problem is ill-conditioned.

2

Problem Conditioning

Of course what constitutes “large” or “small” may
depend on the problem.

Although we are sometimes forced to do otherwise,
it only makes mathematical sense to solve well-
conditioned problems.

Because floating-point arithmetic used by computers
introduces relative errors not absolute errors, we define
conditioning in terms of a relative condition number.

3

Relative Condition Number

Let δx denote a small perturbation of x and let

δf = f(x+ δx)− f(x)

be the corresponding perturbation in f .
Then, the relative condition number κ = κ(x) is
defined to be

κ(x) = lim
δ→0

max
‖δx‖≤δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
.

Or, if you just assume δx and δf are infinitesimal

κ(x) = max
δx

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
.

Thus κ(x) is the maximum value of the ratio “relative
change in f” to “relative change in x”.

4

Relative Condition Number

If f has a derivative , we can write

δf

δx
= J(x),

where J = ∂fi
∂xj

is known as the Jacobian of f at x.

For example, suppose

f(x1, x2, x3) =

(
x1x2 + sin(x3) + x21

7 + ex2

)
.

Then,

J =

[
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

]

=

[
x2 + 2x1 x1 cos(x3)

0 ex2 0

]
.

5

Relative Condition Number

Note 1. δf ≈ J(x)δx with δf = J(x)δx in the
limit ‖δx‖ → 0.

In terms of J,

κ(x) =
‖J(x)‖

‖f(x)‖/‖x‖
.

We say a problem is well-conditioned if κ is small
(e.g., ≈ 1, 10, 102), and ill-conditioned if it is large
(e.g., ≈ 106, 1014).

Note 2. What constitutes “large” depends on the
precision you are working in!

A general rule of thumb is that if κ = 10p, then you
cannot really trust the last p digits of the floating-point
representation of your answer.

6

Relative Condition Number

In single precision, εmachine ≈ 10−8; so κ = 106 is
pretty ill-conditioned: only the first 2 digits of the
answer are reliable (this is OK for some applications!).

But, in double precision, where εmachine ≈ 10−16,
κ = 106 is not such a big deal.

Example 1: DIVISION BY 2
Consider the (trivial) problem of dividing a number
by 2. This can be described by the function

f : x→ x

2
.

So,

J =

[
∂f

∂x

]
=

1

2
,

and

κ =
‖J‖

‖f(x)‖/‖x‖
=

1
2

1
2|x|/|x|

= 1.

So this is an optimally well-conditioned problem!

7

Relative Condition Number

Example 2: SUBTRACTION
Consider the problem of subtracting two numbers. This
can be described by the function

f(x) : (x1, x2)→ x1 − x2.

For simplicity, let ‖ · ‖ = ‖ · ‖∞. Then,

J =
[

∂f
∂x1

∂f
∂x2

]
=
[

1 −1
]

=⇒ ‖J‖∞ = 2,

and

κ =
‖J‖

‖f(x)‖/‖x‖
=

2

|x1 − x2|/max{|x1|, |x2|}
.

So we see κ is large if |x1 − x2| is small; i.e., x1 ≈ x2.
This leads us to the well-known result that subtraction
of nearly equal quantities leads to large (cancellation)
errors in the result.

8

Relative Condition Number

Example 3: COMPUTING EIGENVALUES OF A
NON-SYMMETRIC MATRIX

This problem is often ill-conditioned.

For example, consider

A =

[
1 1000
0 1

]
and

Ã =

[
1 1000

0.001 1

]
.

The eigenvalues of A are {1, 1}, whereas those of Ã
are {0, 2}. (verify!)

→ a large change in the output (eigenvalues) for a
small change (∼ 10−3) of the input (A→ Ã).

9

Note 3. On the other hand, if A is symmetric (or
more generally, if it is normal1) then its eigenvalues are
well-conditioned.

For such matrices, it can be shown that if λ and λ+δλ
are the eigenvalues of A and A+δA respectively, then

|δλ| ≤ ‖δA‖2.

→ using the 2-norm, we can take

‖J‖ = max

∥∥∥∥δfδx
∥∥∥∥ = max

|δλ|
‖δA‖

= 1,

and thus

κ =
1

|λ|/‖A‖2
= ‖A‖2/|λ|.

1A real matrix A is normal if ATA = AAT .

10

Numerical stability

It would be nice if we could get exact solutions to
numerical problems.

But, the reality is that because the problems we study
are continuous whereas computer arithmetic is discrete,
this is not generally possible.

Stability tells us what is possible (or what we can
expect) when solving a continuous problem with
discrete arithmetic.

In other words, it tells us what it means to get the
“right answer” even if this is not the exact answer.

11

Numerical stability

Recall that an abstract way to think of solving a
problem is like evaluating a function

y = f(x),

where x represents the input to the problem (the data),
f represents the “problem” itself, and y represents its
solution.

An algorithm can be viewed as a different function f̃
that usually takes the same data (actually the rounded
data) and maps it to a different solution f̃(x).

For example, the computer code used to implement
the algorithm is viewed as the f̃ .

So, even if two different implementations are meant
to produce the same result, these are generally two
different functions f̃1 and f̃2.

12

Numerical stability

A good algorithm should have an f̃ that closely
approximates the underlying problem f .

If nothing else, f̃ will be affected by rounding error
during its execution.

If f̃ is a good algorithm, we might expect the relative
error to be small, e.g., some small multiple of unit
round-off.

We say that f̃ is an accurate algorithm for f if for all
(relevant) input data x

‖f̃(x)− f(x)‖
‖f(x)‖

= O(ue), (1)

where ue is unit round-off.

We will define the meaning of O(ue) shortly.

13

Numerical stability

If f(x) is ill-conditioned, the goal of achieving (1) is in
fact unreasonable.

Rounding of input is inevitable, so even if the algorithm
could somehow do everything exactly on the (rounded)
input, ‖f̃(x)− f(x)‖ may still be large!

So instead of always aiming for accuracy, the most we
can (always) reasonably aim for is stability :

We say that an algorithm f̃ for a problem f is stable
if for all (relevant) input data x

‖f̃(x̃)− f(x)‖
‖f(x)‖

= O(ue),

for some x̃ satisfying

‖x̃− x‖
‖x‖

= O(ue).

14

Numerical stability

To express this in words:

The best we can hope for in practice is a stable
algorithm, i.e., one that gives nearly the right answer
to nearly the right question.

Note 4. O(ue) is too strict for problems such as
solution of differential equations, where there are many
“layers” of approximations made by the algorithms.

The situation is better in numerical linear algebra,
where a concept known as backward stability holds for
many of the fundamental algorithms.

15

Backward stability

A backward stable algorithm satisfies the condition

f̃(x) = f(x̃)

for some x̃ satisfying

‖x̃− x‖
‖x‖

= O(ue);

i.e., the algorithm gives exactly the right answer to
nearly the right problem.

Of course, this is stronger than (just) stability.

16

O(ue)

We use the concept of

‖ computed quantity ‖ = O(ue)

in a sense that has a few assumptions built into it:

• ‖ computed quantity ‖ means the norm of some
number(s) computed by some algorithm f̃ for a
problem f , depending on both in the input data x
for f and on ue, e.g., the relative error.

Note 5. Provided the input and output are finite-
dimensional (which is always the case for this course),
the norm used is not relevant.

Theorem 1. For finite-dimensional inputs and
outputs, the properties of accuracy, stability, and
backward stability all hold or fail to hold independent
of the choice of norm.

17

Note 6. The only effect from one choice of norm to
another is the constant buried in the O(ue) notation.

• There is an implicit process of ue → 0.

Of course, this is nonsense within a given floating-point
number system.

One should imagine instead a series of computations
done in higher and higher precision (perhaps on
different computers), e.g., single precision, double
precision, quadruple precision, etc.

Then ‖ computed quantity ‖ → 0 as the precision is
increased.

• O(·) applies uniformly to all data x.

i.e., the constant buried in the O(ue) notation can be
specified independently of x; i.e., it does not depend
on the input x.

18

Stability of Floating-Point

Arithmetic

The four simplest computational problems (functions)
are +,−,×, /.

We do not go into algorithmic details!

We now analyze the stability of their floating-point
analogues: ⊕,	,⊗,�.

It turns out that the axioms

fl(x) = x(1 + ε), |ε| ≤ εmachine,

x~ y = (x ∗ y)(1 + ε),

imply that these most basic arithmetic operations are
in fact backward stable.

19

Stability of Floating-Point

Arithmetic

Let us show this for 	 since one might suspect this
has the greatest risk of instability.

input:

(
x1
x2

)
∈ R2

output: x1 − x2 ∈ R

In functional form,

f(x1, x2) = x1 − x2.

So, our algorithm is

f̃(x1, x2) = fl(x1)	 fl(x2);

i.e., first round x1, x2 to their nearest floating-point
numbers, then apply floating-point subtraction.

20

Now,

fl(x1) = x1(1 + ε1),

fl(x2) = x2(1 + ε2),

for some ε1, ε2 satisfying

|ε1|, |ε2| ≤ ue.

Also,

fl(x1)	 fl(x2) = [fl(x1)− fl(x2)] (1 + ε3),

for some ε3 satisfying

|ε3| ≤ ue.

21

Thus,

fl(x1)	 fl(x2) = [x1(1 + ε1)− x2(1 + ε2)] (1 + ε3)

= x1(1 + ε1)(1 + ε3)−
x2(1 + ε2)(1 + ε3)

= x1(1 + ε4)− x2(1 + ε5),

for some ε4, ε5 satisfying

|ε4|, |ε5| ≤ 2ue +O(u2e) (verify!)

i.e.,
f(x) = fl(x1)	 fl(x2) = x̃1 − x̃2,

where
|x̃1 − x1|
|x1|

,
|x̃2 − x2|
|x2|

= O(ue).

In this case, any C > 2 will suffice for the constant
implicit in O(·).

Any norm on R2 now implies f̃(x) = f(x̃); i.e.,
floating-point subtraction is backward stable.

22

Stability of Floating-Point

Arithmetic

Example 1: INNER PRODUCT
It can be shown that the inner product of two vectors
is backward stable (exercise).

Example 2: OUTER PRODUCT
Given vectors x ∈ Rm,y ∈ Rn, compute the rank-one
outer product A = xyT .

Obvious algorithm:
Set

ãij = fl(xi)⊗ fl(yj), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

This algorithm is stable, but not backwards stable
(this is okay, by the way).

The reason it is not backward stable is because Ã will
likely not have rank 1 (rank(Ã) > 1).

23

So, it cannot be written as

x̃ỹT = (x + δx)(y + δy)T .

In general when the dimension of the output exceeds
that of the input (in this case, when mn > m + n),
algorithms are rarely backward stable.

Example 3: ADDING 1
Let x ∈ R, and suppose f(x) = x+ 1.

Then, f̃(x) = fl(x)⊕ 1.

Again, this algorithm is stable, but not backward stable.
It fails backward stability for x ≈ 0.

However, the problem to compute x + y for data x, y
is backward stable.

In general, backward stability is a very special property;
it is a reasonable goal for some problems but not others.

A lack of backward stability is not a deal-breaker, but
a lack of (general) stability is.

24

Summary

• Conditioning pertains to the sensitivity of a
mathematical problem.

• Stability pertains to the sensitivity of an algorithm
used to solve a mathematical problem.

• “Nearly the right answer to nearly the right
problem.”

25

