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Abstract

Latent Semantic Indexing (LSI) is an information retrieval (IR) method that con-
nects IR with numerical linear algebra by representing a dataset as a term-document

matrix. Because of the tremendous size of modern databases, such matrices can be
very large. The partial singular value decomposition (PSVD) is a matrix factoriza-
tion that captures the salient features of a matrix, while using much less storage.
We look at two challenges posed by this PSVD data compression process in LSI.
Traditional methods of computing the PSVD are very expensive; most of the pro-
cessing time in LSI is spent in calculating the PSVD of the term-document matrix.
Thus, the first challenge is calculating the PSVD efficiently, in terms of computa-
tional and memory requirements. The second challenge is efficiently updating the
PSVD when the matrix is altered slightly. In a rapidly expanding environment, such
as the Internet, the term-document matrix is altered often as new documents and
terms are added. Updating the PSVD of this matrix is much more efficient than
recalculating it after each change. We investigate the use of the PSVD updating
methods proposed by Zha and Simon (1999, SIAM J. Sci. Comput., 21, 2) to meet
both of these challenges. Results are presented illustrating that updating in this
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manner provides tremendous savings in computation time, with little or no signifi-
cant reduction in accuracy. An algorithm for iteratively computing the PSVD of a
matrix using the document updating method will then be presented. This iterative
method, suggested by Zha and Zhang (1999, SIAM J. Matrix Anal. Appl., 21, 2),
provides a means of calculating the PSVD for matrices so large that the computa-
tion would be infeasible using traditional methods. Again, results are given showing
that this method provides savings in computational time and memory resources
without compromising the accuracy of the results.

Key words: partial singular value decomposition, updating, latent semantic
indexing, iterative methods
1991 MSC: 15A18

1 Introduction

With the tremendous increase in the size of both the Internet and modern
databases comes a corresponding increase in the need for efficient information
retrieval (IR) methods. Latent Semantic Indexing (LSI) [7] is an IR method
that relies heavily on techniques from numerical linear algebra. LSI uses a
mathematical approach known as the vector-space model. The vector-space
model represents a document collection as a term-document matrix contain-
ing a column vector for each document in the text collection and a row vector
for each semantically significant term [10]. Terms that occur in most of the
documents in a text collection are not considered semantically significant be-
cause they are not useful in differentiating between documents. Typically,
words that occur in at least 80% of the documents are considered to be se-
mantically insignificant stopwords; consequently they are not included in the
term-document matrix [1]. Common stopwords include words such as and, a,
and the. A list of 571 such English stopwords is used by the SMART retrieval
system at Cornell University [6].

A term-document matrix A thus has t rows and d columns, where t is the
number of semantically significant terms, and d is the number of documents.
Each entry aij indicates the importance of term i relative to document j,
where 1 ≤ i ≤ t, and 1 ≤ j ≤ d. The entries may simply be binary (0
if the term does not appear in the document and 1 otherwise), raw term

Email addresses: tougas@cs.dal.ca (Jane E. Tougas), spiteri@cs.usask.ca
(Raymond J. Spiteri).
1 The work of this author is supported by NSERC Canada and the Killam Foun-
dation.
2 The work of this author is supported by a grant from NSERC Canada.

2



frequencies (the number of times the term appears in the document), or more
typically, weighted term frequencies [1], [9]. A user’s query is represented as
a document (column) vector using the same stopword removal and weighting
scheme that have been applied to the document collection. The vectors of
documents (and queries) with many terms in common will be close together
in the t-dimensional vector space; conversely the vectors of documents with
few terms in common will be far apart. This distance, or similarity, is typically
measured using the cosine of the angle between each pair of vectors; this is
known as the cosine similarity measure [1], [2]. The cosine of the angle between
two vectors that are very close together will be large (close to 1), whereas the
cosine of the angle between two vectors that are far apart will be small.

Unfortunately, the retrieval of text is complicated by the fact that many words
have more than one meaning (they are polysemous). When a polysemous word
is used in a search query, irrelevant documents about the word’s other mean-
ing(s) may be retrieved. This is known as precision failure. A further compli-
cation arises from the fact that many words have similar meanings (they are
synonymous). When a word that has a synonym is used in a search query,
relevant documents containing a synonym, but not the specific word used
in the query, may be overlooked. This is known as recall failure. LSI uses
a matrix factorization method known as the partial singular value decompo-

sition (PSVD) to reduce the problems of recall and precision failure. Using
the PSVD, the data in the term-document matrix are projected into a lower-
dimensional vector space. This has the effect of removing noise (caused by
factors such as synonymy and polysemy) from the data and giving a better
representation of the text collection. Query vectors are also projected into the
lower-dimensional space using the PSVD. Although research indicates that
LSI is more successful in dealing with the problems caused by synonymy than
those caused by polysemy [7], this does not detract from the importance of
LSI in IR. LSI retrieves the documents that are most similar to a search query
(those closest to the query in the vector space), even if the documents do not
contain all (or any) of the terms contained in the query.

Although using the PSVD to project the term-document matrix into a lower-
dimensional space has the benefit of removing noise from the data, it has the
drawback of being computationally expensive. In fact, even using the most
advanced numerical linear algebra techniques, the majority of the processing
time in LSI is taken up with computing the PSVD [3], [4]. With a dynamic
medium such as the Internet, the term-document matrix undergoes frequent
changes as new documents and terms are added. Given the potentially huge
size of such term-document matrices, recomputing the PSVD each time the
term-document matrix is altered can be prohibitively expensive. Tradition-
ally, a method known as folding-in has been used to modify the PSVD when
recomputing it is too costly. Unfortunately, although the folding-in method
is much faster than recomputing the PSVD, it may result in a significant
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degradation of retrieval performance [4], [13]. A more recent and more accu-
rate approach is to update the PSVD using updating algorithms introduced
by Zha and Simon [13]. Updating the PSVD is a compromise between re-
computing the PSVD and folding-in: although the updating method is slower
than the folding-in method, it is much faster than recomputing the PSVD,
and yet it does not significantly degrade retrieval performance the way the
folding-in method may. Although updating methods have also been proposed
by O’Brien [8] and Berry, Dumais, and O’Brien [4], Zha and Simon have shown
that these methods give inferior results when compared to the methods they
introduce in [13]. In the absence of roundoff errors, the updating procedure
of [13] produces the exact PSVD of the updated matrix. In practice round-
off errors do affect the results. However, these did not result in a significant
change in the performance of LSI in a number of experiments that we have
carried out [11].

The purpose of this paper is not only to show that updating the PSVD has def-
inite advantages over recomputing the PSVD or using the folding-in method,
but also to show that the updating method may be used to compute the
PSVD of a matrix [14]. This is an especially important technique for the case
in which the matrix is so large that memory constraints may prohibit the use
of traditional PSVD methods.

The remainder of the paper proceeds as follows. Section 2 presents background
material on the PSVD and the folding-in method, Section 3 describes the
algorithms for the updating method, and Section 4 gives experimental results
comparing the methods of recomputing the PSVD, folding-in, and updating
the PSVD. Section 5 discusses the use of the updating method to compute the
PSVD, Section 6 presents results of experiments using the updating method
to compute the PSVD, and Section 7 presents our conclusions.

2 Background

2.1 SVD and PSVD

In order to understand the PSVD, it is helpful to first understand the sin-

gular value decomposition (SVD). The SVD is a matrix factorization that in
various senses captures the most important characteristics of a matrix. Given
a matrix A with t rows and d columns, its SVD has the form A = UΣVT,
where U is an orthogonal matrix with t rows and columns, and V is an or-
thogonal matrix with d rows and columns. U and V contain the left and right
singular vectors of A respectively. When A is a term-document matrix, the
left singular vectors represent the term vectors, and the right singular vectors
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represent the document vectors. The matrix Σ has non-zero entries only on
the diagonal, although not all diagonal entries are necessarily non-zero. These
diagonal entries are the singular values of A. The singular values are in non-
increasing order, and are denoted σj , for j = 1, 2, . . . , min (t, d). The number
of non-zero singular values is the rank, r of the matrix. See Figure 1 for a
schematic depiction of the SVD.

A

  =

U Σ VT

Fig. 1. The SVD of A

An alternative way to represent the SVD of a matrix is as the sum of r rank-one
matrices A =

∑r
j=1 σjujv

T
j , where uj and vj are the jth columns of matrices

U and V, respectively. This representation of the SVD allows the formation
of optimal lower-rank approximations of A. These lower-rank approximations
are optimal in the sense that for a given rank k, where 0 ≤ k < r, there is
no matrix of rank at most k that is closer to A as measured in the 2-norm
or the Frobenius norm; see, e.g., [12]. Let matrices Uk and Vk be the first k

columns of U and V respectively, and let matrix Σk be the leading submatrix
of Σ with k rows and k columns. Then Ak = UkΣkV

T
k is the optimal ap-

proximation (of rank at most k) of A. This is the partial SVD (PSVD) of A;
see Figure 2. This approximation can be used to reduce the dimension of the
term-document matrix, while eliciting the underlying structure of the data.
In LSI, the effect of this dimensional reduction on the data is a muting of the
noise caused by synonymy and an enhancing of the latent patterns that indi-
cate semantically similar terms. This means that Ak can actually be a better
representation of the data than the original term-document matrix. Note that
in LSI, it is not necessary to explicitly form Ak; the matrices Uk, Σk, and Vk

are used instead. The optimal number of dimensions k (singular values and
corresponding singular vectors) to keep in the reduced term-document matrix
varies, but experiments indicate that between 100 and 300 give the best re-
sults [4]. This tremendous dimensional reduction demonstrates the power of
the PSVD as a method of data compression.
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Fig. 2. The PSVD of A

2.2 Recomputing and Folding-in

Let D ∈ ℜt×p contain p document vectors to be appended to the term-
document matrix A, and let Ak = UkΣkV

T
k be the PSVD of A. The recom-

puting method simply recalculates the PSVD of the term-document matrix
from scratch each time changes are made to the matrix. Although this is very
accurate, it is also very expensive.

The folding-in method is computationally inexpensive compared to recom-
puting the PSVD. The folding-in method projects new documents into the
lower-dimensional vector space by performing a matrix multiplication, Dk =
DTUkΣ

−1
k , and then appending the result, Dk ∈ ℜt×p, to the bottom of ma-

trix Vk. This gives the modified matrix V̂k ∈ ℜ(d+p)×k. Note that matrices
Uk and Σk are not changed with this method. This means that as more and
more documents are folded in, the representation of the dataset becomes less
and less accurate.

The folding-in method projects new terms into a lower-dimensional vector
space in a similar fashion. Let T ∈ ℜq×d contain q term (row) vectors to
be appended to the term-document matrix A. The folding-in method projects
the new terms into the lower-dimensional vector space by performing a matrix
multiplication Tk = TVkΣ

−1
k , and then appending the result, Tk ∈ ℜq×k, to

the bottom of Uk. This gives the modified matrix Ûk ∈ ℜ(t+p)×k. As with the
folding-in of documents, matrices Vk and Σk are not changed.

3 Updating the PSVD

Zha and Simon’s method for updating the PSVD [13] of a term-document
matrix is more complicated and more computationally expensive than the
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folding-in method. However, in the absence of round-off error, this updating
gives the exact PSVD of the modified term-document matrix [13]. Moreover,
it is much less computationally intense than recomputing the PSVD anew.
Although each update requires both a QR-factorization and an SVD calcu-
lation, both of these computations are performed on relatively small inter-
mediate matrices (determined by the size of k). These calculations are thus
relatively inexpensive, especially compared to recomputing the PSVD of the
entire matrix.

A typical scenario for using the updating methods in LSI is that first, new
documents are added to the document collection, and the PSVD of the term-
document matrix is updated to reflect the addition of these documents. If
the addition of these documents increases the number of terms, the PSVD
of the term-document matrix is then updated to reflect the addition of the
new terms. If the addition of these new documents and terms affects the
weights in the term-document matrix, then as a final step, the PSVD of the
term-document matrix is updated to reflect the corresponding changes to the
term-weights. Sections 3.1–3.3 detail each of these updating algorithms [13]
in turn. In each case, let In represent the identity matrix of dimension n × n,
and let Ak = UkΣkVk be the rank-k PSVD of the term-document matrix A

of dimension t × d.

3.1 Updating when Documents are added to the Term-document Matrix

Assume that there are p documents to be appended to an existing term-
document matrix A ∈ ℜt×d. Let D ∈ ℜt×p be the term-document matrix
containing these document vectors. The following method updates the PSVD
of A to give the PSVD of Ã, where Ã = [A,D] is the updated term-document
matrix.

Let D̂ ∈ ℜt×p be defined by D̂ =
(

It −UkU
T
k

)

D, and then form the (reduced)

QR decomposition of D̂ such that QDRD = D̂. Recall that with such a
decomposition, QD ∈ ℜt×p has orthogonal columns, and RD ∈ ℜp×p is upper
triangular. Then,

Ã = [A,D] ≈ [Ak,D] = [Uk,QD]







Σk UT
k D

0 RD













VT
k 0

0 Ip





 .
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Let Â ∈ ℜ(k+p)×(k+p) be defined by Â =







Σk UT
k D

0 RD





 .

Now form the SVD of Â, and partition it to give

Â =
[

Ûk, Ûp

]







Σ̂k 0

0 Σ̂p







[

V̂k, V̂p

]T
,

where Ûk ∈ ℜ(k+p)×k, Ûp ∈ ℜ(k+p)×p, Σ̂k ∈ ℜk×k, Σ̂p ∈ ℜp×p, V̂k ∈ ℜ(k+p)×k,

and V̂p ∈ ℜ(k+p)×p.

Then the rank-k PSVD of the updated term-document matrix Ã = [A,D] is

Ãk =
(

[Uk,QD] Ûk

)

Σ̂k













Vk 0

0 Ip





 V̂k







T

.

3.2 Updating when Terms are added to the Term-document Matrix

Assume that there are q terms to be appended to an existing term-document
matrix A ∈ ℜt×d. Let T ∈ ℜq×d be the term-document matrix containing
these term (row) vectors. The following method updates the PSVD of A to
give the PSVD of Ã, where

Ã =







A

T





 is the updated term-document matrix.

Let T̂ ∈ ℜd×q be defined by T̂ =
(

Id − VkV
T
k

)

TT , and then form the (re-

duced) QR decomposition of T̂ such that QTRT = T̂. Then QT ∈ ℜd×q has
orthogonal columns, RT ∈ ℜq×q is upper triangular, and

Ã =







A

T





 ≈







Ak

T





 =







Uk 0

0 Iq













Σk 0

TVk RT
T





 [Vk,QT]T .
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Let Â ∈ ℜ(k+q)×(k+q) be defined by Â = Â =







Σk 0

TVk RT
T





 .

Now form the SVD of Â, and partition it to give

Â =
[

Ūk, Ūq

]







Σ̄k 0

0 Σ̄q







[

V̄k, V̄q

]T
,

where Ūk ∈ ℜ(k+q)×k, Ūq ∈ ℜ(k+q)×q, Σ̄k ∈ ℜk×k, Σ̄q ∈ ℜq×q, V̄k ∈ ℜ(k+q)×k,
and V̄q ∈ ℜ(k+q)×q.

Then the rank-k PSVD of the updated term-document matrix

Ã =







A

T





 is Ãk =













Uk 0

0 Iq





 Ūk





 Σ̄k

(

[Vk,QT] V̄k

)T
.

3.3 Updating Term-weights in the Term-document Matrix

Assume that there are s terms whose weights need to be adjusted in an existing
term-document matrix A ∈ ℜt×d. Let S ∈ ℜt×s be the selection matrix. A
selection matrix has a column for each term whose weight must be modified:
each column has one entry which is 1 (to select the term), and all other entries
0. For example if term i is represented by column j, then the entry sij will be
1, and all other entries in column j will be 0. Let W ∈ ℜd×s be the matrix
such that each column wi contains the difference between the old term weights
and the new term weights for the term i. The following method updates the
PSVD of A to give the PSVD of Ã, where Ã = A + SWT is the adjusted
term-document matrix.

To begin, let Ŝ ∈ ℜt×s be defined by Ŝ =
(

It −UkU
T
k

)

S, and let Ŵ ∈ ℜd×s be

defined by Ŵ =
(

Id − VkV
T
k

)

W. Now form the (reduced) QR decomposition

of Ŝ such that QSRS = Ŝ. Then, QS ∈ ℜt×s has orthogonal columns, and
RS ∈ ℜs×s is upper triangular. Also form the (reduced) QR decomposition of
Ŵ such that QWRW = Ŵ. Then QW ∈ ℜd×s has orthogonal columns, and
RW ∈ ℜs×s is upper triangular. Using these decompositions,
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Ã=A + SWT

≈Ak + SWT = [Uk,QS]















Σk 0

0 0





 +







UT
k S

RS













VT
k W

RW







T








[Vk,QW]T .

Let Â ∈ ℜ(k+s)×(k+q) be defined by Â =







Σk 0

0 0





 +







UT
k S

RS













VT
k W

RW







T

.

Now form the SVD of Â, and partition it to give

Â =
[

Ũk, Ũs

]







Σ̃k 0

0 Σ̃s







[

Ṽk, Ṽs

]T
,

where Ũk ∈ ℜ(k+s)×k, Ũs ∈ ℜ(k+s)×s, Σ̃k ∈ ℜk×k, Σ̃s ∈ ℜs×s, Ṽk ∈ ℜ(k+s)×k,
and Ṽs ∈ ℜ(k+s)×s.

Then the rank-k PSVD of the updated term-document matrix Ã = A+SWT

is

Ãk =
(

[Uk,QS] Ũk

)

Σ̃k

(

[Vk,QW] Ṽk

)T
.

4 Experiments: Updating the PSVD

In order to illustrate the accuracy of updating the PSVD in LSI, we com-
pare the retrieval performance of an LSI implementation using this method
with two alternative methods: one that recomputes the PSVD each time new
documents are added, and one that folds-in new documents. In each case,
we measure both the average precision and the CPU time. In information
retrieval, precision is defined as the fraction of the retrieved documents that
are relevant [1]. We average this precision over the number of queries, and
then average again over the 11 standard recall levels. Recall is defined as the
fraction of relevant documents that has been retrieved [1]; the standard recall
levels are 0–10%, 10–20%, . . . , 90-100%. The maximum precision (averaged
over the number of queries) in each recall level is used to compute the average
over all the levels.
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For these experiments, two document collections are used. The first is the
MEDLINE text collection [5], containing 1033 documents and 30 queries. Re-
moving semantically insignificant terms and stemming the remaining terms
gives a term-document matrix AMED ∈ ℜ5735×1033. The second text collection
used is the CRANFIELD text collection [5], containing 1400 documents and
225 queries. For this collection, no stemming is done, but semantically insignif-
icant words are removed, giving a term-document matrix ACRAN ∈ ℜ5321×1400.
For each text collection, we use a term frequency inverse document frequency

(tfidf) weighting scheme [1] for both the document and query vectors. The
similarity measure used in each of these experiments is the cosine of the angle
between query and each of the document vectors.

All of the experiments in this section are run using Matlab Release 13 on
an Ultra3 SunFire V880 (Solaris 8 operating system). In each experiment,
we partition the term-document matrix for the whole text collection into an
initial matrix and a number of smaller submatrices. The initial matrix is incre-
mentally enlarged by iteratively appending the submatrices, and the average
precision for each method is plotted at each increment. In each case, the PSVD
of the initial matrix is computed using the svds function for sparse matrices
in Matlab. For the MEDLINE text collection we choose k = 125, and for the
CRANFIELD text collection we choose k = 300, where k is the number of
dimensions (singular values and corresponding left and right singular vectors)
computed. For the sake of brevity, the experiments described here use only
document updating. We note that similar results are produced using term
updating.

4.1 Experiments with the MEDLINE Text Collection

Figures 3–6 illustrate the results from experiments using the MEDLINE text
collection. In each case the initial term-document matrix of 5735 terms and 433
documents has 600 documents added to it. Note that the initial matrix more
than doubles in size as a result of the incremental additions. Figure 3 shows
the average precision at each increment when there are 120 increments of 5
documents each, simulating a dynamic environment in which frequent small
changes are made to the term-document matrix. As expected, Figure 3 indi-
cates that the average precision for the folding-in method deteriorates rapidly
compared with the other methods. The average precision for the updating
method does not deteriorate until the initial matrix has approximately dou-
bled in size, and even then the deterioration is very slight. In this example,
although the updating method is computationally more expensive than the
folding-in method, the results are essentially as good as recomputing. More-
over, the execution time is over 120 times less than recomputing. Table 1
contains the CPU times for these experiments.
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Figure 4 shows the average precision at each increment for the case in which the
initial term-document matrix with 433 documents has 600 documents added
to it in 60 increments of 10 documents each. As in the previous experiment,
Figure 4 shows that the average precision for the folding-in method deterio-
rates rapidly compared to the other methods. In this example the updating
method gives similar results when compared to the method of recomputing
the PSVD at each increment, but again using over 120 times less CPU time.

Figure 5 gives the average precision at each increment for the case in which
30 increments of 20 documents each are added to the initial matrix of 433
documents, and Figure 6 gives the average precisions for adding 15 increments
of 40 documents each. As in the previous experiments, these figures show that
the average precision for the folding-in method deteriorates rapidly compared
to the other methods. In both cases the updating method gives similar results
when compared to the method of recomputing at each increment, but the
updating method requires over 100 times less CPU time than recomputing for
Figures 5, and approximately 75 times less CPU time for Figure 6. See Table 1
for CPU times.
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Fig. 3. Average precisions for three
methods using MEDLINE collection:
600 documents added (120 groups of 5).
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Fig. 4. Average precisions for three
methods using MEDLINE collection:
600 documents added (60 groups of 10).

Method CPU time CPU time CPU time CPU time

Increments of 5 Increments of 10 Increments of 20 Increments of 40

Recomputing 12689.14 6708.55 2879.01 1444.26

Updating 99.78 53.05 28.60 19.84

Folding-in 3.04 1.76 0.96 0.59

Table 1
MEDLINE CPU times (seconds): 600 documents added: groups of 5, 10, 20, 40.
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Fig. 5. Average precisions for three
methods using MEDLINE collection:
600 documents added (30 groups of 20).
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Fig. 6. Average precisions for three
methods using MEDLINE collection:
600 documents added (15 groups of 40).

4.2 Experiments with the CRANFIELD Text Collection

Figures 7–10 illustrate experiments using the CRANFIELD text collection. In
each case the initial term-document matrix of 5321 terms and 800 documents
has 600 documents added to it. Figure 7 shows the average precision at each
increment when there are 120 increments of 5 documents each. As expected,
Figure 7 indicates that the average precision for the folding-in method de-
teriorates rapidly compared with the other methods. Although the updating
method is computationally more expensive than the folding-in method, it gives
much better results. In this example the updating method requires over 180
times less CPU time than recomputing; in this case recomputing takes almost
35 hours, whereas updating takes less than 12 minutes. Table 2 contains the
CPU times.

Figure 8 shows the average precisions for the case in which the initial term-
document matrix with 800 documents has 600 documents added to it in 60
increments of 10 documents each. Figure 8 shows that the average precision
for the folding-in method deteriorates rapidly compared to the other methods.
The updating method again gives much better results than the folding-in
method. In this case the updating method takes less than 6 minutes, whereas
recomputing takes more than 17 hours.

Figure 9 shows the average precisions for the case in which 30 increments of
20 documents each are added to the initial matrix of 800 documents, and Fig-
ure 10 gives the average precisions for adding 15 increments of 40 documents
each. As in the previous experiments, these figures show that the average pre-
cision for the folding-in method deteriorates rapidly compared to the other
methods. In both cases the updating method gives much better results than
folding-in while being much faster than recomputing the PSVD at each incre-

13



ment. See Table 2 for CPU times.
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Fig. 7. Average precisions for three
methods using CRANFIELD collec-
tion: 600 documents added (120 groups
of 5).
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Fig. 8. Average precisions for three
methods using CRANFIELD collec-
tion: 600 documents added (60 groups
of 10).
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Fig. 9. Average precisions for three
methods using CRANFIELD collec-
tion: 600 documents added (30 groups
of 20).
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Fig. 10. Average precisions for three
methods using CRANFIELD collec-
tion: 600 documents added (15 groups
of 40).

Method CPU time CPU time CPU time CPU time

Increments of 5 Increments of 10 Increments of 20 Increments of 40

Recomputing 125976.03 63530.89 31303.54 15781.51

Updating 689.80 353.29 216.81 102.00

Folding-in 15.28 8.50 4.49 2.65

Table 2
CRANFIELD CPU times (seconds): 600 documents added: groups of 5, 10, 20, 40.
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5 Computing the PSVD using Updating Methods

Given the enormous size of both the Internet and many modern databases, it is
common for a term-document matrix to be too large for the computation of its
PSVD to be feasible with the available memory resources. In this case, using
the updating method to compute the PSVD of the matrix is a viable alterna-
tive. The idea behind using the updating method to compute the PSVD of a
matrix is very simple. The matrix is partitioned into manageable pieces (whose
number and size depend on the available resources): A = [A1,A2, · · · ,Aj].
The PSVD of A1 is computed using a traditional method, such as the built-in
svds function in Matlab. This PSVD is then updated j − 1 times using the
document updating method and submatrices A2 · · ·Aj in turn, to give an ap-
proximation to the PSVD of the original matrix A. A strategy similar to term
updating can be used for matrices that must be partitioned vertically rather
than horizontally. Note that for the first submatrix A1 ∈ ℜm×n, it must be the
case that min(m, n) > k, where k is the number of singular values and singular
vectors being computed. This is not a significant restriction in practice.

6 Experiments: Computing the PSVD using Updating Methods

In order to illustrate the accuracy of using the updating method to compute
the PSVD in LSI, we compare the retrieval performance of an LSI implemen-
tation using this method with that of one which uses a traditional approach
to computing the PSVD, in this case, the svds function in Matlab. In each
case, we measure both the average precision and the CPU time. The same
two document collections are used as in Section 4.

All of the experiments in this section are also run using Matlab Release 13
on an Ultra3 SunFire V880 (Solaris 8 operating system). In each experiment,
we partition the term-document matrix for the whole text collection into an
initial matrix and a number of additional submatrices. The initial matrix
is incrementally enlarged by iteratively appending the submatrices, and the
PSVD of each modified matrix is computed using the document updating
method. In each case, the PSVD of the initial matrix is computed using the
svds function for sparse matrices in Matlab. As before, for the MEDLINE text
collection k = 125, and for the CRANFIELD text collection k = 300.
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6.1 Experiments with the MEDLINE Text Collection

Table 3 gives the CPU times and average precisions for experiments with the
MEDLINE text collection. The first row of the table gives the CPU time and
average precision for the base case in which the document updating method
is not used; i.e. the PSVD of the entire term-document matrix is computed
using the Matlab function svds, and then the average precision using LSI is
recorded. The experiments for the remaining rows use the document updating
method to compute the PSVD of the term-document matrix. We see that as
the number of submatrices increases (i.e., the number of updates performed
increases) the CPU time for the process decreases; at some point (depending
on the size of k) the overhead of the updating process causes the CPU times
to increase as the number of partitions increases (see Section 6.2). The final
row of the table shows a case in which the cost of the number of updates
being performed outweighs the savings in performing updates on smaller sub-
matrices, and thus the CPU time for performing 32 updates is slightly higher
than that for performing only 16 updates. In other words, there is an optimal
number of partitions somewhere between 16 and 32 updates. However, the
break-even point at which updating becomes as expensive as computing the
entire PSVD requires significantly more updates than are shown. Note that
for these experiments, the average precision stays within 0.006, or 0.6% of that
for the base case.

Number of Updates CPU time (sec.) Average Precision

0 107.68 51.28%

1 155.08 51.87%

2 134.21 51.83%

4 93.58 51.38%

8 49.72 51.07%

16 45.59 51.62%

32 57.57 51.85%

Table 3

6.2 Experiments with the CRANFIELD Text Collection

Table 4 gives the CPU times and average precisions for experiments with the
CRANFIELD text collection. The results are qualitatively the same as for the
MEDLINE text collection; there is an optimal number of partitions between 8
and 16, and the break-even point requires significantly more updates than are
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shown. Note that the average precision for all the examples is within .0019, or
0.19% of that of the base case in the first row.

Number of Updates CPU time (sec.) Average Precision

0 1132.70 20.57%

1 971.69 20.57%

2 741.90 20.62%

4 329.95 20.56%

8 316.21 20.40%

16 333.39 20.38%

Table 4

7 Conclusion

Latent Semantic Indexing (LSI) is an information retrieval (IR) method that
represents a text collection as a term-document matrix and uses the PSVD of
the matrix to project the data into a lower-dimensional space. Because of the
tremendous size of modern databases, such a term-document matrix can po-
tentially be very large. Traditional methods of computing the PSVD are very
expensive, and in a rapidly expanding environment the term-document matrix
is altered often as new documents and terms are added. We have demonstrated
that the PSVD updating methods proposed by Zha and Simon [13] are effec-
tive in a dynamic environment in which there are many small updates made
to the term-document matrix. This method of updating the PSVD achieves
similar average precision to recomputing the PSVD, using only a fraction of
the computation time. We have also demonstrated that the same updating
methods may be used to compute the PSVD of a matrix by partitioning the
matrix into submatrices, computing the PSVD of the first submatrix using a
traditional method, and then using a PSVD updating method to iteratively
update this PSVD to form the PSVD of the original matrix. This technique
can offer savings in both memory resources and computation time, compared
with using a traditional PSVD method, without compromising the accuracy
of the results.
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